

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TFBGA
Supplier Device Package	144-TFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efk144-i-jwx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber								
Pin Name	64-pin QFN/ TQFP TQFP		124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
VBUS	33	51	A35	73	I	Analog	USB bus power monitor				
VUSB3V3	34	52	A36	74	Ρ	_	USB internal transceiver supply. If the USB module in not used, this pin must be connected to Vss. When connected, the shared pin functions on USBID will be available.				
D+	37	55	B30	77	I/O	Analog	USB D+				
D-	36	54	A37	76	I/O	Analog	USB D-				
USBID	38	56	A38	78	I	ST	USB OTG ID detect				
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS level				ls	Analog = O = Outpu	Analog input P = Power ut I = Input				

TABLE 1-14: **USB PINOUT I/O DESCRIPTIONS**

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output

PPS = Peripheral Pin Select

TABLE 1-15: **CAN1 AND CAN2 PINOUT I/O DESCRIPTIONS**

		Pin Nu	mber								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
C1TX	PPS	PPS	PPS	PPS	0	—	CAN1 Bus Transmit Pin				
C1RX	PPS	PPS	PPS	PPS	I	ST	CAN1 Bus Receive Pin				
C2TX	PPS	PPS	PPS	PPS	0	—	CAN2 Bus Transmit Pin				
C2RX	PPS	PPS	PPS	PPS	I	ST	CAN2 Bus Receive Pin				
Legend:	CMOS = CI	MOS-comp	atible input	or output		Analog =	Analog input P = Power				
	ST = Schm	itt Trigger ir	nput with C	MOS level	S	O = Outpu	ut I = Input				
	TTL = Trans	sistor-transi	istor Logic	input buffe	r	PPS = Pe	ripheral Pin Select				

3.1 Architecture Overview

The MIPS32 M-Class Microprocessor core in PIC32MZ EF family devices contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution unit
- General Purpose Register (GPR)
- Multiply/Divide Unit (MDU)
- System control coprocessor (CP0)
- Floating Point Unit (FPU)
- Memory Management Unit (MMU)
- Instruction/Data cache controllers
- Power Management
- Instructions and data caches
- microMIPS support
- Enhanced JTAG (EJTAG) controller

3.1.1 EXECUTION UNIT

The processor core execution unit implements a load/ store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. Seven additional register file shadow sets (containing thirty-two registers) are added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- · Load aligner
- Trap condition comparator
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results

- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing arithmetic and bitwise logical operations
- Shifter and store aligner
- DSP ALU and logic block for performing DSP instructions, such as arithmetic/shift/compare operations

3.1.2 MULTIPLY/DIVIDE UNIT (MDU)

The processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations, and DSP ASE multiply instructions. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x32 booth recoded multiplier, four pairs of result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x32) represents the *rs* operand. The second number ('32' of 32x32) represents the *rt* operand.

The MDU supports execution of one multiply or multiply-accumulate operation every clock cycle.

Divide operations are implemented with a simple 1-bitper-clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16-bit wide *rs*, 15 iterations are skipped and for a 24-bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation has completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the processor core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

Opcode	Operand Size (mul rt) (div rs)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	5	1
MSUB/MSUBU (HI/LO destination)	32 bits	5	1
MUL (GPR destination)	16 bits	5	1
	32 bits	5	1
DIV/DIVU	8 bits	12/14	12/14
	16 bits	20/22	20/22
	24 bits	28/30	28/30
	32 bits	36/38	36/38

TABLE 3-1:MIPS32[®] M-CLASS MICROPROCESSOR CORE HIGH-PERFORMANCE INTEGER
MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES

TABLE 4-4: INITIATORS TO TARGETS ACCESS ASSOCIATION

Toract	Initiator ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14
#	Name	CF	งบ	DMA	Read	DMA	Write	USB	Ethernet Read	Ethernet Write	CAN1	CAN2	SQI1	Flash Controller	Crypto
1	Flash Memory: Program Flash Boot Flash Prefetch Module	>	<		х			x	х		х	х			x
2	RAM Bank 1 Memory	>	X X			2	X	Х	Х	Х	Х	Х	Х	Х	Х
3	RAM Bank 2 Memory	>	<		Х	2	х	Х	Х	Х	Х	Х	Х	Х	Х
4	External Memory via EBI and EBI Module	>	<		Х	2	х	Х	Х	Х	Х	Х	Х		Х
5	Peripheral Set 1: System Control, Flash Control, DMT, RTCC, CVR, PPS Input, PPS Output, Interrupts, DMA, WDT	>	<												
6	Peripheral Set 2: SPI1-SPI6 I2C1-I2C5 UART1-UART6 PMP	>	K		x	;	x								
7	Peripheral Set 3: Timer1-Timer9 IC1-IC9 OC1-OC9 ADC Comparator 1 Comparator 2	>	x		x	;	x								
8	Peripheral Set 4: PORTA-PORTK	>	K		х	2	x								
9	Peripheral Set 5: CAN1 CAN2 Ethernet Controller														
10	Peripheral Set 6: USB	>	<												
11	External Memory via SQI1 and SQI1 Module	>	<												
12	Peripheral Set 7: Crypto Engine	>	<												
13	Peripheral Set 8: RNG Module	>	<												

		('x' = 0-13)							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-0, C	U-0	U-0	U-0	R/W-0, C	R/W-0, C	R/W-0, C	R/W-0, C	
31:24	MULTI	—	—	—	CODE<3:0>				
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10		—	—	—	—	_	_	_	
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8				INITIE	0<7:0>				
7:0	R-0	R-0	R-0	R-0	U-0	R-0	R-0 R-0		
		REGIO	N<3:0>		—		CMD<2:0>		

REGISTER 4-3: SBTxELOG1: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 1

Le	egend:	C = Clearable bit	
R	= Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n	= Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31 MULTI: Multiple Permission Violations Status bit

This bit is cleared by writing a '1'.

1 = Multiple errors have been detected

0 = No multiple errors have been detected

bit 30-28 Unimplemented: Read as '0'

bit 27-24 CODE<3:0>: Error Code bits

Indicates the type of error that was detected. These bits are cleared by writing a '1'.

- 1111 = Reserved
- 1101 = Reserved
- •
- •
- 0011 = Permission violation
- 0010 = Reserved
- 0001 = Reserved
- 0000 = No error
- bit 23-16 Unimplemented: Read as '0'
- bit 15-8 INITID<7:0>: Initiator ID of Requester bits
 - 11111111 = Reserved
 - 00001111 = Reserved 00001110 = Crypto Engine 00001101 = Flash Controller 00001100 = SQI1 00001011 = CAN2 00001010 = CAN1 00001001 = Ethernet Write 00001000 = Ethernet Read 00000111 = USB 00000110 = DMA Write (DMAPRI (CFGCON<25>) = 1) 00000101 = DMA Write (DMAPRI (CFGCON<25>) = 0) 00000100 = DMA Read (DMAPRI (CFGCON<25>) = 1) 00000011 = DMA Read (DMAPRI (CFGCON<25>) = 0) 00000010 = CPU (CPUPRI (CFGCON<24>) = 1) 00000001 = CPU (CPUPRI (CFGCON<25>) = 0) 00000000 = Reserved

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24	PWPULOCK	—	—	—	—	—	—	—						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0						
23:16	PWP<23:16>													
45.0	R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0													
15:8	PWP<15:8>													
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
				PWP<	:7:0>									

REGISTER 5-7: NVMPWP: PROGRAM FLASH WRITE-PROTECT REGISTER

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 PWPULOCK: Program Flash Memory Page Write-protect Unlock bit

1 = Register is not locked and can be modified

0 = Register is locked and cannot be modified

This bit is only clearable and cannot be set except by any reset.

bit 30-24 Unimplemented: Read as '0'

bit 23-0 PWP<23:0>: Flash Program Write-protect (Page) Address bits

Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit Bit 29/21/13/5 28/20/12/4		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31:24	CHPIGN<7:0>												
00.46	U-0	U-0	U-0	U-0 U-0		U-0	U-0	U-0					
23:16	—	—	—	—	—			—					
45.0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0					
15:8	CHBUSY	—	CHIPGNEN	—	CHPATLEN	_	_	CHCHNS ⁽¹⁾					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0					
	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPF	RI<1:0>					

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 CHPIGN<7:0>: Channel Register Data bits

Pattern Terminate mode:

