

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efe064t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber		Pin Type	Buffer Type		
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP			Description	
					PO	RTK		
RK0	—	_	_	19	I/O	ST	PORTK is a bidirectional I/O port	
RK1	—	—		51	I/O	ST		
RK2	—	_		52	I/O	ST		
RK3	—	_		53	I/O	ST		
RK4	—	—		92	I/O	ST		
RK5	—	—		93	I/O	ST		
RK6	—	—		94	I/O	ST]	
RK7	—	—	—	126	I/O	ST]	
Legend:	CMOS = C	MOS-comp	atible input	t or output		Analog =	Analog input P = Power	

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

d: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog input O = Output PPS = Peripheral Pin Select P = Power I = Input

i – mput

		Pin Number						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description	
				Т	imer1 thr	ough Timer	9	
T1CK	48	73	A49	106	Ι	ST	Timer1 External Clock Input	
T2CK	PPS	PPS	PPS	PPS	I	ST	Timer2 External Clock Input	
T3CK	PPS	PPS	PPS	PPS	I	ST	Timer3 External Clock Input	
T4CK	PPS	PPS	PPS	PPS	I	ST	Timer4 External Clock Input	
T5CK	PPS	PPS	PPS	PPS	I	ST	Timer5 External Clock Input	
T6CK	PPS	PPS	PPS	PPS	I	ST	Timer6 External Clock Input	
T7CK	PPS	PPS	PPS	PPS	I	ST	Timer7 External Clock Input	
T8CK	PPS	PPS	PPS	PPS	I	ST	Timer8 External Clock Input	
T9CK	PPS	PPS	PPS	PPS	I	ST	Timer9 External Clock Input	
	•	•	•	Real-	Time Clo	ck and Cale	endar	
RTCC	46	71	A48	104	0	—	Real-Time Clock Alarm/Seconds Output	
Legend:	CMOS = C	MOS-compa	atible input	or output		Analog =	Analog input P = Power	

TABLE 1-7: TIMER1 THROUGH TIMER9 AND RTCC PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select

I = Input

3.0 CPU

- Note 1: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: The Series 5 Warrior M-class CPU core resources are available at: www.imgtec.com.

The MIPS32[®] M-Class Core is the heart of the PIC32MZ EF family device processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

Key features include:

- 5-stage pipeline
- · 32-bit address and data paths
- MIPS32 Enhanced Architecture (Release 5):
 - Multiply-accumulate and multiply-subtract instructions
 - Targeted multiply instruction
 - Zero/One detect instructions
 - WAIT instruction
 - Conditional move instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - GPR shadow registers to minimize latency for interrupt handlers
 - Bit field manipulation instructions
 - Virtual memory support
- microMIPS[™] compatible instruction set:
 - Improves code size density over MIPS32, while maintaining MIPS32 performance.
 - Supports all MIPS32 instructions (except branchlikely instructions)
 - Fifteen additional 32-bit instructions and 39 16-bit instructions corresponding to commonly-used MIPS32 instructions
 - Stack pointer implicit in instruction
 - MIPS32 assembly and ABI compatible
- MMU with Translation Lookaside Buffer (TLB) mechanism:
 - 16 dual-entry fully associative Joint TLB
 - 4-entry fully associative Instruction and Data TLB
 - 4 KB pages

