

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	97
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efk124t-i-tl

Email: info@E-XFL.COM

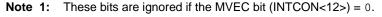
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-16: SYSTEM BUS TARGET 8 REGISTER MAP

ess		0									Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
A020	SBT8ELOG1	31:16	MULTI	—	_	_		CODE	<3:0>		_	_	_		—	_	—	—	0000
A020	SBIBLEOGI	15:0				INI	ΓID<7:0>					REGIO	N<3:0>		—	C	MD<2:0>		0000
A024	SBT8ELOG2	31:16	_	—	_	—	—	-	_	_	_	—	_	_	—	_	—	—	0000
A024	361621092	15:0	_	—	_	—	—	-	_	_	_	—	_	_	—	_	GROU	P<1:0>	0000
A028	SBT8ECON	31:16	_	—	_	—	—	-	_	ERRP	_	—	_	_	—	_	—	—	0000
A020	SBIBLEON	15:0	_	—	_	—	—	-	_	_	_	—	_	_	—	_	—	—	0000
A030	SBT8ECLRS	31:16	_	—	_	—	—	-	_	_	_	—	_	_	—	_	—	—	0000
A030	SBIBLCERS	15:0	_	—	_	—	—	-	_	_	_	—	_	_	—	_	—	CLEAR	0000
A038	SBT8ECLRM	31:16	_	_	—	—	—	_	—	_	_	—	—	_	—	_	—	—	0000
A030	SBIBLCERM	15:0	_	—	_	—	—	-	_	_	_	—	_	_	—	_	—	CLEAR	0000
A040	SBT8REG0	31:16								BAS	SE<21:6>								xxxx
A040	SBIOKEGO	15:0			BA	\SE<5:0>			PRI	_	SIZE<4:0> — — —						—	xxxx	
A050	SBT8RD0	31:16	_	—	—	—	—	_	—	—	—	—	—	_	—	—	—	—	xxxx
7000	SETUKED	15:0	_	—	—	—	—	_	—	—	—	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A058	SBT8WR0	31:16	_	—	—	—	—	_	—	—	—	—	—	_	—	—	—	—	xxxx
7000	30100000	15:0	_	—	—	—	—	—	_	—	—			—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A060	SBT8REG1	31:16	16 BASE<21:6>										xxxx						
7000	SETUKEOT	15:0		_	BA	SE<5:0>			PRI	—		-	SIZE<4:0	>		—	—	—	xxxx
A070	SBT8RD1	31:16	_	—	—	—	—	_	—	—	—	—	—	_	—	—	—	—	xxxx
A070	SBIOKDI	15:0	_	—	_	—	—	-	_							GROUP1	GROUP0	xxxx	
A078	SBT8WR1	31:16	_	_	—	—	—	_	—	_	_	—	—	_	_	_	—	—	xxxx
7070	GETOWRT	15:0	_	-	—	—	—	_	_	_	_	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.


Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24		PRI7SS	<3:0> ⁽¹⁾		PRI6SS<3:0> ⁽¹⁾							
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16		PRI5SS	<3:0> ⁽¹⁾			PRI4SS	<3:0> ⁽¹⁾					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8		PRI3S	S<3:0>			PRI2SS	<3:0> ⁽¹⁾					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0				
7:0		PRI1SS	<3:0> ⁽¹⁾	•			_	SS0				

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 **PRI7SS<3:0>:** Interrupt with Priority Level 7 Shadow Set bits⁽¹⁾

