

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efk144-e-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To access	the	following	documents,					
	browse the documentation section of the								
	Microchip		web	site					
	(www.microo	chip.c	om).						

- Section 1. "Introduction" (DS60001127)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 22. "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)" (DS60001344)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 34. "Controller Area Network (CAN)" (DS60001154)
- Section 35. "Ethernet Controller" (DS60001155)
- Section 41. "Prefetch Module for Devices with L1 CPU Cache" (DS60001183)
- Section 42. "Oscillators with Enhanced PLL" (DS60001250)
- Section 46. "Serial Quad Interface (SQI)" (DS60001244)
- Section 47. "External Bus Interface (EBI)" (DS60001245)
- Section 48. "Memory Organization and Permissions" (DS60001214)
- Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246)
- Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192)
- Section 51. "Hi-Speed USB with On-The-Go (OTG)" (DS60001326)
- Section 52. "Flash Program Memory with Support for Live Update" (DS60001193)

Register Number	Register Name	Function
12	Status	Processor status and control.
	IntCtl	Interrupt control of vector spacing.
	SRSCtl	Shadow register set control.
	SRSMap	Shadow register mapping control.
	View_IPL	Allows the Priority Level to be read/written without
		extracting or inserting that bit from/to the Status register.
	SRSMAP2	Contains two 4-bit fields that provide the mapping from a vector number to the shadow set number to use when servicing such an interrupt.
13	Cause	Describes the cause of the last exception.
	NestedExc	Contains the error and exception level status bit values that existed prior to the current exception.
	View_RIPL	Enables read access to the RIPL bit that is available in the Cause register.
14	EPC	Program counter at last exception.
	NestedEPC	Contains the exception program counter that existed prior to the current exception.
15	PRID	Processor identification and revision
	Ebase	Exception base address of exception vectors.
	CDMMBase	Common device memory map base.
16	Config	Configuration register.
	Config1	Configuration register 1.
	Config2	Configuration register 2.
	Config3	Configuration register 3.
	Config4	Configuration register 4.
	Config5	Configuration register 5.
	Config7	Configuration register 7.
17	LLAddr	Load link address (MPU only).
18	WatchLo	Low-order watchpoint address (MPU only).
19	WatchHi	High-order watchpoint address (MPU only).
20-22	Reserved	Reserved in the PIC32 core.
23	Debug	EJTAG debug register.
	TraceControl	EJTAG trace control.
	TraceControl2	EJTAG trace control 2.
	UserTraceData1	EJTAG user trace data 1 register.
	TraceBPC	EJTAG trace breakpoint register.
	Debug2	Debug control/exception status 1.
24	DEPC	Program counter at last debug exception.
	UserTraceData2	
25	PerfCtl0	Performance counter 0 control.
	PerfCnt0	Performance counter 0.
	PerfCtl1	Performance counter 1 control.
	PerfCnt1	Performance counter 1.
26	ErrCtl	Software test enable of way-select and data RAM arrays for I-Cache and D-Cache (MPU only).
27	Reserved	Reserved in the PIC32 core.
28	TagLo/DataLo	Low-order portion of cache tag interface (MPU only).
29	Reserved	Reserved in the PIC32 core.
30	ErrorEPC	Program counter at last error exception.
31	DeSave	Debug exception save.

	I)(^ = '-')								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	—	—	—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10		—		—	—	—		—			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.6	RQPKTCNT<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0	RQPKTCNT<7:0>										

REGISTER 11-24: USBExRPC: USB ENDPOINT 'x' REQUEST PACKET COUNT REGISTER (HOST MODE ONLY) ('x' = 1-7)

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **RQPKTCNT<15:0>:** Request Packet Count bits Sets the number of packets of size MAXP that are to be transferred in a block transfer. This register is only available in *Host mode* when AUTOREQ is set.

REGISTER 11-25: USBDPBFD: USB DOUBLE PACKET BUFFER DISABLE REGISTER

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_		—
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
23:16	EP7TXD	EP6TXD	EP5TXD	EP4TXD	EP3TXD	EP2TXD	EP1TXD	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0		—	_	_	_	_	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
7.0	EP7RXD	EP6RXD	EP5RXD	EP4RXD	EP3RXD	EP2RXD	EP1RXD	_

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-17 EP7TXD:EP1TXD: TX Endpoint 'x' Double Packet Buffer Disable bits