- Separate L1 data and instruction caches:
 - 16 KB 4-way Instruction Cache (I-Cache)
 - 4 KB 4-way Data Cache (D-Cache)
- Autonomous Multiply/Divide Unit (MDU):
 - Maximum issue rate of one 32x32 multiply per clock
 - Early-in iterative divide. Minimum 12 and maximum 38 clock latency (dividend (*rs*) sign extension-dependent)
- Power Control:
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- EJTAG Debug and Instruction Trace:
 - Support for single stepping
 - Virtual instruction and data address/value breakpoints
 - Hardware breakpoint supports both address match and address range triggering.
 - Eight instruction and four data complex breakpoints
- iFlowtrace[®] version 2.0 support:
 - Real-time instruction program counter
 - Special events trace capability
 - Two performance counters with 34 userselectable countable events
 - Disabled if the processor enters Debug mode
 - Program Counter sampling
- Four Watch registers:
 - Instruction, Data Read, Data Write options
 - Address match masking options
- DSP ASE Extension:
 - Native fractional format data type operations
 - Register Single Instruction Multiple Data (SIMD) operations (add, subtract, multiply, shift)
 - GPR-based shift
 - Bit manipulation
 - Compare-Pick
 - DSP Control Access
 - Indexed-Load
 - Branch
 - Multiplication of complex operands
 - Variable bit insertion and extraction
 - Virtual circular buffers
 - Arithmetic saturation and overflow handling
 - Zero-cycle overhead saturation and rounding operations
- Floating Point Unit (FPU):
 - 1985 IEEE-754 compliant Floating Point Unit
 - Supports single and double precision datatypes
 - 2008 IEEE-754 compatibility control of NaN handling and Abs/Neg instructions
 - Runs at 1:1 core/FPU clock ratio

The FPU implements a high-performance 7-stage pipeline:

- Decode, register read and unpack (FR stage)
- Multiply tree, double pumped for double (M1 stage)
- Multiply complete (M2 stage)
- Addition first step (A1 stage)
- Addition second and final step (A2 stage)
- Packing to IEEE format (FP stage)
- Register writeback (FW stage)

The FPU implements a bypass mechanism that allows the result of an operation to be forwarded directly to the instruction that needs it without having to write the result to the FPU register and then read it back.

Table 3-5 lists the Coprocessor 1 Registers for the FPU.

Register Number	Register Name	Function
0	FIR	Floating Point implementation register. Contains information that identifies the FPU.
25	FCCR	Floating Point condition codes register.
26	FEXR	Floating Point exceptions register.
28	FENR	Floating Point enables register.
31	FCSR	Floating Point Control and Status register.

TABLE 3-5: FPU (CP1) REGISTERS

3.2 Power Management

The processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during Idle periods.

3.2.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 33.0 "Power-Saving Features".

3.2.2 LOCAL CLOCK GATING

The majority of the power consumed by the processor core is in the clock tree and clocking registers. The PIC32MZ family makes extensive use of local gatedclocks to reduce this dynamic power consumption.

3.3 L1 Instruction and Data Caches

3.3.1 INSTRUCTION CACHE (I-CACHE)

The I-Cache is an on-core memory block of 16 Kbytes. Because the I-Cache is virtually indexed, the virtual-tophysical address translation occurs in parallel with the cache access rather than having to wait for the physical address translation. The tag holds 22 bits of physical address, a valid bit, and a lock bit. The LRU replacement bits are stored in a separate array.

The I-Cache block also contains and manages the instruction line fill buffer. Besides accumulating data to be written to the cache, instruction fetches that reference data in the line fill buffer are serviced either by a bypass of that data, or data coming from the external interface. The I-Cache control logic controls the bypass function.

The processor core supports I-Cache locking. Cache locking allows critical code or data segments to be locked into the cache on a per-line basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache locking function is always available on all I-Cache entries. Entries can then be marked as locked or unlocked on a per entry basis using the CACHE instruction.

3.3.2 DATA CACHE (D-CACHE)

The D-Cache is an on-core memory block of 4 Kbytes. This virtually indexed, physically tagged cache is protected. Because the D-Cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access. The tag holds 22 bits of physical address, a valid bit, and a lock bit. There is an additional array holding dirty bits and LRU replacement algorithm bits for each set of the cache.

In addition to I-Cache locking, the processor core also supports a D-Cache locking mechanism identical to the I-Cache. Critical data segments are locked into the cache on a per-line basis. The locked contents can be updated on a store hit, but cannot be selected for replacement on a cache miss.

The D-Cache locking function is always available on all D-Cache entries. Entries can then be marked as locked or unlocked on a per-entry basis using the CACHE instruction.

3.3.3 ATTRIBUTES

The processor core I-Cache and D-Cache attributes are listed in the Configuration registers (see Register 3-1 through Register 3-4).

3.4 EJTAG Debug Support

The processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the processor core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification specify which registers are selected and how they are used.