1xxx = Reserved (by default, an interrupt with a priority level of 7 uses Shadow Set 0) 0111 = Interrupt with a priority level of 7 uses Shadow Set 7 0110 = Interrupt with a priority level of 7 uses Shadow Set 6 0001 = Interrupt with a priority level of 7 uses Shadow Set 1 0000 = Interrupt with a priority level of 7 uses Shadow Set 0 bit 27-24 **PRI6SS<3:0>:** Interrupt with Priority Level 6 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 6 uses Shadow Set 0) 0111 = Interrupt with a priority level of 6 uses Shadow Set 7 0110 = Interrupt with a priority level of 6 uses Shadow Set 6 0001 = Interrupt with a priority level of 6 uses Shadow Set 1 0000 = Interrupt with a priority level of 6 uses Shadow Set 0 bit 23-20 PRI5SS<3:0>: Interrupt with Priority Level 5 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 5 uses Shadow Set 0) 0111 = Interrupt with a priority level of 5 uses Shadow Set 7 0110 = Interrupt with a priority level of 5 uses Shadow Set 6 0001 = Interrupt with a priority level of 5 uses Shadow Set 1 0000 = Interrupt with a priority level of 5 uses Shadow Set 0 bit 19-16 PRI4SS<3:0>: Interrupt with Priority Level 4 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 4 uses Shadow Set 0) 0111 = Interrupt with a priority level of 4 uses Shadow Set 7 0110 = Interrupt with a priority level of 4 uses Shadow Set 6 0001 = Interrupt with a priority level of 4 uses Shadow Set 1 0000 = Interrupt with a priority level of 4 uses Shadow Set 0

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

- bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾
 - 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
 - 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 CRCTYP: CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

	EGISTER 10-0. DETREGON. DINA CHANNEL & EVENT CONTROL REGISTER													
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31.24	—			—	—	_		—						
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
23:16				CHAIRQ-	<7:0> ⁽¹⁾									
45.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
15:8				CHSIRQ<	<7:0> ⁽¹⁾									
7.0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0						
7:0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	_						

REGISTER 10-8: DCHxECON: DMA CHANNEL x EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

and set CHAIF flag

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress
	•
	•
	•

00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag

bit 15-8 CHSIRQ<7:0>: Channel Transfer Start IRQ bits⁽¹⁾

11111111 = Interrupt 255 will initiate a DMA transfer

• 00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer

bit 7 CFORCE: DMA Forced Transfer bit

1 = A DMA transfer is forced to begin when this bit is written to a '1'

0 = This bit always reads '0'

bit 6 CABORT: DMA Abort Transfer bit

- 1 = A DMA transfer is aborted when this bit is written to a '1'
- 0 = This bit always reads '0'

bit 5 **PATEN:** Channel Pattern Match Abort Enable bit

- 1 = Abort transfer and clear CHEN on pattern match
- 0 = Pattern match is disabled
- bit 4 SIRQEN: Channel Start IRQ Enable bit
 - 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
 - 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-2: "Interrupt IRQ, Vector, and Bit Location" for the list of available interrupt IRQ sources.

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

		1		Bits															
ess				1	1					1	DIIS		1	1	1	1	1	1	
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3170	USB E7CSR0	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE7CSR0			•				0000
3174	USB E7CSR1	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE7CSR1							0000
3178	USB E7CSR2	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE7CSR2							0000
317C	USB E7CSR3	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE7CSR3							0000
3200	USB DMAINT	31:16 15:0		DMA8IF DMA7IF DMA6IF DMA5IF DMA4IF DMA3IF DMA2IF DMA1IF 00													0000		
3204	USB DMA1C	31:16 15:0														0000			
3208	USB DMA1A	31:16 15:0		DMAADDR<31:16> 000												0000			
320C	USB DMA1N	31:16 15:0		DMACOUNT<31:16> 001													0000		
		31:16	_	_	_	_	_			DIVIA	COUNT<15:0	>		_				_	0000
3214	USB DMA2C	15:0	_	_		_		DMABRS	 GTM<1:0>	DMAERR	_		EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
3218	USB DMA2A	31:16									ADDR<31:16								0000
		15:0									ADDR<15:0>								0000
321C	USB DMA2N	31:16 15:0									COUNT<31:16 COUNT<15:0								0000
0004	USB	31:16	_	_	_	_	_	_	_	_	_	_	_	-	_	-	-	_	0000
3224	DMA3C	15:0	_	_		_		DMABRS	STM<1:0>	DMAERR		DMA	EP<3:0>	•	DMAIE	DMAMODE	DMADIR	DMAEN	0000
3228	USB	31:16									ADDR<31:16								0000
	DMA3A	15:0									ADDR<15:0>								0000
322C	USB DMA3N	31:16 15:0									COUNT<31:16 COUNT<15:0								0000
3234	USB	31:16	_	_	_	_	_	_	_	_	_		_	_	_	_	—	_	0000
0204	DMA4C	15:0	—	_	—	—	—	DMABRS	STM<1:0>	DMAERR			EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
3238	USB DMA4A	31:16									ADDR<31:16								0000
		15:0									ADDR<15:0>								0000
323C	USB DMA4N	31:16 15:0	DMACOUNT<31:16> 0000																
	USB	31:16	_	DMACOUNT<15:0> 0000															
3244	DMA5C	15:0	_	_	_	_	_		STM<1:0>	DMAERR		DMA	EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
Leger		1		Reset: — – uni	ine plane a pto s	. read as (0)	Depet velu	l										I	

