

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TQFP
Supplier Device Package	144-TQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efe144-e-ph
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efe144-e-ph

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-10: SYSTEM BUS TARGET 2 REGISTER MAP

ess		Bits																	
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI	—	—	—		CODE	<3:0>		—	—	—	-	—	_	-	—	0000
8620	SBIZELUGI	15:0				INI	TID<7:0>					REGIO	N<3:0>		_	C	MD<2:0>		0000
8824	SBT2ELOG2	31:16	—	—	_	—	_	_		_	_	_	—			—	_	—	0000
0024	001222002	15:0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	GROU	P<1:0>	0000
8828	SBT2ECON	31:16	—	—	—	—	—	—	_	ERRP	—	—	—		—	_	_	—	0000
0020	00.2200.0	15:0	—	—		—	—			_		_	—						0000
8830	SBT2ECLRS	31:16	—	—	—	—	—			_		_	—						0000
		15:0	_	—	—	_		—	—	_	—	—	_	_	_			CLEAR	0000
8838	SBT2ECLRM	31:16	—	—	—		—				—	—	—		—			—	0000
		15:0	_	-	—			_	—		—	—		—	—			CLEAR	0000
8840	SBT2REG0	31:16	BASE-5:0					DDI										XXXX	
		15:0			BA	ASE<5:0>			PRI				SIZE<4:0	>					XXXX
8850	SBT2RD0	15:0	_																XXXX
		31.16		_												GROUPZ		GROOPU	·
8858	SBT2WR0	15.0													GROUP3	GROUP2	GROUP1	GROUP	
		31.16								BA	SF<21.6>				on of the off of	ONOOL			XXXX
8860	SBT2REG1	15:0			BA	\SE<5:0>			PRI	_			SIZE<4:0	>		_	_	_	XXXX
		31:16	_	_	—	_	_	—	_	_	_	—	_	_	_	_	_	_	xxxx
8870	SBT2RD1	15:0	_		_				_	_		_	_	_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
8878	SBT2WR1	15:0	_	_	_	_	_	_	_	_	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
0000		31:16 BASE<21:6>								xxxx									
8880	SB12REG2	15:0			BA	\SE<5:0>			PRI	—			SIZE<4:0	>		_	_	—	xxxx
0000	SPT2PD2	31:16		—	—	_	_	—	—	_	—	—	_	_	_	—	—	—	xxxx
9990	SD12KD2	15:0	—	—	—	_	—	—	_	_	_	—	_	_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
8898	SBT2WR2	31:16	_	—	—	—	—	—	_	—	—	_	—	_	-	-	-	—	xxxx
8898		15:0	—	—	—	—	_	—	-	-	—	—	_	-	GROUP3	GROUP2	GROUP1	GROUP0) xxxx

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

TABLE 4-17: SYSTEM BUS TARGET 9 REGISTER MAP

ess											Bits								
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
A 420		31:16	MULTI	—		—		CODE	<3:0>		_	-	—	—	—	—	—	—	0000
A420	SBIGELOGI	15:0				INI	TID<7:0>		REGION<3:0>				—	CMD<2:0>		0000			
A 4 2 4		31:16		_	_	_	_	—	_				_	—	—	—	_	—	0000
A424	3B19ELOG2	15:0		_		_	_	—	—				—	—	_	_	GROU	P<1:0>	0000
A 4 2 9	SPTOFCON	31:16	_	-		_	_	-	_	ERRP			_	_	—	-	_	-	0000
A420	SBISECON	15:0	_	-		_	_	-	_				_	_	—	-	_	-	0000
A 420	SBT9ECLRS	31:16		_	-	—	—	—	—	-	_	_	—	—	—	—	—	—	0000
7430		15:0	—	—	_	—	—	—	—	_	_	_	—	—	—	_	—	CLEAR	0000
A/38	SBT9ECLRM	31:16	—	—	_	—	—	—	—	_	_	_	—	—	—	_	—	—	0000
7430		15:0	—		_	—	—	_	—	—	—	_	—	—	—	_	—	CLEAR	0000
A440	SBT9REGO	31:16							BASE<21:6>							xxxx			
71440	OBTOREGO	15:0	BASE<5:0>						PRI	_	SIZE<4:0> — —				—	_	xxxx		
A450	SBT9RD0	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
//100	CETORES	15:0	_	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A458	SBT9WR0	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
//100	obronnic	15:0		—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A460	SBT9REG1	31:16								BA	SE<21:6>								xxxx
///00	OBTOREOT	15:0		1	BA	ASE<5:0>	-		PRI	_			SIZE<4:0	>	-	_	—	—	xxxx
A470	SBT9RD1	31:16	—	_	_	—	—	—	—	_	_	_	—	—	—	—	—	—	xxxx
	02.500	15:0	_	_	—	—	-	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A478	SBT9WR1	31:16	—	_	_	—	—	—	—	_	_	_		_	—	—	_	—	xxxx
A478	00100000	15:0	—	—	_	_	_	—	—	_	—	_	—	-	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	PWPULOCK	—	—	—	—	—	—	—			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	PWP<23:16>										
45.0	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	PWP<15:8>										
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
		PWP<7:0>									