- 1 = TX double packet buffering is disabled for endpoint 'x'
- 0 = TX double packet buffering is enabled for endpoint 'x'
- bit 16 Unimplemented: Read as '0'
- bit 15-1 **EP7RXD:EP1RXD:** RX Endpoint 'x' Double Packet Buffer Disable bits
 - 1 = RX double packet buffering is disabled for endpoint 'x'
 - 0 = RX double packet buffering is enabled for endpoint 'x'
- bit 0 Unimplemented: Read as '0'

TABLE 12-3:	OUTPUT PIN SELECTION
-------------	-----------------------------

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect
RPG8	RPG8R	RPG8R<3:0>	0001 = <u>U3TX</u>
RPF4	RPF4R	RPF4R<3:0>	0010 = U4RTS
RPD10	RPD10R	RPD10R<3:0>	0011 = Reserved 0100 = Reserved
RPF1	RPF1R	RPF1R<3:0>	0100 = Reserved 0101 = SDO1
RPB9	RPB9R	RPB9R<3:0>	0110 = SD02
RPB10	RPB10R	RPB10R<3:0>	0111 = SDO3
RPC14	RPC14R	RPC14R<3:0>	1000 = Reserved
RPB5	RPB5R	RPB5R<3:0>	$1001 = SDO5^{(1)}$
RPC1 ⁽¹⁾	RPC1R ⁽¹⁾	RPC1R<3:0> ⁽¹⁾	$1010 = \overline{SS6}^{(1)}$
RPD14 ⁽¹⁾	RPD14R ⁽¹⁾	RPD14R<3:0> ⁽¹⁾	1011 = OC3 1100 = OC6
RPG1 ⁽¹⁾	RPG1R ⁽¹⁾	RPG1R<3:0> ⁽¹⁾	1100 = 000 1101 = REFCLKO4
RPA14 ⁽¹⁾	RPA14R ⁽¹⁾	RPA14R<3:0> ⁽¹⁾	1110 = C2OUT
RPD6 ⁽²⁾	RPD6R ⁽²⁾	RPD6R<3:0> ⁽²⁾	1111 = C1TX ⁽³⁾
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect
RPG7	RPG7R	RPG7R<3:0>	0001 = <u>U1TX</u>
RPF5	RPF5R	RPF5R<3:0>	0010 = U2RTS
RPD11	RPD11R	RPD11R<3:0>	- 0011 = U5TX
RPF0	RPF0R	RPF0R<3:0>	
RPB1	RPB1R	RPB1R<3:0>	0110 = SD02
RPE5	RPE5R	RPE5R<3:0>	0111 = SDO3
RPC13	RPC13R	RPC13R<3:0>	1000 = SDO4
RPB3	RPB3R	RPB3R<3:0>	1001 = SDO5 ⁽¹⁾
RPC4 ⁽¹⁾	RPC4R ⁽¹⁾	RPC4R<3:0> ⁽¹⁾	1010 = Reserved
RPD15 ⁽¹⁾	RPD15R ⁽¹⁾	RPD15R<3:0> ⁽¹⁾	1011 = OC4 1100 = OC7
RPG0 ⁽¹⁾	RPG0R ⁽¹⁾	RPG0R<3:0> ⁽¹⁾	1100 = CC7
RPA15 ⁽¹⁾	RPA15R ⁽¹⁾	RPA15R<3:0> ⁽¹⁾	1110 = Reserved
RPD7 ⁽²⁾	RPD7R ⁽²⁾	RPD7R<3:0> ⁽²⁾	1111 = REFCLKO1
RPD9	RPD9R	RPD9R<3:0>	0000 = <u>No Connect</u>
RPG6	RPG6R	RPG6R<3:0>	0001 = U3RTS
RPB8	RPB8R	RPB8R<3:0>	0010 = U4TX 0011 = Reserved
RPB15	RPB15R	RPB15R<3:0>	0011 = Reserved 0100 = U6TX
RPD4	RPD4R	RPD4R<3:0>	0101 = SS1
RPB0	RPB0R	RPB0R<3:0>	$0110 = \frac{\text{Reserved}}{200}$
RPE3	RPE3R	RPE3R<3:0>	$ 0111 = \frac{SS3}{1000} = \frac{SS3}{SS4} $
RPB7	RPB7R	RPB7R<3:0>	$1000 = \frac{334}{\text{SS5}^{(1)}}$
RPF12 ⁽¹⁾	RPF12R ⁽¹⁾	RPF12R<3:0> ⁽¹⁾	1010 = SDO6 ⁽¹⁾
RPD12 ⁽¹⁾	RPD12R ⁽¹⁾	RPD12R<3:0> ⁽¹⁾	1011 = OC5
RPF8 ⁽¹⁾	RPF8R ⁽¹⁾	RPF8R<3:0> ⁽¹⁾	
RPC3 ⁽¹⁾	RPC3R ⁽¹⁾	RPC3R<3:0> ⁽¹⁾	1110 = C1OUT
RPE9 ⁽¹⁾	RPE9R ⁽¹⁾	RPE9R<3:0> ⁽¹⁾	1111 = REFCLKO3

Note 1: This selection is not available on 64-pin devices.