Legend: Note x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Device mode.

1:

2: Host mode.

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7). 3: 4:

REGISTER 11-4: USBCSR3: USB CONTROL STATUS REGISTER 3 (CONTINUED)

bit 19-16 ENDPOINT<3:0>: Endpoint Registers Select bits

- bit 19-11 Unimplemented: Read as 0
- bit 10-0 RFRMNUM<10:0>: Last Received Frame Number bits

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0							
31:24		_	_	_	_	_	NRSTX	NRST							
00.40	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R.W-0	R/W-1	R/W-0							
23:16	LSEOF<7:0>														
15.0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R.W-1	R/W-1	R/W-1							
15:8	FSEOF<7:0>														
7.0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R.W-0	R/W-0	R/W-0							
7:0	HSEOF<7:0>														

REGISTER 11-17: USBEOFRST: USB END-OF-FRAME/SOFT RESET CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

- bit 25 NRSTX: Reset of XCLK Domain bit
 - 1 = Reset the XCLK domain, which is clock recovered from the received data by the PHY 0 = Normal operation

bit 24 NRST: Reset of CLK Domain bit

1 = Reset the CLK domain, which is clock recovered from the peripheral bus

0 = Normal operation

bit 23-16 LSEOF<7:0>: Low-Speed EOF bits These bits set the Low-Speed transaction in units of 1.067 μs (default setting is 121.6 μs) prior to the EOF to stop new transactions from beginning.

bit 15-8 **FSEOF<7:0>:** Full-Speed EOF bits These bits set the Full-Speed transaction in units of 533.3 μs (default setting is 63.46 μs) prior to the EOF to stop new transactions from beginning.

bit 7-0 **HSEOF<7:0>:** Hi-Speed EOF bits These bits set the Hi-Speed transaction in units of 133.3 µs (default setting is 17.07µs) prior to the EOF to stop new transactions from beginning.