REGISTER 5-7: NVMPWP: PROGRAM FLASH WRITE-PROTECT REGISTER

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 PWPULOCK: Program Flash Memory Page Write-protect Unlock bit

1 = Register is not locked and can be modified

0 = Register is locked and cannot be modified

This bit is only clearable and cannot be set except by any reset.

bit 30-24 Unimplemented: Read as '0'

bit 23-0 PWP<23:0>: Flash Program Write-protect (Page) Address bits

Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

TABLE 8-2: OSCILLATOR CONFIGURATION REGISTER MAP (CONTINUED)

ess										Bits									(1
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets ⁽³
1360	PB7DIV	31:16	_		—	—	—		—			_	—		_	_		—	0000
1360		15:0	ON		—	—	PBDIVRDY		—					F	BDIV<6:0>	`			8800
1370		31:16	_		_	_	_		_			_	_	_	_	_		_	0000
1370	1 BODIV	15:0	ON		-	-	PBDIVRDY		-		— PBDIV<6:0>				>		8801		
1200		31:16	Ι	_	_	-	_	_	-	_	_	_	_	_		SYSD	IV<3:0>		0000
1300	SLEWCON	15:0	—	_	—	—	_	S	SLWDIV<2:0	>	—	—	—		—	UPEN	DNEN	BUSY	0204
		31:16	_	_	—	_	_	_	_	_	_	—	_	—	_	_	-	_	0000
13D0	CLKSTAT	15:0	_	_	_	_	_	_	_	_	_	_	LPRC RDY	SOSC RDY	_	POSC RDY	SPLL DIVRDY	FRCRDY	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0 U-0		R/W-y	R/W-y	R/W-y			
31:24	—	—	—	—		F	>				
22.16	U-0	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y			
23.10	—	PLLMULT<6:0>									
15.0	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y			
15.0	—										
7:0	R/W-y	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y			
	PLLICLK				_	Pl	LRANGE<2:	0>			

REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER

Legend:	y = Value set from Configuration bits on POR			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-27 Unimplemented: Read as '0'

bit 26-24 PLLODIV<2:0>: System PLL Output Clock Divider bits

111 = Reserved 110 = Reserved 101 = PLL Divide by 32 100 = PLL Divide by 16 011 = PLL Divide by 8 010 = PLL Divide by 4 001 = PLL Divide by 2 000 = Reserved

The default setting is specified by the FPLLODIV<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

bit 23 Unimplemented: Read as '0'

bit 22-16 PLLMULT<6:0>: System PLL Multiplier bits

- 1111111 = Multiply by 128 1111110 = Multiply by 127 1111101 = Multiply by 126 1111100 = Multiply by 125
- •

0000000 = Multiply by 1

The default setting is specified by the FPLLMULT<6:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

bit 15-11 Unimplemented: Read as '0'

Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "*PIC32 Family Reference Manual*" for details.
 Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		—	—	—	—	—	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

REGISTER 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23	CHSDIE: Channel Source Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 22	CHSHIE: Channel Source Half Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 19	CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 18	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled
h:4 4 7	
DIT 17	CHIALE: Channel Transfer Abort Interrupt Enable bit
	1 = Interrupt is enabled
hit 16	CHERIE: Channel Address Error Interrunt Enable bit
	0 = Interrupt is disabled
bit 15-8	Unimplemented: Read as '0'
bit 7	CHSDIF: Channel Source Done Interrupt Flag bit
bit i	1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)
	0 = No interrupt is pending
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit
	1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)
	0 = No interrupt is pending