2: This selection is not available on 64-pin or 100-pin devices.

3: This selection is not available on devices without a CAN module.

TABLE 12-21: PORTK REGISTER MAP FOR 144-PIN DEVICES ONLY

ess		ø	Bits																
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0910	TRISK	31:16	_	-	—	—	—	_	_	—	-	—	_		—	—	—	—	0000
0010	INION	15:0	—	_	—	—	—	—	—	—	TRISK7	TRISK6	TRISK5	TRISK4	TRISK3	TRISK2	TRISK1	TRISK0	OOFF
0920	PORTK	31:16	—	_	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
0020		15:0	—	_	—	—	—	—	—	—	RK7	RK6	RK5	RK4	RK3	RK2	RK1	RK0	xxxx
0930	LATK	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	_	0000
		15:0	_	_	—	_	—	_	_	_	LATK7	LATK6	LATK5	LATK4	LATK3	LATK2	LATK1	LATK0	XXXX
0940	ODCK	31:16	_	_	—	_	_	_	—	—	—	—	—	—	—	—	—	—	0000
		15:0	_	_	—	_	_	_	_	_	ODCK7	ODCK6	ODCK5	ODCK4	ODCK3	ODCK2	ODCK1	ODCK0	0000
0950	CNPUK	31:16	_	_	_	_	_	_	_	_	-	-	-	—	-	-	-	-	0000
		15:0	_	_	_	_	_	_	_	_	CNPUK7	CNPUK6	CNPUK5	CNPUK4	CNPUK3	CNPUK2	CNPUK1	CNPUK0	0000
0960	CNPDK	31:16			-								-						0000
		15:0	_	_	_	_	_	_		_	CNPDK7	CNPDK6	CNPDK5	CNPDK4	CNPDK3	CNPDK2	CNPDK1	CNPDK0	0000
0070	CNCONK	31:16	_	_	—	—	-			_		_	_	_	_				0000
0070	onconin	15:0	ON	—	—	—	EDGE DETECT	—	—	—	—	—	—	—	—	—	—	—	0000
0980	CNENK	31:16	-		_	_	_	_	_	_	١	_			-	-	-	_	0000
0900	CINLINK	15:0	_	_	—	—	_	_	_	_	CNENK7	CNENK6	CNENK5	CNENK4	CNENK3	CNENK2	CNENK1	CNENK0	0000
		31:16	—	—	—	—	—	—	—	—	-	—	—	-	—	—	—	_	0000
0990	CNSTATK	15:0	-	_	-	-	-	-	_	—	CN STATK7	CN STATK6	CN STATK5	CN STATK4	CN STATK3	CN STATK2	CN STATK1	CN STATK0	0000
0040	CNNEK	31:16	—	_	—	_	_	_	_	_	_	—	_	_	_	—	_	_	0000
09A0	CININER	15:0	_								CNNEK7	CNNEK6	CNNEK5	CNNEK4	CNNEK3	CNNEK2	CNNEK1	CNNEK0	0000
09B0	CNFK	31:16	_	_	—	—	_	_	_	_	_	—	_			—	—	—	0000
0900	UNER	15:0	_	-	_	_	_	_	_	_	CNFK7	CNFK6	CNFK5	CNFK4	CNFK3	CNFK2	CNFK1	CNFK0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	_	_	-	_		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	-	_		—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	-	_		—
7.0	R-0, HC, HS	R-0, HC, HS	R-0, HC, HS	U-0	U-0	U-0	U-0	R-0, HC, HS
7:0	BAD1	BAD2	DMTEVENT	_		_	_	WINOPN