3.5 MIPS DSP ASE Extension

The MIPS DSP Application-Specific Extension Revision 2 is an extension to the MIPS32 architecture. This extension comprises new integer instructions and states that include new HI/LO accumulator register pairs and a DSP control register. This extension is crucial in a wide range of DSP, multimedia, and DSPlike algorithms covering Audio and Video processing applications. The extension supports native fractional format data type operations, register Single Instruction Multiple Data (SIMD) operations, such as add, subtract, multiply, and shift. In addition, the extension includes the following features that are essential in making DSP algorithms computationally efficient:

- · Support for multiplication of complex operands
- · Variable bit insertion and extraction
- Implementation and use of virtual circular buffers
- Arithmetic saturation and overflow handling support
- Zero cycle overhead saturation and rounding operations

3.6 microMIPS ISA

The processor core supports the microMIPS ISA, which contains all MIPS32 ISA instructions (except for branch-likely instructions) in a new 32-bit encoding scheme, with some of the commonly used instructions also available in 16-bit encoded format. This ISA improves code density through the additional 16-bit instructions while maintaining a performance similar to MIPS32 mode. In microMIPS mode, 16-bit or 32-bit instructions will be fetched and recoded to legacy MIPS32 instruction opcodes in the pipeline's I stage, so that the processor core can have the same microAptiv UP microarchitecture. Because the microMIPS instruction stream can be intermixed with 16-bit halfword or 32-bit word size instructions on halfword or word boundaries, additional logic is in place to address the misalignment word issues, thus minimizing performance loss.

		('x' = 0-13)									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0, C	U-0	U-0	U-0	R/W-0, C	R/W-0, C	R/W-0, C	R/W-0, C			
31:24	MULTI	—	—	—		CODE	<3:0>				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16			—	—		—		_			
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8		INITID<7:0>									
7.0	R-0	R-0	R-0	R-0	U-0	R-0	R-0	R-0			
7:0		REGIO	N<3:0>				CMD<2:0>				

REGISTER 4-3: SBTxELOG1: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 1

Legend:	C = Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31 MULTI: Multiple Permission Violations Status bit

This bit is cleared by writing a '1'.

1 = Multiple errors have been detected

0 = No multiple errors have been detected

bit 30-28 Unimplemented: Read as '0'

bit 27-24 CODE<3:0>: Error Code bits

Indicates the type of error that was detected. These bits are cleared by writing a '1'.

- 1111 = Reserved
- 1101 = Reserved
- •
- •
- 0011 = Permission violation
- 0010 = Reserved
- 0001 = Reserved
- 0000 = No error
- bit 23-16 Unimplemented: Read as '0'
- bit 15-8 INITID<7:0>: Initiator ID of Requester bits
 - 11111111 = Reserved
 - 00001111 = Reserved 00001110 = Crypto Engine 00001101 = Flash Controller 00001100 = SQI1 00001011 = CAN2 00001010 = CAN1 00001001 = Ethernet Write 00001000 = Ethernet Read 00000111 = USB 00000110 = DMA Write (DMAPRI (CFGCON<25>) = 1) 00000101 = DMA Write (DMAPRI (CFGCON<25>) = 0) 00000100 = DMA Read (DMAPRI (CFGCON<25>) = 1) 00000011 = DMA Read (DMAPRI (CFGCON<25>) = 0) 00000010 = CPU (CPUPRI (CFGCON<24>) = 1) 00000001 = CPU (CPUPRI (CFGCON<25>) = 0) 00000000 = Reserved

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	_	_	_	_	—	_	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	_	_	_	_	_	_	_	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	—	_	_	_	-	_	_		
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	
7:0				_			GROU	^D <1:0>	

REGISTER 4-4: SBTxELOG2: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 2 ('x' = 0-13)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-3 Unimplemented: Read as '0'

- bit 1-0 GROUP<1:0>: Requested Permissions Group bits
 - 11 = Group 3
 - 10 = Group 2
 - 01 = Group 1
 - 00 = Group 0