REGISTE	R 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER (CONTINUED)
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit
	 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ) 0 = No interrupt is pending
bit 4	CHDHIF: Channel Destination Half Full Interrupt Flag bit
	 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2) 0 = No interrupt is pending
bit 3	CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
	1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
1.11.0	
bit 2	CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
	 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred) 0 = No interrupt is pending
bit 1	CHTAIF: Channel Transfer Abort Interrupt Flag bit
	 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted 0 = No interrupt is pending
bit 0	CHERIF: Channel Address Error Interrupt Flag bit
	1 = A channel address error has been detected
	Either the source or the destination address is invalid.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	FORCEHST	FIFOACC	FORCEFS	FORCEHS	PACKET	TESTK	TESTJ	NAK			
22.16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	—	—	—	—		ENDPOINT<3:0>					
15.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0			
10.0	—	—	—	—	—	R	RFRMUM<10:8>				
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
				RFRMNU	M<7:0>						

REGISTER 11-4: USBCSR3: USB CONTROL STATUS REGISTER 3

Legend:	HC = Hardware Cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FORCEHST: Test Mode Force Host Select bit 1 = Forces USB module into <i>Host mode</i> , regardless of whether it is connected to any peripheral 0 = Normal operation
bit 30	FIFOACC: Test Mode Endpoint 0 FIFO Transfer Force bit 1 = Transfers the packet in the Endpoint 0 TX FIFO to the Endpoint 0 RX FIFO 0 = No transfer
bit 29	FORCEFS: Test mode Force Full-Speed Mode Select bit This bit is only active if FORCEHST = 1. 1 = Forces USB module into Full-Speed mode. Undefined behavior if FORCEHS = 1. 0 = If FORCEHS = 0, places USB module into Low-Speed mode.
bit 28	 FORCEHS: Test mode Force Hi-Speed Mode Select bit This bit is only active if FORCEHST = 1. 1 = Forces USB module into Hi-Speed mode. Undefined behavior if FORCEFS = 1. 0 = If FORCEFS = 0, places USB module into Low-Speed mode.
bit 27	 PACKET: Test_Packet Test Mode Select bit This bit is only active if module is in Hi-Speed mode. 1 = The USB module repetitively transmits on the bus a 53-byte test packet. Test packet must be loaded into the Endpoint 0 FIFO before the test mode is entered. 0 = Normal operation
bit 26	TESTK: Test_K Test Mode Select bit 1 = Enters Test_K test mode. The USB module transmits a continuous K on the bus. 0 = Normal operation
	This bit is only active if the USB module is in Hi-Speed mode.
bit 25	TESTJ: Test_J Test Mode Select bit 1 = Enters Test_J test mode. The USB module transmits a continuous J on the bus. 0 = Normal operation
	This bit is only active if the USB module is in Hi-Speed mode.
bit 24	 NAK: Test_SE0_NAK Test Mode Select bit 1 = Enter Test_SE0_NAK test mode. The USB module remains in Hi-Speed mode but responds to any valid IN token with a NAK 0 = Normal operation
	This mode is only active if module is in Hi-Speed mode.
bit 23-20	Unimplemented: Read as '0'

Bit Bit Range 31/23/15/7 3		Bit 30/22/14/6	Bit 29/21/13/5	Bit Bit /21/13/5 28/20/12/4 27		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—				—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	—	—	—	—	—
7:0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS
	DMA8IF	DMA7IF	DMA6IF	DMA5IF	DMA4IF	DMA3IF	DMA2IF	DMA1IF

REGISTER 11-20: USBDMAINT: USB DMA INTERRUPT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **DMAxIF:** DMA Channel 'x' Interrupt bit

1 = The DMA channel has an interrupt event

0 = No interrupt event

All bits are cleared on a read of the register.

17.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin.

Capture events are caused by the following:

• Capture timer value on every edge (rising and falling), specified edge first

- Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of six 16-bit timers for the time base, or two of six 16-bit timers together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values; Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

FIGURE 17-1: INPUT CAPTURE BLOCK DIAGRAM

Bit Range	Bit Bit e 31/23/15/7 30/22/14/6		Bit Bit Bit 29/21/13/5 28/20/12/4 27/19/11/3		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	-	_	—	
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10		—	—		—			—	
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
15:8	ON	—	SIDL	IREN	RTSMD	— UE		N<1:0> ⁽¹⁾	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL	

REGISTER 22-1: UXMODE: UARTX MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: UARTx Enable bit
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
 - UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 RTSMD: Mode Selection for UxRTS Pin bit
 - $1 = \overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode
- bit 10 Unimplemented: Read as '0'

bit 9-8 UEN<1:0>: UARTx Enable bits⁽¹⁾

- 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used
- 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up is enabled
 - 0 = Wake-up is disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices. For additional information, see Section 12.4 "Peripheral Pin Select (PPS)".