Any byte matching these bits during a pattern match may be ignored during the pattern match determination when the CHPIGNEN bit is set. If a byte is read that is identical to this data byte, the pattern match logic will treat it as a "don't care" when the pattern matching logic is enabled and the CHPIGEN bit is set.

bit 23-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **CHPIGNEN:** Enable Pattern Ignore Byte bit

1 = Treat any byte that matches the CHPIGN<7:0> bits as a "don't care" when pattern matching is enabled 0 = Disable this feature

- bit 12 Unimplemented: Read as '0'
- bit 11 CHPATLEN: Pattern Length bit
 - 1 = 2 byte length
 - 0 = 1 byte length

bit 10-9 **Unimplemented:** Read as '0'

- bit 8 **CHCHNS:** Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)
 - CHEN: Channel Enable bit⁽²⁾
- 1 = Channel is enabled

bit 7

- 0 = Channel is disabled
- bit 6 CHAED: Channel Allow Events If Disabled bit
 - 1 = Channel start/abort events will be registered, even if the channel is disabled
 - 0 = Channel start/abort events will be ignored if the channel is disabled
- bit 5 CHCHN: Channel Chain Enable bit
 - 1 = Allow channel to be chained
 - 0 = Do not allow channel to be chained
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

TABLE 12-10: PORTD REGISTER MAP FOR 64-PIN DEVICES ONLY

ess		0								В	its								
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0310	TRISD	31:16	_	_	—		—	—	—	_	_		—	-	—	—	—		0000
0310	INIOD	15:0	—	—	—		TRISD11	TRISD10	TRISD9	—	—		TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	0E3F
0320	PORTD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0020	TORTE	15:0	—	—	—	—	RD11	RD10	RD9	—	—	_	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
0330	LATD	31:16	_	_	_	_	_	—	_	_	_	_	_	_	_	—	_	_	0000
	2.12	15:0	_	—	—	_	LATD11	LATD10	LATD9	—	—	_	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
0340	ODCD	31:16	_	_					—	_	—		—	—				—	0000
		15:0	_	—	—	_	ODCD11	ODCD10	ODCD9	_	_	_	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
0350	CNPUD	31:16	_	_	_	_	—	—	—	_	_	_	—	—	—	—	—	—	0000
		15:0	_	_	_	—	CNPUD11	CNPUD10	CNPUD9	_	_	_	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
0360	CNPDD	31:16	_	_	_		-	-	-	_	_		-	-	-	-	-	-	0000
		15:0	_	_			CNPDD11	CNPDD10	CNPDD9				CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
0270		31:16	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	0000
0370	CINCOIND	15:0	ON	_	—		DETECT	—	—	—	—	-	—	-	—	—	—	-	0000
0380		31:16	-	-	_		_	_	_	-	-		_		_	_	-		0000