REGISTER 15-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

Legend:	HC = Hardware Cleared	HS = Hardware Set				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'			
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is$	is unknown			

bit 31-8	Unimplemented: Read as '0'
bit 7	BAD1: Bad STEP1<7:0> Value Detect bit
	1 = Incorrect STEP1<7:0> value was detected
	0 = Incorrect STEP1<7:0> value was not detected
bit 6	BAD2: Bad STEP2<7:0> Value Detect bit
	1 = Incorrect STEP2<7:0> value was detected
	0 = Incorrect STEP2<7:0> value was not detected
bit 5	DMTEVENT: Deadman Timer Event bit
	1 = Deadman timer event was detected (counter expired or bad STEP1<7:0> or STEP2<7:0> value was entered prior to counter increment)
	0 = Deadman timer even was not detected
bit 4-1	Unimplemented: Read as '0'
bit 0	WINOPN: Deadman Timer Clear Window bit
	1 = Deadman timer clear window is open
	0 = Deadman timer clear window is not open

REGISTER 20-3: SQI1CFG: SQI CONFIGURATION REGISTER (CONTINUED)

bit 12	BURSTEN: Burst Configuration bit ⁽¹⁾
	1 = Burst is enabled
	0 = Burst is not enabled
bit 11	Reserved: Must be programmed as '0'
bit 10	HOLD: Hold bit
	In Single Lane or Dual Lane mode, this bit is used to drive the SQID3 pin, which can be used for devices with a HOLD input pin. The meaning of the values for this bit will depend on the device to which SQID3 is connected.
bit 9	WP: Write Protect bit
	In Single Lane or Dual Lane mode, this bit is used to drive the SQID2 pin, which can be used with devices with a write-protect pin. The meaning of the values for this bit will depend on the device to which SQID2 is connected.
bit 8-6	Unimplemented: Read as '0'
bit 5	LSBF: Data Format Select bit
	 1 = LSB is sent or received first 0 = MSB is sent or received first
bit 4	CPOL: Clock Polarity Select bit
	1 = Active-low SQICLK (SQICLK high is the Idle state)0 = Active-high SQICLK (SQICLK low is the Idle state)
bit 3	CPHA: Clock Phase Select bit
	 1 = SQICLK starts toggling at the start of the first data bit 0 = SQICLK starts toggling at the middle of the first data bit
bit 2-0	MODE<2:0>: Mode Select bits
	111 = Reserved
	•
	•
	•
	100 = Reserved
	011 = XIP mode is selected (when this mode is entered, the module behaves as if executing in place (XIP), but uses the register data to control timing)
	010 = DMA mode is selected

- 010 = DMA mode is selected
- 001 = CPU mode is selected (the module is controlled by the CPU in PIO mode. This mode is entered when leaving Boot or XIP mode)
- 000 = Reserved
- Note 1: This bit must be programmed as '1'.

	R	EGISTER										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	R-x	R-x	R-x	R-x	U-0				
31:24		_	—		—							
22:46	U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x				
23:16			—		RX	KBUFCNT<4:	0>					
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15:8		_	—	_	—	_	—	—				
7.0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x				
7:0		RXCURBUFLEN<7:0>										

REGISTER 20-20: SQI1BDRXDSTAT: SQI BUFFER DESCRIPTOR DMA RECEIVE STATUS REGISTER

Legend:

Logonal				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-29 Unimplemented: Read as '0'

- bit 28-25 **RXSTATE<3:0>:** Current DMA Receive State Status bits These bits provide information on the current DMA receive states.
- bit 24-21 Unimplemented: Read as '0'
- bit 20-16 **RXBUFCNT<4:0>:** DMA Buffer Byte Count Status bits These bits provide information on the internal FIFO space.
- bit 15-8 Unimplemented: Read as '0'
- bit 7-0 **RXCURBUFLEN<7:0>:** Current DMA Receive Buffer Length Status bits These bits provide the length of the current DMA receive buffer.

REGISTER 20-21: SQI1THR: SQI THRESHOLD CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	_	_	_	_	—
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16					-			—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		_	_	_	_	_	_	—
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0						THRES<4:0>		

Leaend	:
Logona	•

Logona.			
R = Readable bit	Readable bit W = Writable bit		read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-5 Unimplemented: Read as '0'

bit 4-0 THRES<4:0>: SQI Control Threshold Value bits

The SQI control threshold interrupt is asserted when the amount of space indicated by THRES<4:0> is available in the SQI control buffer.

TABLE 28-1: ADC REGISTER MAP (CONTINUED)

ress (e								Bit	5								
Virtual Address (BF84_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
	ADC2CFG ⁽³⁾	31:16								ADCCFG	<31:16>							•	01
		15:0								ADCCFG	<15:0>								0
318C	ADC3CFG ⁽³⁾	31:16								ADCCFG	<31:16>								C
		15:0		ADCCFG<15:0>											C				
B190	ADC4CFG ⁽³⁾	31:16								ADCCFG	<31:16>								C
		15:0								ADCCFG	<15:0>								(
319C	ADC7CFG ⁽³⁾	31:16								ADCCFG	<31:16>								(
		15:0								ADCCFG	<15:0>								C
B1C0	ADCSYSCFG1	31:16								AN<31	:16>								2
		15:0								AN<1	5:0>								F
31C4	ADCSYSCFG2	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	_	_	-	(
		15:0	_	_	_							AN<44:32>							1
3200	ADCDATA0	31:16								DATA<3	1:16>								
		15:0								DATA<	15:0>								
3204	ADCDATA1	31:16								DATA<3	1:16>								
		15:0								DATA<	15:0>								
B208	ADCDATA2	31:16								DATA<3	1:16>								
		15:0								DATA<	15:0>								
320C	ADCDATA3	31:16								DATA<3	1:16>								
		15:0								DATA<	15:0>								
B210	ADCDATA4	31:16								DATA<3	1:16>								
		15:0								DATA<	15:0>								
B214	ADCDATA5	31:16								DATA<3	1:16>								
		15:0								DATA<	15:0>								(
B218	ADCDATA6	31:16								DATA<3	1:16>								(
		15:0								DATA<	15:0>								(
B21C	ADCDATA7	31:16								DATA<3	1:16>								
		15:0								DATA<	15:0>								
B220	ADCDATA8	31:16								DATA<3	1:16>								
		15:0								DATA<	15:0>								
B224	ADCDATA9	31:16		DATA<31:16>															
		15:0		DATA<15:0>															
B228	ADCDATA10	31:16								DATA<3									(
		15:0		DATA<15:0>										(
B22C	ADCDATA11	31:16								DATA<3	1:16>								-
		15:0								DATA<									(
B230	ADCDATA12	31:16								DATA<3									C
		15:0								DATA<									C

1: 2: 3:

This bit or register is not available on 64-pin devices. This bit or register is not available on 64-pin and 100-pin devices. Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory-programmed DEVADCx Flash registers into the corresponding ADCxCFG registers.

TABLE 28-1: ADC REGISTER MAP (CONTINUED)

es										Bit	s						s
Virtual Address (BF84_#)	Register Name	Bit Range	31/15												All Resets		
	ADCDATA32 ⁽¹⁾	31:16								DATA<	1:16>						0000
		15:0								DATA<	15:0>						0000
B284	ADCDATA33 ⁽¹⁾	31:16								DATA<	1:16>						0000
		15:0								DATA<	15:0>						0000
B288	ADCDATA34 ⁽¹⁾	31:16								DATA<	1:16>						0000
		15:0								DATA<	15:0>						0000
B28C	ADCDATA35 ⁽²⁾	31:16								DATA<							0000
		15:0								DATA<							0000
B290	ADCDATA36 ⁽²⁾	31:16								DATA<							0000
	(2)	15:0								DATA<							0000
B294	ADCDATA37 ⁽²⁾	31:16											0000				
	(2)	15:0								DATA<							0000
B298	ADCDATA38 ⁽²⁾	31:16								DATA<							0000
	(2)	15:0								DATA<							0000
B29C	ADCDATA39 ⁽²⁾									DATA<							0000
		15:0								DATA<							0000
B2A0	ADCDATA40 ⁽²⁾	31:16								DATA<							0000
DO A A	ADCDATA41(2)	15:0								DATA<							0000
BZA4	ADCDATA41-	31:16											0000				
DOAD	ADCDATA42 ⁽²⁾	15:0 31:16											0000				
DZA0	ADCDATA42	15:0											0000				
BOAC	ADCDATA43	31:16											0000				
DZAC	-DCDA1A43	15:0											0000				
B2B0	ADCDATA44	31:16								DATA<							0000
0200		15:0								DATA<							0000

1: 2: 3:

This bit or register is not available on 64-pin devices. This bit or register is not available on 64-pin and 100-pin devices. Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory-programmed DEVADCx Flash registers into the corresponding ADCxCFG registers.

Note

REGISTER 28-7: ADCIMCON3: ADC INPUT MODE CONTROL REGISTER 3 (CONTINUED)

- bit 1 DIFF32: AN32 Mode bit⁽¹⁾
 - 1 = AN32 is using Differential mode
 - 0 = AN32 is using Single-ended mode
- bit 0 SIGN32: AN32 Signed Data Mode bit⁽¹⁾
 - 1 = AN32 is using Signed Data mode
 - 0 = AN32 is using Unsigned Data mode
- Note 1: This bit is not available on 64-pin devices.
 - 2: This bit is not available on 64-pin and 100-pin devices.