REGISTER 28-16: ADCFLTRx: ADC DIGITAL FILTER 'x' REGISTER ('x' = 1 THROUGH 6)

- bit 24 AFRDY: Digital Filter 'x' Data Ready Status bit
 - 1 = Data is ready in the FLTRDATA<15:0> bits

0 = Data is not ready

- **Note:** This bit is cleared by reading the FLTRDATA<15:0> bits or by disabling the Digital Filter module (by setting AFEN to '0').
- bit 23-21 Unimplemented: Read as '0'

bit 20-16 CHNLID<4:0>: Digital Filter Analog Input Selection bits

These bits specify the analog input to be used as the oversampling filter data source.

```
11111 = Reserved

01100 = Reserved

01011 = AN11

00010 = AN2

00001 = AN1

00000 = AN0
```

Note: Only the first 12 analog inputs, Class 1 (AN0-AN11) and Class 2 (AN5-AN11), can use a digital filter.

bit 15-0 FLTRDATA<15:0>: Digital Filter 'x' Data Output Value bits

The filter output data is as per the fractional format set in the FRACT bit (ADCCON1<23>). The FRACT bit should not be changed while the filter is enabled. Changing the state of the FRACT bit after the operation of the filter ended will not update the value of the FLTRDATA<15:0> bits to reflect the new format.

REGISTER 30-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1 (CONTINUED)

- bit 7 **AUTOFC:** Automatic Flow Control bit
 - 1 = Automatic Flow Control enabled
 - 0 = Automatic Flow Control disabled

Setting this bit will enable automatic Flow Control. If set, the full and empty watermarks are used to automatically enable and disable the Flow Control, respectively. When the number of received buffers BUFCNT (ETHSTAT<16:23>) rises to the full watermark, Flow Control is automatically enabled. When the BUFCNT falls to the empty watermark, Flow Control is automatically disabled.

This bit is only used for Flow Control operations and affects both TX and RX operations.

bit 6-5 Unimplemented: Read as '0'

bit 4 MANFC: Manual Flow Control bit

- 1 = Manual Flow Control is enabled
- 0 = Manual Flow Control is disabled

Setting this bit will enable manual Flow Control. If set, the Flow Control logic will send a PAUSE frame using the PAUSE timer value in the PTV register. It will then resend a PAUSE frame every 128 * PTV<15:0>/2 TX clock cycles until the bit is cleared.

Note: For 10 Mbps operation, TX clock runs at 2.5 MHz. For 100 Mbps operation, TX clock runs at 25 MHz.

When this bit is cleared, the Flow Control logic will automatically send a PAUSE frame with a 0x0000 PAUSE timer value to disable Flow Control.

This bit is only used for Flow Control operations and affects both TX and RX operations.

bit 3-1 Unimplemented: Read as '0'

bit 0 BUFCDEC: Descriptor Buffer Count Decrement bit

The BUFCDEC bit is a write-1 bit that reads as '0'. When written with a '1', the Descriptor Buffer Counter, BUFCNT, will decrement by one. If BUFCNT is incremented by the RX logic at the same time that this bit is written, the BUFCNT value will remain unchanged. Writing a '0' will have no effect.

This bit is only used for RX operations.

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

REGISTER 30-17:	ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK
	STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit Bit Bit 29/21/13/5 28/20/12/4 27/19/11/3 2		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	—	-	—			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	-	—			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0	FRMTXOKCNT<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
				FRMTXOK	(CNT<7:0>						

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FRMTXOKCNT<15:0>:** Frame Transmitted OK Count bits Increment counter for frames successfully transmitted.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

32.1 Comparator Voltage Reference Control Registers

TABLE 32-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

ess		0		Bits											<i>6</i>				
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0500		31:16	—	—	—	_	—	-	—	—	—	—	—	-	—	—	—	—	0000
UEUU	CVRCON	15:0	ON	—	_	_	_	—	_	_	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

38.0 EXTENDED TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MZ EF electrical characteristics for devices running up to 125°C. Additional information will be provided in future revisions of this document as it becomes available.