0380	CINEIND	15:0	-	_	_		CNEND11	CNEND10	CNEND9				CNEND5	CNEND4	CNEND3	CNEND2	CNEND1	CNEND0	0000
		31:16	—	—	—	_	—	—	_	—	—	-	—	-	—	—	—	—	0000
0390	CNSTATD	15:0	—	—	—	—	CN STATD11	CN STATD10	CN STATD9	—	—	—	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	0000
00 4 0		31:16	_	_	_		_	_	_	_	_	_	_		_	_	_		0000
03A0	CININED	15:0	_	_	—	_	CNNED11	CNNED10	CNNED9	_	_	_	CNNED5	CNNED4	CNNED3	CNNED2	CNNED1	CNNED0	0000
0200		31:16	_	_		_	_	_	_	_	_	_	—	_	_	_	_	—	0000
03B0	CINFD	15:0	_	_	_		CNFD11	CNFD10	CNFD9	_	_		CNFD5	CNFD4	CNFD3	CNFD2	CNFD1	CNFD0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SSS		_								E	Bits								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1404		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
1404	INTIK	15:0	_	—	—	—	—	—	—	_	—	_	—	-		INT1F	2<3:0>		0000
1409		31:16	—	—	—	—	—	—	—	—	_	—	_		—	_		-	0000
1406	INTZR	15:0	—	—	—	—	—	—	—	—	_	—	_			INT2F	2<3:0>		0000
1400		31:16	_	—	_	_	_	_	—	—	_	_	—		—	_		_	0000
1400	INTOR	15:0	_	—	—	—	—	—	—	_	—	_	—	-		INT3F	2<3:0>		0000
1410		31:16	_	—	—	—	—	—	—	_	—	_	—	-	—	_	_	-	0000
1410	IN 14K	15:0	_	—	—	—	—	—	—	_	—	_	—	-		INT4F	2<3:0>		0000
1440	TOCKD	31:16	_	—	—	—	—	—	—	_	—	_	—	-	—	_	_	-	0000
1418	IZUKR	15:0	—	—	—	—	—	—	—	—	—	—	—	_		T2CKI	R<3:0>		0000
4.440		31:16	—	_	_	_	—	—	_	—	—	—	_	_	—	—	—	—	0000
1410	IJCKR	15:0	_	_	_	_	—	_	_	_	—	—	_	_		T3CKI	R<3:0>		0000
4.400	TIOKD	31:16	_	—	—	—	—	—	—		—	—	_		—	—	—	—	0000
1420	14CKR	15:0	_	—	—	—	—	—	—		—	—	_			T4CKI	R<3:0>	•	0000
	TEOKO	31:16	_	—	—	—	—	—	—		—	—	_		—	—	—	—	0000
1424	15CKR	15:0	_	—	—	—	—	—	—		—	—	_			T5CKI	R<3:0>	•	0000
4.400	TOOLD	31:16	_	—	—	—	—	—	—		—	—	_		—	—	—	—	0000
1428	TECKR	15:0	_	—	—	—	—	—	—		—	—	_			T6CKI	R<3:0>	•	0000
	770/0	31:16	—	_	_	_	_	_	_	—	_	—	_		_	_	—	_	0000
142C	17CKR	15:0	—	_	_	_	_	_	_	—	_	—	_			T7CKI	R<3:0>		0000
	T 20//D	31:16	—	_	_	_	_	_	_	—	_	—	_		_	_	—	_	0000
1430	TSCKR	15:0	—	_	_	_	_	_	_	—	_	—	_			T8CKI	R<3:0>		0000
	TAOLO	31:16	_	_	—	—	—	—	—		—	_	_	_	—	—	_	_	0000
1434	TYCKR	15:0	_	—	—	—	—	—	—		—	—	_			T9CKI	R<3:0>	•	0000
	1015	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
1438	IC1R	15:0	—	_	_	_	_	_	_	—	_	—	_			IC1R	<3:0>		0000
	1000	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
143C	IC2R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		IC2R	<3:0>		0000
	1005	31:16	_	_	_	_	_	_	_	—	_	_	_	—	—	—	—	—	0000
1440	IC3R	15:0	_	_	_	_	_	_	_	—	_	_	_	—		IC3R	<3:0>		0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is not available on 64-pin devices. Note 1:

2: This register is not available on devices without a CAN module.

TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

SSS										E	Bits								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1400		31:16	—	_	_	-	_	_	_		_	_	-	—	-	—	—	—	0000
1400	UJKAK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		U5RX	R<3:0>		0000
1.490	LIFCTOD	31:16	—	—	—	—	_	—	—	_	—	—	_	—	_	_	—	—	0000
1460	USCISK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		U5CTS	R<3:0>		0000
1400		31:16	—	—	—	—	_	—	—	-	—	—	—	_	—	-	_	—	0000
1490	UOKAK	15:0	_	—	—	—	_	—	—	_	—	—	_	-		U6RX	R<3:0>		0000
4 4 9 4	LICOTOD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—		—	0000
1494	UCISK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		U6CTS	R<3:0>		0000
4.400		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—		—	0000
149C	SDI1R	15:0	—	—	—	—	—	—	—	—	—	—	—			SDI1F	R<3:0>		0000
		31:16	—	—	—	_	—	—	—	—	—	—	_	—	_	—	—	_	0000
14A0	SS1R	15:0	—	_	_	_	_	_	_	—	_	_	_	—		SS1R	<3:0>		0000
		31:16	—	_	_	_	_	_	_	_	_	_	_	_	_	—	—	_	0000
14A8	SDI2R	15:0	_	_	—	—	_	_	_	_	—	—	_	_		SDI2F	R<3:0>		0000
		31:16	—	_	_	_	_	_	_	—	_	_	_	—	_	—	—	_	0000
14AC	SS2R	15:0	—	_	_	_	_	_	_	—	_	_	_	—		SS2R	<3:0>		0000
		31:16	—	_	_	_	_	_	_	_	_	_	_	_	_	—	—	_	0000
14B4	SDI3R	15:0	_	_	—	—	_	_	_	_	—	—	_	_		SDI3F	R<3:0>		0000
		31:16	_	_	—	—	_	_	_	_	—	—	_	_	—	_		_	0000
14B8	SS3R	15:0	_	_	—	—	_	_	_	_	—	—	_	_		SS3R	<3:0>		0000
		31:16	_	_	—	—	_	_	_	_	—	—	_	_	—	_		_	0000
14C0	SDI4R	15:0	_	_	—	—	_	_	_	_	—	—	_	_		SDI4F	R<3:0>		0000
		31:16	_	_	_	_	_	—	_	_	—	_	_	_	—			_	0000
14C4	SS4R	15:0	_	_	_	_	_	—	_	_	—	_	_	_		SS4R	<3:0>		0000
	(4)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
14CC	SDI5R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_			SDI5F	R<3:0>		0000
	(4)	31:16	_	_	_	_	_	_	_	_	_	_	_		_				0000
14D0	SS5R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		SS5R	<3:0>		0000
	(4)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	0000
14D8	SDI6R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		SDI6F	R<3:0>		0000
		1													1				

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on devices without a CAN module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	SIDL	—	—	—	—	—
7.0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_	OC32	OCFLT ⁽¹⁾	OCTSEL ⁽²⁾		OCM<2:0>	

REGISTER 18-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Peripheral On bit
 - 1 = Output Compare peripheral is enabled
 - 0 = Output Compare peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12-6 Unimplemented: Read as '0'
- bit 5 **OC32:** 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source
 - 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 OCFLT: PWM Fault Condition Status bit⁽¹⁾
 - 1 = PWM Fault condition has occurred (cleared in HW only)
 - 0 = No PWM Fault condition has occurred
- bit 3 OCTSEL: Output Compare Timer Select bit⁽²⁾
 - 1 = Timery is the clock source for this Output Compare module
 - 0 = Timerx is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin is enabled
 - 110 = PWM mode on OCx; Fault pin is disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current
- **Note 1:** This bit is only used when OCM<2:0> = '111'. It is read as '0' in all other modes.
 - **2:** Refer to Table 18-1 for Timerx and Timery selections.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	—	—	—	—			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	POLLCON<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		POLLCON<7:0>									

REGISTER 20-18: SQI1BDPOLLCON: SQI BUFFER DESCRIPTOR POLL CONTROL REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **POLLCON<15:0>:** Buffer Descriptor Processor Poll Status bits These bits indicate the number of cycles the BDP would wait before refetching the descriptor control word if the previous descriptor fetched was disabled.

REGISTER 20-19: SQI1BDTXDSTAT: SQI BUFFER DESCRIPTOR DMA TRANSMIT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	R-x	R-x	R-x	R-x	U-0		
31:24	—	—	—		TXSTATE<3:0>					
23:16	U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x		
	—	—	—							
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	—	—	—	—	—	—	—	—		
7.0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x		
7:0	TXCURBUFLEN<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-25 **TXSTATE<3:0>:** Current DMA Transmit State Status bits These bits provide information on the current DMA receive states.

bit 24-21 Unimplemented: Read as '0'

bit 20-16 **TXBUFCNT<4:0>:** DMA Buffer Byte Count Status bits

These bits provide information on the internal FIFO space.

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 **TXCURBUFLEN<7:0>:** Current DMA Transmit Buffer Length Status bits These bits provide the length of the current DMA transmit buffer.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	-	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	—		—			—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	ON	—	SIDL	IREN	RTSMD	_	UEN<	1:0> ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 22-1: UXMODE: UARTX MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: UARTx Enable bit
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
 - UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 RTSMD: Mode Selection for UxRTS Pin bit
 - $1 = \overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode
- bit 10 Unimplemented: Read as '0'

bit 9-8 UEN<1:0>: UARTx Enable bits⁽¹⁾

- 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used
- 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up is enabled
 - 0 = Wake-up is disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices. For additional information, see Section 12.4 "Peripheral Pin Select (PPS)".