REGISTER 28-14: ADCCMPENX: ADC DIGITAL COMPARATOR 'x' ENABLE REGISTER ('x' = 1 THROUGH 6)

		(
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0							
31:24	CMPE31 ⁽¹⁾	CMPE30 ⁽¹⁾	CMPE29 ⁽¹⁾	CMPE28 ⁽¹⁾	CMPE27 ⁽¹⁾	CMPE26 ⁽¹⁾	CMPE25 ⁽¹⁾	CMPE24 ⁽¹⁾
00.40	R/W-0							
23:16	CMPE23 ⁽¹⁾	CMPE22 ⁽¹⁾	CMPE21 ⁽¹⁾	CMPE20 ⁽¹⁾	CMPE19 ⁽¹⁾	CMPE18	CMPE17	CMPE16
45.0	R/W-0							
15:8	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8
7.0	R/W-0							
7:0	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0
	-	•	•	•	-	-		-

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0° = Bit is cleared x = Bit is unknown

bit 31-0 CMPE31:CMPE0: ADC Digital Comparator 'x' Enable bits^(2,3)

These bits enable conversion results corresponding to the Analog Input to be processed by the Digital Comparator. CMPE0 enables AN0, CMPE1 enables AN1, and so on.

Note 1: This bit is not available on 64-pin devices.

- **2**: CMPEx = ANx, where 'x' = 0.31 (Digital Comparator inputs are limited to AN0 through AN31).
- **3:** Changing the bits in this register while the Digital Comparator is enabled (ENDCMP = 1) can result in unpredictable behavior.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC						
31:24	CVDDATA<15:8>								
23:16	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC						
23.10	CVDDATA<7:0>								
15.0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	
15:8		—			AINID	<5:0>			
7.0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO	

REGISTER 28-20: ADCCMPCON1: ADC DIGITAL COMPARATOR 1 CONTROL REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$

bit 31-16 CVDDATA<15:0>: CVD Data Status bits

In CVD mode, these bits obtain the CVD differential output data (subtraction of CVD positive and negative measurement), whenever a Digital Comparator interrupt is generated. The value in these bits is compliant with the FRACT bit (ADCCON1<23>) and is always signed.

bit 15-14 Unimplemented: Read as '0'

bit 13-8 AINID<5:0>: Digital Comparator 0 Analog Input Identification (ID) bits

When a digital comparator event occurs (DCMPED = 1), these bits identify the analog input being monitored by Digital Comparator 0.

Note: In normal ADC mode, only analog inputs <31:0> can be processed by the Digital Comparator 0. The Digital Comparator 0 also supports the CVD mode, in which all Class 2 and Class 3 analog inputs may be stored in the AINID<5:0> bits.

111111 = Reserved
•
101101 = Reserved
101100 = AN44 is being monitored
101001 = AN43 is being monitored
•
000001 = AN1 is being monitored
000000 = ANO is being monitored
ENDCMP: Digital Comparator 0 Enable bit
1 = Digital Comparator 0 is enabled
0 = Digital Comparator 0 is not enabled, and the DCMPED status bit (ADCCMP0CON<5>) is cleared
DCMPGIEN: Digital Comparator 0 Global Interrupt Enable bit
1 = A Digital Comparator 0 interrupt is generated when the DCMPED status bit (ADCCMP0CON<5>) is set 0 = A Digital Comparator 0 interrupt is disabled
DCMPED: Digital Comparator 0 "Output True" Event Status bit
The logical conditions under which the digital comparator gets "True" are defined by the IEBTWN, IEHIHI,
IEHILO, IELOHI, and IELOLO bits.
Note: This bit is cleared by reading the AINID<5:0> bits or by disabling the Digital Comparator module (by setting ENDCMP to '0').
1 = Digital Comparator 0 output true event has occurred (output of Comparator is '1')
0 = Digital Comparator 0 output is false (output of comparator is '0')
IEBTWN: Between Low/High Digital Comparator 0 Event bit
1 = Generate a digital comparator event when DCMPLO<15:0> \leq DATA<31:0> < DCMPHI<15:0>

REGISTER 30-17:	ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK
	STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0 U-0 U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	_	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	_	—
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				FRMTXOK	CNT<15:8>			
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0				R/W-0	R/W-0	R/W-0		
7:0				FRMTXOK	(CNT<7:0>			

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FRMTXOKCNT<15:0>:** Frame Transmitted OK Count bits Increment counter for frames successfully transmitted.

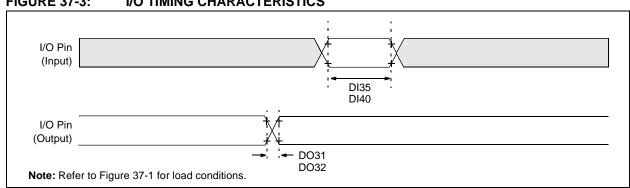
Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31:24	—	—	—	—	—	—	DMAPRI ⁽¹⁾	CPUPRI ⁽¹⁾
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0 R/W-0	R/W-0
23:16	—	—	—	—	—	—	ICACLK ⁽¹⁾	OCACLK ⁽¹⁾
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
15:8	—	—	IOLOCK ⁽¹⁾	PMDLOCK ⁽¹⁾	PGLOCK ⁽¹⁾	_	_	USBSSEN ⁽¹⁾
7.0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	U-0	R/W-1
7:0	IOANCPEN	—	ECCC	ON<1:0>	JTAGEN	TROEN	_	TDOEN

REGISTER 34-7: CFGCON: CONFIGURATION CONTROL REGISTER


Legend:

U			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

DIT 31-26	Unimplemented: Read as 10 [°]
bit 25	DMAPRI: DMA Read and DMA Write Arbitration Priority to SRAM bit ⁽¹⁾
	1 = DMA gets High Priority access to SRAM
	0 = DMA uses Least Recently Serviced Arbitration (same as other initiators)
bit 24	CPUPRI: CPU Arbitration Priority to SRAM When Servicing an Interrupt bit ⁽¹⁾
	1 = CPU gets High Priority access to SRAM
	0 = CPU uses Least Recently Serviced Arbitration (same as other initiators)
bit 23-18	Unimplemented: Read as '0'
bit 17	ICACLK: Input Capture Alternate Clock Selection bit ⁽¹⁾
	 1 = Input Capture modules use an alternative Timer pair as their timebase clock 0 = All Input Capture modules use Timer2/3 as their timebase clock
bit 16	OCACLK: Output Compare Alternate Clock Selection bit ⁽¹⁾
	 1 = Output Compare modules use an alternative Timer pair as their timebase clock 0 = All Output Compare modules use Timer2/3 as their timebase clock
bit 15-14	Unimplemented: Read as '0'
bit 13	IOLOCK: Peripheral Pin Select Lock bit ⁽¹⁾
	 1 = Peripheral Pin Select is locked. Writes to PPS registers are not allowed 0 = Peripheral Pin Select is not locked. Writes to PPS registers are allowed
bit 12	PMDLOCK: Peripheral Module Disable bit ⁽¹⁾
	 1 = Peripheral module is locked. Writes to PMD registers are not allowed 0 = Peripheral module is not locked. Writes to PMD registers are allowed
bit 11	PGLOCK: Permission Group Lock bit ⁽¹⁾
	 1 = Permission Group registers are locked. Writes to PG registers are not allowed 0 = Permission Group registers are not locked. Writes to PG registers are allowed
bit 10-9	Unimplemented: Read as '0'
bit 8	USBSSEN: USB Suspend Sleep Enable bit ⁽¹⁾
	Enables features for USB PHY clock shutdown in Sleep mode.
	1 = USB PHY clock is shut down when Sleep mode is active
	0 = USB PHY clock continues to run when Sleep is active
Note 1:	To change this bit, the unlock sequence must be performed. Refer to Section 42. "O

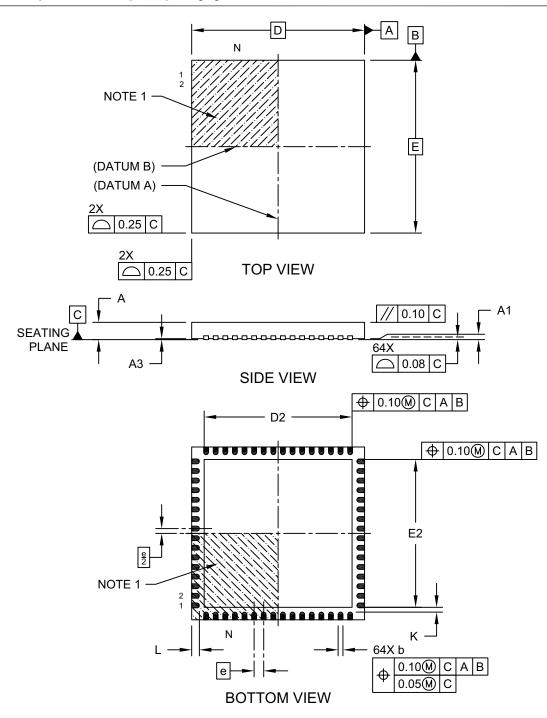
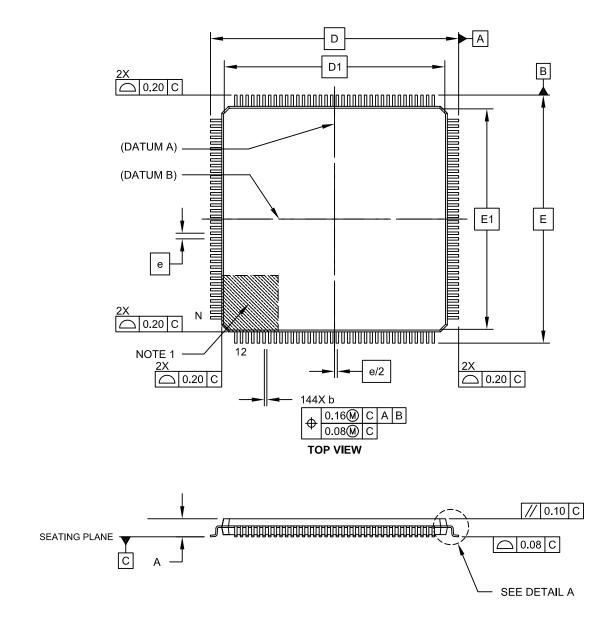

e 1: To change this bit, the unlock sequence must be performed. Refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

FIGURE 37-3: I/O TIMING CHARACTERISTICS

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-213B Sheet 1 of 2

144-Lead Plastic Low Profile Quad Flatpack (PL) – 20x20x1.40 mm Body, with 2.00 mm Footprint [LQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-044B Sheet 1 of 2

•				
PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature			
ADC Ca	libration			
On PIC32MX devices, the ADC module can be used immediately, once it is enabled.	PIC32MZ devices require a calibration step prior to operation. This is done by copying the calibration data from DEVADCx to the corresponding ADCxCFG register.			
I/O Pin Analog F	unction Selection			
On PIC32MX devices, the analog function of an I/O pin was deter- mined by the PCFGx bit in the AD1PCFG register.	 On PIC32MZ EF devices, the analog selection function has been moved into a separate register on each I/O port. Note that the sense of the bit is different. 			
PCFGx (AD1PCFG <x>) 1 = Analog input pin in Digital mode 0 = Analog input pin in Analog mode</x>	ANSxy (ANSELx <y>) 1 = Analog input pin in Analog mode 0 = Analog input pin in Digital mode</y>			
Electrical Specifications and Timing Requirements				
	On PIC32MZ EF devices, the ADC module sampling and conversion time and other specifications have changed. Refer to 37.0 "Electrical Characteristics " for more information.			

TABLE A-3: ADC DIFFERENCES (CONTINUED)

Revision D (July 2016)

This revision includes the following major changes, which are referenced by their respective chapter in Table C-3.

In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE C-3: MAJOR SECTIO	N UPDATES
-------------------------	-----------

Section Name	Update Description
32-bit MCUs (up to 2 MB Live- Update Flash and 512 KB SRAM) with FPU, Audio and Graphics Interfaces, HS USB, Ethernet, and Advanced Analog	Updated the Operating Conditions and Core MHz values. The XFBGA package was renamed to TFBGA.
20.0 "Serial Quad Interface (SQI)"	The CLKDIV<9:0> bits in the SQI1CLKCON register were updated (see Register 20-5).
	The THRES<4:0> bits in the SQI1THR register were updated (see Register 20-21).
37.0 "Electrical Characteristics"	The Program Flash Memory Wait States were updated (see Table 37-13).
	The minimum value for System Time Requirements parameter OS51 (when the USB module is enabled) was updated (see Table 37-18).
39.0 "252 MHz Electrical Characteristics"	This chapter was added.
Appendix A: "Migrating from PIC32MX5XX/6XX/7XX to	The new ADC module reference was updated (see A.2 " Analog-to-Digital Converter (ADC) ").
PIC32MZ EF"	ADC Calibration was added to B.2 "Analog-to-Digital Converter (ADC)"
Appendix B: "Migrating from PIC32MZ EC to PIC32MZ EF"	The Device Configuration and Control Differences (Table B-8) were updated to include the Boot Flash Sequence.
	B.10 "Serial Quad Interface (SQI)" was updated.
Product Identification System	The Speed category was added.