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

REGISTER 4-5: SBTxECON: SYSTEM BUS TARGET 'x' ERROR CONTROL REGISTER ('x' = 0-13)

		x = 0 = 13						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
31:24	—	—	_	_	-		_	ERRP
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	_	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	-		_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	—							—

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-25 Unimplemented: Read as '0'

bit 24 ERRP: Error Control bit

1 = Report protection group violation errors

0 = Do not report protection group violation errors

bit 23-0 Unimplemented: Read as '0'

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	_		-		—	—			
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	_	_	_	_	—	—			
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	CHSPTR<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	CHSPTR<7:0>										

REGISTER 10-14: DCHxSPTR: DMA CHANNEL x SOURCE POINTER REGISTER

Legend:

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits

111111111111111 = Points to byte 65,535 of the source

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24			_		—			—					
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	_	—	—	—	—	—	_	—					
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
15:8	CHDPTR<15:8>												
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
7:0	CHDPTR<7:0>												

REGISTER 10-15: DCHxDPTR: DMA CHANNEL x DESTINATION POINTER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits

111111111111111 = Points to byte 65,535 of the destination

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_					—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_		_		_	—	_
45.0	U-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—			LF	PMFADDR<6:	0>		
7:0	U-0 U-0		R-0	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS
7.0	_		LPMERRIF	LPMRESIF	LPMNCIF	LPMACKIF	LPMNYIF	LPMSTIF

Legend:	HS = Hardware Set		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

bit 14-8 LPMFADDR<6:0>: LPM Payload Function Address bits These bits contain the address of the LPM payload function.

bit 7-6 Unimplemented: Read as '0'

bit 5 LPMERRIF: LPM Error Interrupt Flag bit (Device mode)

1 = An LPM transaction was received that had a LINKSTATE field that is not supported. The response will be a STALL.

0 =No error condition

bit 4 LPMRESIF: LPM Resume Interrupt Flag bit

- 1 = The USB module has resumed (for any reason)
- 0 = No Resume condition
- bit 3 LPMNCIF: LPM NC Interrupt Flag bit

When in Device mode:

- 1 = The USB module received a LPM transaction and responded with a NYET due to data pending in the RX FIFOs.
- 0 = No NC interrupt condition

When in Host mode:

- 1 = A LPM transaction is transmitted and the device responded with an ACK
- 0 = No NC interrupt condition

bit 2 LPMACKIF: LPM ACK Interrupt Flag bit

When in Device mode:

- 1 = A LPM transaction was received and the USB Module responded with an ACK
- 0 = No ACK interrupt condition

When in Host mode:

1 = The LPM transaction is transmitted and the device responds with an ACK

0 = No ACK interrupt condition

bit 1 LPMNYIF: LPM NYET Interrupt Flag bit

When in Device mode:

1 = A LPM transaction is received and the USB Module responded with a NYET

0 = No NYET interrupt flag

When in Host mode:

- 1 = A LPM transaction is transmitted and the device responded with an NYET
- 0 = No NYET interrupt flag

TABLE 12-6: PORTC REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess										Bits									
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	ANSELC	31:16	—	—	—	_	—	_	_	_	_	_	—	_	—	—	—	_	0000
0200	ANGLEO	15:0	_	_		_	—			_	—	—		ANSC4	ANSC3	ANSC2	ANSC1		001E
0210	TRISC	31:16	_				—		_	_	—	—		—	_		_	_	0000
0210	TRIBO	15:0	TRISC15	TRISC14	TRISC13	TRISC12	—			_	—	—		TRISC4	TRISC3	TRISC2	TRISC1		F01E
0220	PORTC	31:16	—	_	—		_		_	_	—	—		_	_		—	_	0000
0220	TOKIC	15:0	RC15	RC14	RC13	RC12	—	_	_	_	—	—	—	RC4	RC3	RC2	RC1	-	xxxx
0230	LATC	31:16	_	_	_	-	—	_	_	_	—	—	—	—	—	—	—	-	0000
0230	LAIO	15:0	LATC15	LATC14	LATC13	LATC12	—	_	_	_	—	—	—	LATC4	LATC3	LATC2	LATC1	-	xxxx
0240	ODCC	31:16	_	_	_	-	—	_	_	_	—	—	—	—	—	—	—	-	0000
0240		15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	_	_	_	—	—	—	ODCC4	ODCC3	ODCC2	ODCC1	-	0000
0250	CNPUC	31:16	_	_	_	-	—	_	_	_	—	—	—	—	—	—	—	-	0000
0230	CINFUC	15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	-					_	_	CNPUC4	CNPUC3	CNPUC2	CNPUC1		0000
0260	CNPDC	31:16	_	_	_	-	—	_	_	_	—	—	—	—	—	—	—	-	0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	_	_	_	—	—	—	CNPDC4	CNPDC3	CNPDC2	CNPDC1	-	0000
	1	31:16	_	_		_					—	—		—	_		—		0000
0270	CNCONC	15:0	ON	—	—	—	EDGE DETECT	—	—	—	—	—	—	—	—	—	—	—	0000
0280	CNENC	31:16	_	—		—	—	—	—	—		_	—	_	—	—	—	—	0000
0200	CNENC	15:0	CNENC15	CNENC14	CNENC13	CNENC12								CNENC4	CNENC3	CNENC2	CNENC1	_	0000
0200	CNSTATC	31:16	_	—	—	—	—	—	—	—		_	—	_	—	—	—	—	0000
0290	CINSTATC	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_	_	_	_		_	—	CNSTATC4	CNSTATC3	CNSTATC2	CNSTATC1	_	0000
02A0	CNNEC	31:16	_	—			-					_	_	_	_	_			0000
02A0	CININEC	15:0	CNNEC15	CNNEC14	CNNEC13	CNNEC12	—				_	—	—	CNNEC4	CNNEC3	CNNEC2	CNNEC1		0000
02B0	CNFC	31:16	_	-	—		-				_	_	—	_	-	-	-		0000
0200	CINEC	15:0	CNFC15	CNFC14	CNFC13	CNFC12	_		_		_	_	—	CNFC4	CNFC3	CNFC2	CNFC1		0000

x = Unknown value on Reset; --- = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

TABLE 12-21: PORTK REGISTER MAP FOR 144-PIN DEVICES ONLY

ess		ø	Bits																
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0910	TRISK	31:16	_	-	—	—	—	_	_	—	-	—	_		—	—	—	—	0000
0010	INION	15:0	—	_	—	—	—	—	—	—	TRISK7	TRISK6	TRISK5	TRISK4	TRISK3	TRISK2	TRISK1	TRISK0	OOFF
0920	PORTK	31:16	—	_	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
0020		15:0	—	_	—	—	—	—	—	—	RK7	RK6	RK5	RK4	RK3	RK2	RK1	RK0	xxxx
0930	LATK	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	_	0000
		15:0	_	_	—	_	—	_	_	_	LATK7	LATK6	LATK5	LATK4	LATK3	LATK2	LATK1	LATK0	XXXX
0940	ODCK	31:16	_	_	—	_	_	_	—	—	—	—	—	—	—	—	—	—	0000
		15:0	_	_	—	_	_	_	_	_	ODCK7	ODCK6	ODCK5	ODCK4	ODCK3	ODCK2	ODCK1	ODCK0	0000
0950	CNPUK	31:16	_	_	_	_	_	_	_	_	-	-	-	—	-	-	-	-	0000
		15:0	_	_	_	_	_	_	_	_	CNPUK7	CNPUK6	CNPUK5	CNPUK4	CNPUK3	CNPUK2	CNPUK1	CNPUK0	0000
0960	CNPDK	31:16			-						-								0000
		15:0	_	_	_	_	_	_		_	CNPDK7	CNPDK6	CNPDK5	CNPDK4	CNPDK3	CNPDK2	CNPDK1	CNPDK0	0000
0070	CNCONK	31:16	_	_	—	—	-			_		_	_	_	_				0000
0070	onconin	15:0	ON	—	—	—	EDGE DETECT	—	—	—	—	—	—	—	—	—	—	—	0000
0980	CNENK	31:16	-		_	_	_	_	_	_	١	_			-	-	-	_	0000
0900	CINLINK	15:0	_	_	—	—	_	_	_	_	CNENK7	CNENK6	CNENK5	CNENK4	CNENK3	CNENK2	CNENK1	CNENK0	0000
		31:16	—	—	—	—	—	—	—	—	-	—	—	-	—	—	—	_	0000
0990	CNSTATK	15:0	-	_	-	-	-	-	_	—	CN STATK7	CN STATK6	CN STATK5	CN STATK4	CN STATK3	CN STATK2	CN STATK1	CN STATK0	0000
0040	CNNEK	31:16	_	_	—	_	_	_	_	_	_	—	_	_	_	—	_	_	0000
09A0	CININER	15:0	_								CNNEK7	CNNEK6	CNNEK5	CNNEK4	CNNEK3	CNNEK2	CNNEK1	CNNEK0	0000
09B0	CNFK	31:16	_	_	—	—	_	_	_	_	_	—	_			—	—		0000
0900	UNER	15:0	_	-	_	_	_	_	_	_	CNFK7	CNFK6	CNFK5	CNFK4	CNFK3	CNFK2	CNFK1	CNFK0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