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	PTEN<15:14>		PTEN<13:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	PTEN<7:0>									

REGISTER 23-6: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

- bit 15-14 **PTEN<15:14>:** PMCS1 Strobe Enable bits
 - 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS1 and PMCS2⁽¹⁾
 0 = PMA15 and PMA14 function as port I/O
- bit 13-2 **PTEN<13:2>:** PMP Address Port Enable bits
 - 1 = PMA<13:2> function as PMP address lines
 - 0 = PMA<13:2> function as port I/O
- bit 1-0 PTEN<1:0>: PMALH/PMALL Strobe Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
 - Note 1: The use of these pins as PMA15 and PMA14 or CS1 and CS2 is selected by the CSF<1:0> bits in the PMCON register.
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24				CSADD	R<15:8>					
00:40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	CSADDR<7:0>									
45-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	_		_	_	_	_	_	—		
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0	_	_				_		_		

REGISTER 24-1: EBICSx: EXTERNAL BUS INTERFACE CHIP SELECT REGISTER ('x' = 0-3)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 CSADDR<15:0>: Base Address for Device bits

Address in physical memory, which will select the external device.

bit 15-0 Unimplemented: Read as '0'

26.1 Crypto Engine Control Registers

TABLE 26-2: CRYPTO ENGINE REGISTER MAP

ess				_	_			_	_		Bits				_				<i>"</i>
Virtual Addr (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
5000		31:16				REVISIO	ON<7:0>							VERSI	ON<7:0>				0000
5000	CEVER	15:0								IC	<15:0>								0000
5004	CECON	31:16		—	—	—	—	—	_	—	_		-		—	_	_	—	0000
3004	CECCIN	15:0		—	—	—	—	—	—	—	SWAPOEN	SWRST	SWAPEN		—	BDPCHST	BDPPLEN	DMAEN	0000
5008	CEBDADDR	31:16								BDPA									0000
0000	OLDBRODER	15:0								BBIT	DDI((01.0)								0000
500C	CEBDPADDR	31:16		BASEADDR-31:05						0000									
		15:0																	0000
5010	CESTAT	31:16	ER	RMODE<2	2:0>	E	RROP<2:0	0>	ERRPHA	ASE<1:0>	—	—		BDSTA	TE<3:0>		START	ACTIVE	0000
		15:0		i				i		BDC	FRL<15:0>					i	i		0000
5014	CEINTSRC	31:16	_		—	-	—	-		—	_	_			—	—	—		0000
		15:0	_	_	-	-	—	-		—		_	—	_	AREIF	PKTIF	CBDIF	PENDIF	0000
5018	CEINTEN	31:16	_									_			-	-	-	-	0000
		15:0					_			_			_		AREIE	PKTE	CBDIE	PENDIE	0000
501C	CEPOLLCON	31:16							—	0000									
		15:0	BDPPLCON<15:0>						0000										
5020	CEHDLEN	31:16		_	_		_			_	_	_	_			_	_	_	0000
		15:0					_			_				HDRLE	=N<7:0>				0000
5024	CETRLLEN	31:16	_	_	_		_	_		_	_	_	_			_	_	-	0000
	15:0	_	_					—	_				IKLKL	EIN<7:U>				0000	

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 28-15: ADCCMPx: ADC DIGITAL COMPARATOR 'x' LIMIT VALUE REGISTER ('x' = 1 THROUGH 6)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24				DCMPHI<	15:8> ^(1,2,3)						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	DCMPHI<7:0> ^(1,2,3)										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	DCMPLO<15:8> ^(1,2,3)										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
				DCMPLO<	:7:0> ^(1,2,3)						

Logond

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

DCMPHI<15:0>: Digital Comparator 'x' High Limit Value bits^(1,2,3) bit 31-16 These bits store the high limit value, which is used by digital comparator for comparisons with ADC converted data.