TABLE 12-23: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

ss										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1538	RPA14R ⁽¹⁾	15:0	_	_	_	_	_	_	_		_	_		_		RPA14	R<3:0>		0000
		31:16	_	—	—	_	_	_	_	—	_	_	_	_	_	—	—	—	0000
153C	RPA15R ⁽¹⁾	15:0	_	—	—	_	_	_	_	—	_	_	_	_		RPA15	R<3:0>		0000
		31:16	_	—	—	_	_	_	_	—	_	_	_	_	_	—	—	—	0000
1540	RPB0R	15:0	_	—	—	_	_	_	_	—	_	_	_	_		RPB0	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_		_	0000
1544	RPB1R	15:0	_	_	_	_	_	_	_		_	_		_		RPB1	R<3:0>		0000
		31:16	_	—	—	_	_	_	_	—	_	_	_	_	_	—	—	—	0000
1548	RPB2R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB2	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_		_	0000
154C	RPB3R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB3	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_		_	0000
1554	RPB5R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB5	R<3:0>		0000
		31:16	_		_	_	_	_	_		_	_		_		_	_	_	0000
1558	RPB6R	15:0	_	_	_	_	_	_	_	_	_	_		_		RPB6	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
155C	RPB7R	15:0	_	_	_	_	_		_	_	_	_	_	_		RPB7	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1560	RPB8R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB8	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1564	RPB9R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB9	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1568	RPB10R	15:0	_	_	_	_	_		_	_	_	_	_	_		RPB10	R<3:0>		0000
		31:16	_	_	_	_	_	_	_		_	_		_		_	_	_	0000
1578	RPB14R	15:0	_	_	_	_	_	_	_		_	_		_		RPB14	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
157C	RPB15R	15:0	_	_	_	_	_	_	_		_	_		_		RPB15	R<3:0>		0000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	0000
1584	RPC1R ⁽¹⁾	15:0	_		_	_	_	_	_		_	_		_		RPC1	R<3:0>		0000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1588	RPC2R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPC2	R<3:0>		0000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
158C	RPC3R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPC3	R<3:0>		0000
	(0)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1590	RPC4R ⁽¹⁾	15:0	_		_	_	_		_	_	_		_	_		RPC4	R<3:0>		0000
Legen	l		alua an Da	eset: — = u						h ava da aira					l				0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on 64-pin and 100-pin devices.

TABLE 21-1: I2C1 THROUGH I2C5 REGISTER MAP (CONTINUED)

SSS										Bi	ts								
Virtual Address (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0430	I2C3MSK	31:16	_	—	—	—	-	_	—	_	_	—	_	_	_	_	-	_	0000
0 100	1200111011	15:0	—	—		—	_	—					Address Ma	sk Register	•				0000
0440	I2C3BRG	31:16	—	—	—	—	—	_	—	—	—		—	—	_	—	—	—	0000
		15:0								d Rate Gen	erator Reg	ister							0000
0450	I2C3TRN	31:16	_	—		—	—	—	—		—	—	—			—	—	—	0000
		15:0	_	_		—	_	_	—	_				Transmit	Register	-			0000
0460	I2C3RCV	31:16	—			_	_	_	_	_	_	—	_	_	_	_	—	—	0000
		15:0	—	—		_	_	_	_			1		Receive		1			0000
0600	I2C4CON	31:16	—	—		—	—	—	—	_	—	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
		15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0610	I2C4STAT	31:16	—	—	—	—		—	—	_	—	—	—	—	—	—	—	—	0000
		15:0	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0620	I2C4ADD	31:16	_	—		—			—	_	_	—	—	—	—	—	—	—	0000
		15:0	_	—		—		_					Address	Register					0000
0630	I2C4MSK	31:16	_				_		—	—	_	—	_	_	—	—	-	—	0000
		15:0	_	—	-	—	—	—					Address Ma	isk Register		-			0000
0640	I2C4BRG	31:16	—	_	_		_	_	_	-	_	—	_	_	_	_	_	—	0000
		15:0							Bau	d Rate Gen	erator Reg	ister							0000
0650	I2C4TRN	31:16	_				_		_	_	_	—	_	-		—	_	_	0000
		15:0	—	_			_	—	_					Transmit	Register				0000
0660	I2C4RCV	31:16	_			_	_	_	_	_	_	_	—			—	—	—	0000
		15:0	_			_	_	_	_	_				Receive					0000
0800	I2C5CON	31:16		-	—	—	—	_	—	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
		15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0810	I2C5STAT	31:16	-	-	-		_	-	-	-	-	-	-	_	_	—	-	-	0000
		15:0	ACKSTAT	TRSTAT	ACKTIM			BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0820	I2C5ADD	31:16	_						_	_	_	_			_	—	_	_	0000
		15:0	_										Address	Register					0000
0830	I2C5MSK	31:16	_						_	_	_	_			_	—	_	_	0000
		15:0	_										Address Ma	isk Register	-				0000
0840	I2C5BRG	31:16	—	—	—	—	—	_	— — —	- Data O	-	—	—	—	—	—	-	—	0000
		15:0							Bau	d Rate Gen	erator Reg	Ister							0000
0850	I2C5TRN	31:16			_	—	_	_	—		_	—	—		—	—	-	—	0000
		15:0	_	—	_	—	—	—	—	_				Transmit	Register	_			0000
0860	I2C5RCV	31:16	_	_		—	_	_	_	_	—	_	—	- Dessive	—	—	_	—	0000
Legend		15:0		—				—	shown in h					Receive	Register				0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