REGISTER 20-13:	SQI1STAT2: SQI STATUS REGISTER 2
-----------------	----------------------------------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
23:16	—	_		—	_	_	CMDST	AT<1:0>
45.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
15:8	—	—	—	—		CONAVA	\IL<4:1>	
7.0	R-0	R-0	R-0	R-0	R-0	U-0	R-0	R-0
7:0	CONAVAIL<0>	SQID3	SQID2	SQID1	SQID0		RXUN	TXOV

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-18 Unimplemented: Read as '0'

- bit 17-16 **CMDSTAT<1:0>:** Current Command Status bits These bits indicate the current command status.
 - 11 = Reserved
 - 10 = Receive
 - 01 = Transmit
 - 00 = Idle
- bit 15-12 Unimplemented: Read as '0'

bit 11-7 **CONAVAIL<4:0>:** Control FIFO Space Available bits These bits indicate the available control Word space. 11111 = 32 bytes are available 11110 = 31 bytes are available

- •
- 00001 = 1 byte is available
- 00000 = No bytes are available

bit 6 SQID3: SQID3 Status bit

- 1 = Data is present on SQID3
- 0 = Data is not present on SQID3
- bit 5 SQID2: SQID2 Status bit
 - 1 = Data is present on SQID2
 - 0 = Data is not present on SQID2

bit 4 **SQID1:** SQID1 Status bit

- 1 = Data is present on SQID1
 0 = Data is not present on SQID1
- bit 3 **SQID0:** SQID0 Status bit
 - 1 = Data is present on SQID0
 - 0 = Data is not present on SQID0
- bit 2 Unimplemented: Read as '0'
- bit 1 RXUN: Receive FIFO Underflow Status bit
 - 1 = Receive FIFO Underflow has occurred
 - 0 = Receive FIFO underflow has not occurred
- bit 0 **TXOV:** Transmit FIFO Overflow Status bit
 - 1 = Transmit FIFO overflow has occurred
 - 0 = Transmit FIFO overflow has not occurred