- DCMPLO<15:0>: Digital Comparator 'x' Low Limit Value bits^(1,2,3) bit 15-0 These bits store the low limit value, which is used by digital comparator for comparisons with ADC converted data.
- Changing theses bits while the Digital Comparator is enabled (ENDCMP = 1) can result in unpredictable Note 1: behavior.
 - 2: The format of the limit values should match the format of the ADC converted value in terms of sign and fractional settings.
 - 3: For Digital Comparator 0 used in CVD mode, the DCMPHI<15:0> and DCMPLO<15:0> bits must always be specified in signed format, as the CVD output data is differential and is always signed.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	—	—	—		TRGSRC7<4:0>				
22.16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	—	—	—	TRGSRC6<4:0>					
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	—	—	—	TRGSRC5<4:0>					
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0		_			Т	RGSRC4<4:0)>		

REGISTER 28-18: ADCTRG2: ADC TRIGGER SOURCE 2 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 TRGSRC7<4:0>: Trigger Source for Conversion of Analog Input AN7 Select bits

```
11111 = Reserved

.

01101 = Reserved

01100 = Comparator 2 (COUT)

01011 = Comparator 1 (COUT)

01010 = OCMP5

01001 = OCMP3

01000 = OCMP1

00111 = TMR5 match

00101 = TMR1 match

00101 = TMR1 match

00100 = INT0 External interrupt

00011 = STRIG

00010 = Global level software trigger (GLSWTRG)

00001 = Global software edge Trigger (GSWTRG)

00000 = No Trigger
```

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSS*x* registers.

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TRGSRC6<4:0>:** Trigger Source for Conversion of Analog Input AN6 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC5<4:0>:** Trigger Source for Conversion of Analog Input AN5 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC4<4:0>:** Trigger Source for Conversion of Analog Input AN4 Select bits See bits 28-24 for bit value definitions.

DC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended				
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾
DO10 Vo		Output Low Voltage I/O Pins 4x Sink Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-RB2, RB4, RB6, RB7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11		_	0.4	V	Iol ≤ 10 mA, Vdd = 3.3V
	Vol	Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA0-RA2, RA4, RA5 RB3, RB5, RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7		_	0.4	V	Iol ≤ 15 mA, Vdd = 3.3V
		Output Low Voltage I/O Pins: 12x Sink Driver Pins - RA6, RA7 RE0-RE3 RF1 RG12-RG14	_	_	0.4	V	Iol \leq 20 mA, Vdd = 3.3V

	TABLE 37-11:	DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
--	--------------	--

Note 1: Parameters are characterized, but not tested.

		Standard Operating Conditions: 2.1V to 3.6V								
AC CHA	AC CHARACTERISTICS ⁽²⁾		(unles	(unless otherwise stated)						
			Operat	ting temp	erature	-40°C	$\leq IA \leq +85^{\circ}C$ for Industrial			
	[T		-40-0	≤ IA ≤ +125°C for Extended			
Param.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions			
	Town	Comple Time for								
AD60a	ISAMP	ADC7 (Class 2 and	0				Source impedance $\leq 200\Omega$			
		Class 2 Inputs) with	a a				CVDCPL<2:0>(ADCCON2<28:26>) = 001			
		the CVDEN hit	11				CVDCPL < 2:0> (ADCCON2 < 28:26>) = 0.11			
		(ADCCON1<11>) = 1	12	—	—	TAD	CVDCPL < 2:0> (ADCCON2 < 28:26>) = 100			
			14				CVDCPL < 2:0> (ADCCON2 < 28:26>) = 1.01			
			16				CVDCPL<2:0> (ADCCON2<28:26>) = 110			
			17				CVDCPL<2:0> (ADCCON2<28:26>) = 111			
							Source Impedance $\leq 500\Omega$			
			10				CVDCPL<2:0> (ADCCON2<28:26>) = 001			
			12		_	TAD	CVDCPL<2:0> (ADCCON2<28:26>) = 010			
			14				CVDCPL<2:0> (ADCCON2<28:26>) = 011			
			16				CVDCPL<2:0> (ADCCON2<28:26>) = 100			
			18				CVDCPL<2:0> (ADCCON2<28:26>) = 101			
			19				CVDCPL<2:0> (ADCCON2<28:26>) = 110			
			21				CVDCPL<2:0> (ADCCON2<28:26>) = 111			
			40				Source Impedance $\leq 1 \text{ K}\Omega$			
			13				CVDCPL<2:0> (ADCCON2<28:26>) = 001			
			16				CVDCPL<2:0> (ADCCON2<28:26>) = 010			
			10	_	_	TAD	CVDCPL<2.0>(ADCCON2<28.26>) = 011			
			23				CVDCPL < 2:0> (ADCCON2<28:26>) = 100			
			26				CVDCPI < 2:0> (ADCCON2 < 28:26>) = 110			
			28				CVDCPL<2:0> (ADCCON2<28:26>) = 111			
							Source Impedance $\leq 5 \text{ K}\Omega$			
			41				CVDCPL<2:0> (ADCCON2<28:26>) = 001			
			48				CVDCPL<2:0> (ADCCON2<28:26>) = 010			
			56			TAD	CVDCPL<2:0> (ADCCON2<28:26>) = 011			
			63	—	—	IAD	CVDCPL<2:0> (ADCCON2<28:26>) = 100			
			70				CVDCPL<2:0> (ADCCON2<28:26>) = 101			
			78				CVDCPL<2:0> (ADCCON2<28:26>) = 110			
			85				CVDCPL<2:0> (ADCCON2<28:26>) = 111			

TABLE 37-40: ADC SAMPLE TIMES WITH CVD ENABLED

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature						
Crystal/Oscillator Selection for USB							
Any frequency that can be divided down to 4 MHz using UPLLIDIV, including 4, 8, 12, 16, 20, 40, and 48 MHz.	If the USB module is used, the Primary Oscillator is limited to either 12 MHz or 24 MHz. Which frequency is used is selected using the UPLLFSEL (DEVCFG2<30>) bit.						
USB PLL C	onfiguration						
On PIC32MX devices, the PLL for the USB requires an input fre- quency of 4 MHz.	On PIC32MZ EF devices, the HS USB PHY requires an input frequency of 12 MHz or 24 MHz. UPLLIDIV has been replaced with UPLLFSEL.						
UPLLIDIV<2:0> (DEVCFG2<10:8>) 111 = 12x divider 110 = 10x divider 101 = 6x divider 101 = 5x divider 011 = 4x divider 010 = 3x divider 010 = 3x divider 001 = 2x divider 000 = 1x divider	UPLLFSEL (DEVCFG2<30>) 1 = UPLL input clock is 24 MHz 0 = UPLL input clock is 12 MHz						
Peripheral Bus C	ock Configuration						
On PIC32MX devices, there is one peripheral bus, and the clock for that bus is divided from the SYSCLK using FPBDIV/PBDIV. In addition, the maximum PBCLK frequency is the same as SYSCLK. FPBDIV<1:0> (DEVCFG1<5:4>) PBDIV<1:0> (OSCCON<20:19>) 11 = PBCLK is SYSCLK divided by 8 10 = PBCLK is SYSCLK divided by 4 01 = PBCLK is SYSCLK divided by 2 00 = PBCLK is SYSCLK divided by 1	On PIC32MZ EF devices, there are eight peripheral buses with their own clocks. FPBDIV is removed, and each PBDIV is in its own register for each PBCLK. The initial PBCLK speed is fixed at reset, and the maximum PBCLK speed is limited to100 MHz for all buses, with the exception of PBCLK7, which is 200 MHz. PBDIV<6:0> (PBxDIV<6:0>) 1111111 = PBCLKx is SYSCLK divided by 128 1111110 = PBCLKx is SYSCLK divided by 127 • • • • • • • • • • • • • • • • •						
	(default value for x < 7) 0000000 = PBCLKx is SYSCLK divided by 1						
	(default value for x ≥ 7)						
CPU Clock (Configuration						
UN PIU32IVIX devices, the CPU clock is derived from SYSCLK. ON PIU32IVIX devices, the CPU clock is derived from PBCLK7.							
On PIC32MX devices, the default value for FRCDIV was to divide the FRC clock by two.	On PIC32MZ EF devices, the default has been changed to divide by one.						
FRCDIV<2:0> (OSCCON<26:24>) 111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8 010 = FRC divided by 4 001 = FRC divided by 2 (default) 000 = FRC divided by 1	FRCDIV<2:0> (OSCCON<26:24>) 111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8 010 = FRC divided by 4 001 = FRC divided by 2 000 = FRC divided by 1 (default)						

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES (CONTINUED)