The specifications for Extended Temperature are identical to those shown in **37.0** "Electrical Characteristics", with the exception of the parameters listed in this chapter.

Parameters in this chapter begin with the letter "E", which denotes Extended Temperature operation. For example, parameter DC28 in **37.0** "Electrical Characteristics", is the Extended Temperature operation equivalent for EDC28.

Absolute maximum ratings for the PIC32MZ EF devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias.....-40°C to +125°C

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

41.2 Package Details

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 7.70x7.70mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch		0.50 BSC		
Optional Center Pad Width	W2			7.50
Optional Center Pad Length			7.50	
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X20)	X1			0.30
Contact Pad Length (X20)	Y1			0.90
Contact Pad to Center Pad (X20)	G	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
- BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2213B

B.4

System Bus

two key differences listed in Table B-3.

The system bus on PIC32MZ EF devices is similar to

the system bus on PIC32MZ EC devices. There are

B.3 CPU

The CPU in PIC32MZ EC devices is the microAptiv[™] MPU architecture. The CPU in the PIC32MZ EF devices is the Series 5 Warrior M-Class M5150 MPU architecture. Most PIC32MZ EF M-Class core features are identical to the microAptiv[™] core in PIC32MZ EC devices. The main differences are that in PIC32MZ EF devices, a floating-point unit (FPU) is included for improved math performance, and PC Sampling for performance measurement.

TABLE B-3: SYSTEM BUS DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature
Permission Groups during NMI	
On PIC32MZ EC devices, the permission group in which the CPU is part of is lost during NMI handling, and must be manually restored.	On PIC32MZ EF devices, the prior permission group is preserved, and is restored when the CPU returns from the NMI handler.
DMA Access	
The DMA can access the peripheral registers on Peripheral Bus 1.	On PIC32MZ EF devices, the DMA no longer has access to registers on Peripheral Bus 1. Refer to Table 4-4 for details on which peripherals are now excluded.

B.5 Flash Controller

The Flash controller on PIC32MZ EF devices adds the ability both to control boot Flash aliasing, and for locking the current swap settings. Table B-4 lists theses differences.

TABLE B-4:FLASH CONTROLLER DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature
Boot Flas	h Aliasing
On PIC32MZ EC devices, Boot Flash aliasing is done through the DEVSEQ0 register, but no further changes are possible without rebooting the processor.	On PIC32MZ EF devices, the initial Boot Flash aliasing is determined by the DEVSEQ3 register, but the BFSWAP bit (NVMCON<6>) reflects the state of the aliasing, and can be modified to change it during run-time.
	 BFSWAP (NVMCON<6>) 1 = Boot Flash Bank 2 is mapped to the lower boot alias, and Boot Flash bank 1 is mapped to the upper boot alias 0 = Boot Flash Bank 1 is mapped to the lower boot alias, and Boot Flash Bank 2 is mapped to the upper boot alias
PFM and BFM Swap Locking	
On PIC32MZ EC devices, the swapping of PFM is always available.	On PIC32MZ EF devices, a new control, SWAPLOCK<1:0> (NVMCON2<7:6>) allows the locking of PFSWAP and BFSWAP bits, and can restrict any further changes.
	 SWAPLOCK<1:0> (NVMCON2<7:6>) 11 = PFSWAP and BFSWAP are not writable and SWAPLOCK is not writable 10 = PFSWAP and BFSWAP are not writable and SWAPLOCK is writable 01 = PFSWAP and BFSWAP are not writable and SWAPLOCK is writable 00 = PFSWAP and BFSWAP are writable and SWAPLOCK is writable

INDEX

1	٨
,	•

AC Characteristics	624, 667, 673
ADC Specifications	650
Analog-to-Digital Conversion Requiremen	ts651
EJTAG Timing Requirements	
Ethernet	
Internal BFRC Accuracy	
Internal FRC Accuracy	
Internal LPRC Accuracy	
Parallel Master Port Read Requirements .	
Parallel Master Port Write	
Parallel Master Port Write Requirements	
Parallel Slave Port Requirements	
PLL Clock Timing	626, 667, 673
USB OTG Electrical Specifications	
Assembler	
MPASM Assembler	608