23.1 PMP Control Registers

TABLE 23-1: PARALLEL MASTER PORT REGISTER MAP

ess		ő		Bits															
Virtual Address (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E000	PMCON	31:16		—	—		—	—	—		RDSTART		—		_		DUALBUF	_	0000
LUUU	FINCON	15:0	ON	—	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P		WRSP	RDSP	0000
E010	PMMODE	31:16	_	—	—	_	—	—		_	—	—	—	—	—	_	—	_	0000
2010	_	15:0	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>	WAITE	3<1:0>		WAITN	/<3:0>		WAITE	<1:0>	0000
		31:16	_	—	—	—		—	—	—	—	—	—	—	—	—	—	_	0000
E020	PMADDR	15:0	CS2	CS1							ADDR	<13.0>							0000
			ADDR15	ADDR14				-											0000
E030	PMDOUT	31:16	_	—	—	—	_	—	—	—		—	—	—	_	—	—	_	0000
		15:0								DATAOL	JT<15:0>								0000
E040	PMDIN	N 31:16									_	0000							
		31:16								DATAI									0000
E050	PMAEN	15:0	-	—	—	_	_	—	_			_	—	—	—		—	_	
											<15:0>								0000
E060	PMSTAT	31:16 15:0	IBF	— IBOV	_	_	IB3F	IB2F	IB1F	IB0F				_	OB3E	— OB2E	— OB1E		0000
		31:16		<u>іво</u> у			івэг —											<u></u>	008F
E070	PMWADDR	51.10	WCS2	WCS1					_		_						_		0000
2070		15:0		WADDR14							WADDF								0000
		31:16				_		_	_	_		<13:0>	_	_	_	_	_	_	0000
E090	PMRADDR	51.10	RCS2	RCS1													_		0000
E080	FINIKADDR	15:0		RADDR14							RADDF								0000
		31:16	31:16			_	_					<13:0>		_		_		_	0000
E090	PMRDIN					_		_				-		_			_	_	_
		15:0	15:0							RL	DATAIN<15:	0>							0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
31:24	EF	RRMODE<2:0	>		ERROP<2:0>	ERRPHA	SE<1:0>				
22.16	U-0 U-0		R-0	R-0	R-0	R-0	R-0	R-0			
23:16	—	—		BDSTAT	FE<3:0>	START	ACTIVE				
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8											
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	BDCTRL<7:0>										

REGISTER 26-5: CESTAT: CRYPTO ENGINE STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-29 ERRMODE<2:0>: Internal Error Mode Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CEK operation
- 010 = KEK operation
- 001 = Preboot authentication
- 000 = Normal operation

bit 28-26 ERROP<2:0>: Internal Error Operation Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Authentication
- 011 = Reserved
- 010 = Decryption
- 001 = Encryption
- 000 = Reserved

bit 25-24 ERRPHASE<1:0>: Internal Error Phase of DMA Status bits

- 11 = Destination data
- 10 = Source data
- 01 = Security Association (SA) access
- 00 = Buffer Descriptor (BD) access

bit 23-22 Unimplemented: Read as '0'

bit 21-18 BDSTATE<3:0>: Buffer Descriptor Processor State Status bits

The current state of the BDP:

- 1111 = Reserved
- •
- 0111 = Reserved
- 0110 = SA fetch
- 0101 = Fetch BDP is disabled
- 0100 = Descriptor is done
- 0011 = Data phase
- 0010 = BDP is loading
- 0001 = Descriptor fetch request is pending
- 0000 = BDP is idle
- bit 17 START: DMA Start Status bit
 - 1 = DMA start has occurred
 - 0 = DMA start has not occurred

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	_	—	_	-	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	-		_			—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		_	_	_	_	_	_	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	HDRLEN<7:0>							

REGISTER 26-9: CEHDLEN: CRYPTO ENGINE HEADER LENGTH REGISTER

Legend:

Logona.				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **HDRLEN<7:0>:** DMA Header Length bits For every packet, skip this length of locations and start filling the data.

REGISTER 26-10: CETRLLEN: CRYPTO ENGINE TRAILER LENGTH REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		_	_	—	—	_		—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		_	_	—	—	_	_	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	TRLRLEN<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **TRLRLEN<7:0>:** DMA Trailer Length bits

For every packet, skip this length of locations at the end of the current packet and start putting the next packet.

REGISTER 30-17:	ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK
	STATISTICS REGISTER

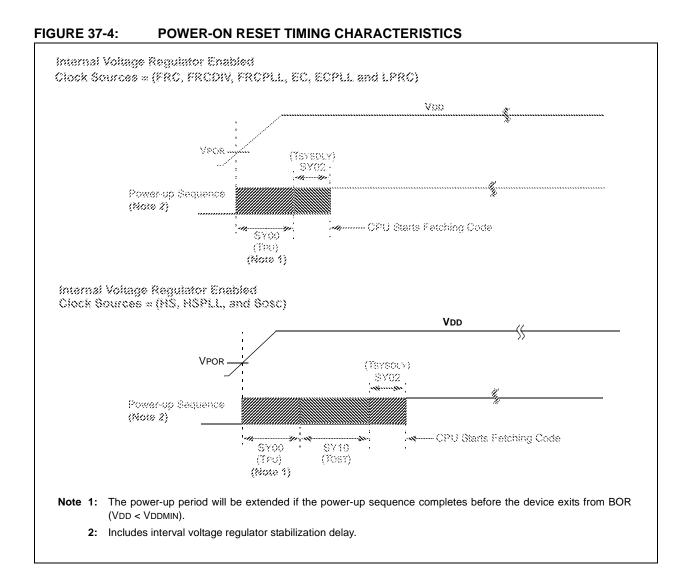
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	_	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	_	_	—
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	FRMTXOKCNT<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FRMTXOKCNT<7:0>							

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	nented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

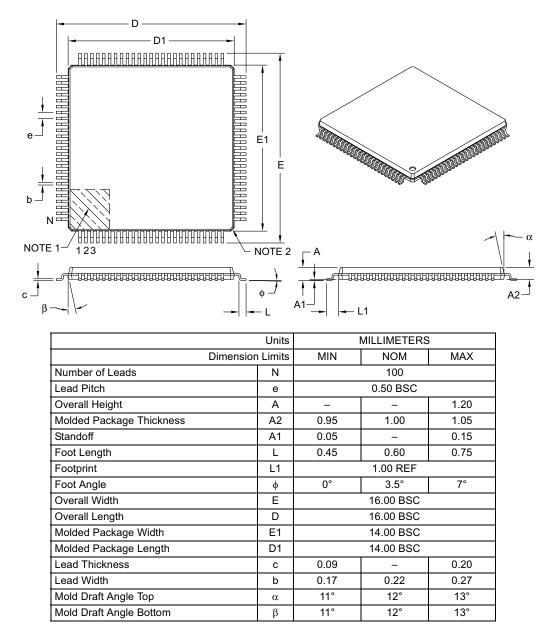
bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FRMTXOKCNT<15:0>:** Frame Transmitted OK Count bits Increment counter for frames successfully transmitted.


Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.


NOTES:

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

B.10 Serial Quad Interface (SQI)

On PIC32MZ EF devices, the SQI module has been updated with the following features:

- FIFOs can be reset through the CONFIFORST (SQI1CFG<19>), RXFIFORST (SQI1CFG<18>), and TXFIFORST (SQI1CFG<17>) bits in Register 20-3
- A new Flash Status check is available, which will allow the SQI to automatically query the status of the external device during write/erase operations without software intervention. See the SCHECK bit (SQI1CON<24>) and the SQI1MEMSTAT register (Register 20-4 and Register 20-24, respectively).
- The SQI clock divider bits have been expanded, and can use an undivided clock. See the CLKDIV<10:0> bits (SQI1CLKCON<18:8>) in Register 20-5.
- A new DMA Bus Error Interrupt is available through the DMAEIE (SQI1INTEN<11>), DMAEIF (SQI1INTSTAT<11>), and DMAEISE (SQI1INTSIGEN<11>) bits in Register 20-8, Register 20-9, and Register 20-22, respectively
- The SQI1STAT2 register (see Register 20-13) has two new fields:
 - CMDSTAT<1:0> (SQI1STAT2<17:16>) indicates the current command status
 - CONAVAIL<4:0> (SQI1STAT<11:8>) indicates how many spaces are available in the Control FIFO.
- The TAP Controller within the SQI can be configured for various timing requirements via the SQI1TAPCON register (Register 20-23)
- Two new XIP mode registers (SQI1XCON3 and SQI1XCON4) have been added for additional command sequencing (see Register 20-25 and Register 20-26, respectively)

Refer to **20.0 "Serial Quad Interface (SQI)"** and **Section 46. "Serial Quad Interface (SQI)"** (DS60001128) for more information.

B.11 PMP

On PIC32MZ EF devices, the PMP features the ability to buffer reads and writes in both directions, and can read and write from different addresses. Refer to **23.0 "Parallel Master Port (PMP)"** and **Section 43. "Parallel Master Port"** (DS60001346) for information.