2: This register is not available on 64-pin devices.

REGISTER 22-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved
	 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Data is being received
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit.
	This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state.
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed
bit 0	 URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

23.1 PMP Control Registers

TABLE 23-1: PARALLEL MASTER PORT REGISTER MAP

ess		ő								В	its								\$
Virtual Address (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E000	PMCON	31:16		—	—		—	—	—		RDSTART		—		_		DUALBUF	_	0000
LUUU	FINCON	15:0	ON	—	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P		WRSP	RDSP	0000
E010	PMMODE	31:16	_	—	—	_	—	—		_		—	—	—	—	_	—	_	0000
2010	_	15:0	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>	WAITE	3<1:0>		WAITN	/<3:0>		WAITE	<1:0>	0000
		31:16	_	—	—	—		—	—	—	—	—	—	—	—	—	—	_	0000
E020	PMADDR	15:0	CS2	CS1							ADDR	<13.0>							0000
	ADDR15 ADDR14									0000									
E030								_	0000										
		15:0		DATAOUT<15:0> 0000															
E040	PMDIN	31:16 15:0	—	—	_	_		_	_		-	—	_	—	—	—	—	_	0000
		31:16								DATAI	l<15:0>								0000
E050	PMAEN	15:0	-	_	—	_	_	—	_			_	—	—	—		—	_	
											<15:0>								0000
E060	PMSTAT	31:16 15:0	IBF	— IBOV	_	_	IB3F	IB2F	IB1F	IB0F				_	OB3E	— OB2E	— OB1E		0000
		31:16		<u>іво</u> у			івэг —											<u></u>	008F
E070	PMWADDR	51.10	WCS2	WCS1					_		_						_		0000
2070		15:0		WADDR14							WADDF								0000
		31:16				_		_	_	_		<13:0>	_	_	_	_	_	_	0000
E090	PMRADDR	51.10	RCS2	RCS1													_		0000
E080	FINIKADDR	15:0																	0000
		31:16	31:16																
E090	PMRDIN					_	_	_				-		_			_	_	
		15:0 15:0 RDATAIN<15:0>								0000									

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

REGIST	ER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER (CONTINUED)
bit 7-0	ARPT<7:0>: Alarm Repeat Counter Value bits ⁽²⁾
	11111111 = Alarm will trigger 256 times
	•
	00000000 = Alarm will trigger one time The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.
Note 1:	Hardware clears the ALRMEN bit anytime the alarm event occurs, when $ARPT < 7:0 > = 0.0$ and $CHIME = 0.$
2:	This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04-04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	_	—	—	_	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	_	—	—	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	BDPPLCON<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				BDPPLCC)N<7:0>						

REGISTER 26-8: CEPOLLCON: CRYPTO ENGINE POLL CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **BDPPLCON<15:0>:** Buffer Descriptor Processor Poll Control bits

These bits determine the number of SYSCLK cycles that the Crypto DMA would wait before refetching the descriptor control word if the Buffer Descriptor fetched was disabled.

Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
SA_ENCIV1	31:24	ENCIV<31:24>										
	23:16				ENCIV<23	:16>						
	15:8				ENCIV<1	5:8>						
	7:0	ENCIV<7:0>										
SA_ENCIV2	31:24				ENCIV<31	:24>						
	23:16		ENCIV<23:16>									
	15:8				ENCIV<1	5:8>						
	7:0	ENCIV<7:0>										
SA_ENCIV3	31:24				ENCIV<31	:24>						
	23:16	ENCIV<23:16>										
	15:8	ENCIV<15:8>										
	7:0	ENCIV<7:0>										
SA_ENCIV4	31:24				ENCIV<31	:24>						
	23:16				ENCIV<23	:16>						
	15:8				ENCIV<1	5:8>						
	7:0				ENCIV<7	:0>						

TABLE 26-4: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE (CONTINUED)

TABLE 29-2: CAN2 REGISTER SUMMARY FOR PIC32MZXXXECF AND PIC32MZXXXECH DEVICES

ess										Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	C2CON	31:16	—	—	—	—	ABAT		REQOP<2:0	>	C	OPMOD<2:0	>	CANCAP				—	0480
1000	CZCON	15:0	ON	-	SIDLE	—	CANBUSY	—	—	-	—	—	-]	DNCNT<4:0:	>		0000
1010	C2CFG	31:16	—		—	—	—	—	—	—	—	WAKFIL	—	—	—	S	EG2PH<2:0)>	0000
1010	02010	15:0	SEG2PHTS	SAM	5	SEG1PH<2:0)>		PRSEG<2:0	>	SJW	<1:0>			BRP	<5:0>			0000
1020	C2INT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	—	_		_	_	—	-	MODIE	CTMRIE	RBIE	TBIE	0000
1020	021111	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF	—	—	—	—	—	—	—	MODIF	CTMRIF	RBIF	TBIF	0000
1030	C2VEC	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1000	02120	15:0	—	—	—		-	FILHIT<4:0:	>		—		-		CODE<6:0>	·			0040
1040	C2TREC	31:16	—	—	—	—	—	—	—	—	—	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
1010	0211120	15:0			1		CNT<7:0>	1	1			1	1	RERRCI			1	T	0000
1050	C2FSTAT	31:16	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16	0000
1000	021 0 1/11	15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	0000
1060	C2RXOVF	31:16		RXOVF30	RXOVF29		RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
		15:0										0000							
1070	C2TMR	31:16								CANTS								r	0000
		15:0								NTSPRE<15	:0>								0000
1080	C2RXM0	31:16						SID<10:0>							MIDE	—	EID<	17:16>	xxxx
		15:0								EID<1	5:0>						1		xxxx
10A0	C2RXM1	31:16						SID<10:0>							MIDE	—	EID<	17:16>	xxxx
		15:0								EID<1	5:0>						1		xxxx
10B0	C2RXM2	31:16						SID<10:0>							MIDE	—	EID<	17:16>	xxxx
	_	15:0								EID<1	5:0>						1		xxxx
10B0	C2RXM3	31:16						SID<10:0>							MIDE	_	EID<	17:16>	xxxx
		15:0		r		1				EID<1	1								xxxx
1010	C2FLTCON0	31:16			3<1:0>			FSEL3<4:0:			FLTEN2		2<1:0>			FSEL2<4:0>			0000
		15:0	FLTEN1		1<1:0>			FSEL1<4:0:			FLTEN0		0<1:0>			FSEL0<4:0>			0000
10D0	C2FLTCON1	31:16			7<1:0>			FSEL7<4:0:			FLTEN6		6<1:0>			FSEL6<4:0>			0000
		15:0	FLTEN5	MSEL	5<1:0>			FSEL5<4:0:	>		FLTEN4	MSEL	4<1:0>			FSEL4<4:0>	>		0000
10E0	C2FLTCON2	31:16	FLTEN11	MSEL1	1<1:0>			FSEL11<4:0	>		FLTEN10	MSEL1	0<1:0>		F	SEL10<4:0	>		0000
		15:0	FLTEN9	MSEL	9<1:0>			FSEL9<4:0:	>		FLTEN8	MSEL	8<1:0>			FSEL8<4:0>	>		0000
10F0	C2FLTCON3	31:16	FLTEN15	MSEL1	5<1:0>			FSEL15<4:0	>		FLTEN14	MSEL1	4<1:0>		F	SEL14<4:0	>		0000
101.0	OLI LI CONS	15:0	FLTEN13	MSEL1	3<1:0>			FSEL13<4:0	>		FLTEN12	MSEL1	2<1:0>		F	SEL12<4:0	>		0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

REGISTER 29-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED) bit 15 FLTEN9: Filter 9 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL9<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL8<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'. Note:

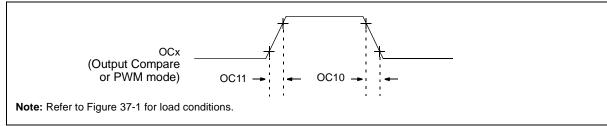
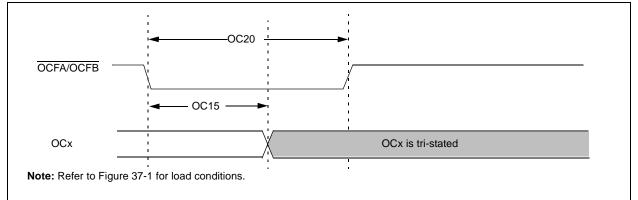

DC CHARAG	CTERISTICS		(unless oth	Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Parameter No.	Typical ⁽³⁾	Maximum ⁽⁶⁾	Units	Conditions						
Operating C	urrent (IDD) ⁽¹)								
DC20	8	25	mA	4 MHz (Note 4,5)						
DC21	10	30	mA	10 MHz (Note 5)						
DC22	32	65	mA	60 MHz (Note 2,4)						
DC23	40	75	mA	80 MHz (Note 2,4)						
DC25	61	95	mA	130 MHz (Note 2,4)						
DC26	72	110	mA	160 MHz (Note 2,4)						
DC28	81	120	mA	180 MHz (Note 2,4)						
DC27a	92	130	mA	200 MHz (Note 2)						
DC27b	78	100	mA	200 MHz (Note 4,5)						

TABLE 37-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
 - CPU, Program Flash, and SRAM data memory are operational, Program Flash memory Wait states are equal to two
 - L1 Cache and Prefetch modules are enabled
 - No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)
 - WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - $\overline{\text{MCLR}}$ = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, +25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.
- **5:** Note 2 applies with the following exceptions: L1 Cache and Prefetch modules are disabled, Program Flash memory Wait states are equal to seven.
- **6:** Data in the "Maximum" column is at 3.3V, +85°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 37-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS


TABLE 37-28: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions			
OC10	TccF	OCx Output Fall Time	—	_	_	ns	See parameter DO32			
OC11	TCCR	OCx Output Rise Time	—	—	_	ns	See parameter DO31			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 37-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 37-29: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHAF	RACTERIST	rics	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Typical ⁽²⁾	Max	Units	Conditions			
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns				
OC20	TFLT	Fault Input Pulse Width	50	—		ns				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

PIC32MZ EF Feature
Selection for USB
If the USB module is used, the Primary Oscillator is limited to either 12 MHz or 24 MHz. Which frequency is used is selected using the UPLLFSEL (DEVCFG2<30>) bit.
onfiguration
On PIC32MZ EF devices, the HS USB PHY requires an input frequency of 12 MHz or 24 MHz. UPLLIDIV has been replaced with UPLLFSEL.
UPLLFSEL (DEVCFG2<30>) 1 = UPLL input clock is 24 MHz 0 = UPLL input clock is 12 MHz
ock Configuration
On PIC32MZ EF devices, there are eight peripheral buses with their own clocks. FPBDIV is removed, and each PBDIV is in its own register for each PBCLK. The initial PBCLK speed is fixed at reset, and the maximum PBCLK speed is limited to100 MHz for all buses, with the exception of PBCLK7, which is 200 MHz.
PBDIV<6:0> (PBxDIV<6:0>) 1111111 = PBCLKx is SYSCLK divided by 128 1111110 = PBCLKx is SYSCLK divided by 127 • • • • • • • • • • • • •
Configuration
On PIC32MZ EF devices, the CPU clock is derived from PBCLK7.
Default
On PIC32MZ EF devices, the default has been changed to divide
by one.
FRCDIV<2:0> (OSCCON<26:24>) 111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES (CONTINUED)

APPENDIX B: MIGRATING FROM PIC32MZ EC TO PIC32MZ EF

This appendix provides an overview of considerations for migrating from PIC32MZ EC devices to the PIC32MZ EF family of devices. The code developed for PIC32MZ EC devices can be ported to PIC32MZ EF devices after making the appropriate changes outlined in the following sections. The PIC32MZ EF devices are similar to PIC32MZ EC devices, with many feature improvements and new capabilities.

B.1 Oscillator and PLL Configuration

A number of new features have been added to the oscillator and PLL to enhance their ability to work with crystals and to change frequencies.

Table B-1 summarizes the differences (indicated by **Bold** type) between the family differences for the oscillator.

PIC32MZ EC Feature	PIC32MZ EF Feature
Primary Oscillat	or Crystal Power
On PIC32MZ EC devices, the crystal HS Posc mode is only functional with crystals that have certain characteristics, such as very low ESR.	On PIC32MZ EF devices, some DEVCFG0 bits have been added to allow control over the strength of the oscillator and to add a kick start boost. POSCBOOST (DEVCFG0<21>) 1 = Boost the kick start of the oscillator 0 = Normal start of the oscillator POSCGAIN<1:0> (DEVCFG0<20:19>) 11 = 2x gain setting 10 = 1.5x gain setting 01 = 0.5x gain setting 00 = 1x gain setting Note that the default for POSCGAIN (2x gain setting) may over- drive crystals and shorten their life. It is the responsibility of the designer to ensure crystals are operated properly.
Secondary Oscilla	ator Crystal Power
On PIC32MZ EC devices, the Secondary Oscillator (Sosc) is not functional.	On PIC32MZ EF devices, the Secondary Oscillator is now functional, and provides similar strength and kick start boost features as the POSC. SOSCBOOST (DEVCFG0<18>) 1 = Boost the kick start of the oscillator 0 = Normal start of the oscillator SOSCGAIN<1:0> (DEVCFG0<17:16>) 11 = 2x gain setting 10 = 1.5x gain setting 01 = 0.5x gain setting 00 = 1x gain setting Note that the default for SOSCGAIN (2x gain setting) may over- drive crystals and shorten their life. It is the responsibility of the designer to ensure crystals are operated properly.
Clock St	atus Bits
On PIC32MZ EC devices, the SOSCRDY bit (OSCCON<22>) indicates when the Secondary Oscillator is ready. There are no indications of other oscillator status.	 A new register, CLKSTAT, has been added, which includes the SOSCRDY bit (CLKSTAT<4>). In addition, new status bits are available: LPRCRDY (CLKSTAT<5>) POSCRDY (CLKSTAT<2>) DIVSPLLRDY (CLKSTAT<1>) FRCRDY (CLKSTAT<0>)
Clock S	witching
On PIC32MZ EC devices, clock switches occur as soon as the switch command is issued. Also, the only clock sources that can be divided are the output of the PLL, and the FRC.	To reduce power spikes during clock switches, PIC32MZ EF devices add a clock slewing feature, so that clock switches can be controlled in their rate and size. The SLEWCON register controls this feature. The SLEWCON register also features a SYSCLK divider, so that all of the possible clock sources may be divided further as needed.

TABLE B-1: OSCILLATOR DIFFERENCES