В

Block Diagrams	
Comparator I/O Operating Modes	567
Comparator Voltage Reference	571
CPU	. 44
Crypto Engine	401
DMA	173
EBI System	383
Ethernet Controller	523
I2C	354
Input Capture	305
Interrupt Controller	115
JTAG Programming, Debugging and Trace Ports	603
Output Compare Module	309
PIC32 CAN Module	485
PMP Pinout and Connections to External Devices	369
Prefetch Module	169
Random Number Generator (RNG)	421
RTCC	391
Serial Quad Interface (SQI)	325
SPI/I2S Module	315
System Reset	109
Timer1	283
Timer2-Timer9 (16-Bit)	287
Typical Multiplexed Port Structure	247
UART	361
WDT	301
Brown-out Reset (BOR)	
and On-Chip Voltage Regulator	603
_	

С

C Compilers	
MPLAB	608
Comparator	
Specifications	623
Comparator Module	
Comparator Voltage Reference (CVref	571
Configuration Bits	581
Configuring Analog Port Pins	
Controller Area Network (CAN)	485
CPU	
Architecture Overview	
Coprocessor 0 Registers	
Core Exception Types	116

EJTAG Debug Support	50
Power Management	49
CPU Module	43
Crypto	
Buffer Descriptors	412
Format of BD_CTRL	413
Format of BD_DSTADDR	414
Format of BD_ENC_OFF	415
Format of BD_MSG_LEN	415
Format of BD_NXTADDR	414
Format of BD_SADDR	413
Format of BD_SRCADDR	414
Format of BD_UPDPTR	415
Format of SA_CTRL	419
Security Association Structure	416
Crypto Engine	401
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

DC Characteristics	. 612, 664, 67	70
I/O Pin Input Specifications	617, 6 ²	18
I/O Pin Output Specifications	6´	19
Idle Current (IIDLE)	. 615, 665, 67	71
Power-Down Current (IPD)	616, 66	66
Program Flash Memory Wait States	622, 67	72
Program Memory	62	22
Temperature and Voltage Specifications.	6 [′]	13
Development Support	60	07
Direct Memory Access (DMA) Controller	17	73

Ε

Electrical Characteristics	611, 663, 669
Ethernet Controller	
External Bus Interface (EBI)	
External Clock	
Timer1 Timing Requirements	633
Timer2-Timer9 Timing Requirements	634
Timing Requirements	625
F	
Flash Program Memory	99
G	
Getting Started	37
н	
Hi-Speed USB On-The-Go (OTG)	197
I	
I/O Ports	247
Parallel I/O (PIO)	248
Write/Read Timing	248
Input Change Notification	248
Instruction Set	605

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Brand — Architecture Flash Memory Size Family Key Feature Set Pin Count Additional Feature S Tape and Reel Flag (Speed Temperature Range Package Pattern	PIC32 MZ XXXX EF E XXX A T - 250 I/PT - XXX PIC32 MZ XXXX EF E XXX A T - 250 I/PT - XXX PIC32MZ2048EFH144-I/PT: Embedded Connectivity PIC32, MIPS32 [®] M-Class MPU core, 2048 KB program memory, 144-pin, with Floating Point Unit, Industrial temperature, TQFP package.
Flash Memory Fan	nily
Architecture	MZ = MIPS32 [®] M-Class MPU Core
Flash Memory Size	0512 = 512 KB 1024 = 1024 KB 2048 = 2048 KB
Family	EF = Embedded Connectivity Microcontroller Family with Floating Point Unit
Key Feature	 E = PIC32 EF Family Features (no CAN, no Crypto) F = PIC32 EF Family Features (CAN, no Crypto) G = PIC32 EF Family Features (no CAN, no Crypto) H = PIC32 EF Family Features (CAN, no Crypto) K = PIC32 EF Family Features (Crypto and CAN) M = PIC32 EF Family Features (Crypto and CAN)
Pin Count	064 = 64-pin 100 = 100-pin 124 = 124-pin 144 = 144-pin
Speed	Blank = Up to 200 MHz 250 = Up to 252 MHz
Temperature Range	$ \begin{array}{l} = -40^{\circ}\text{C to } +85^{\circ}\text{C (Industrial)} \\ \text{E} &= -40^{\circ}\text{C to } +125^{\circ}\text{C (Extended)} \end{array} $
Package	MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flatpack) PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack) TL = 124-Lead (9x9x0.9 mm) VTLA (Very Thin Leadless Array) PH = 144-Lead (16x16x1 mm) TQFP (Thin Quad Flatpack) PL = 144-Lead (20x20x1.40 mm) LQFP (Low Profile Quad Flatpack)
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample