

Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | MIPS32® M-Class                                                                  |
| Core Size                  | 32-Bit Single-Core                                                               |
| Speed                      | 180MHz                                                                           |
| Connectivity               | EBI/EMI, Ethernet, I <sup>2</sup> C, PMP, SPI, SQI, UART/USART, USB OTG          |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                     |
| Number of I/O              | 120                                                                              |
| Program Memory Size        | 1MB (1M x 8)                                                                     |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 256K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2.1V ~ 3.6V                                                                      |
| Data Converters            | A/D 48x12b                                                                       |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 144-LQFP                                                                         |
| Supplier Device Package    | 144-LQFP (20x20)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efe144-e-pl |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| REGISTER 4-8: | SBTxREGy: SYSTEM BUS TARGET 'x' REGION 'y' REGISTER |
|---------------|-----------------------------------------------------|
|               | (x' - 0.13, y' - 0.8)                               |

|              |                   | $(x = 0^{-10})$   | y = 0-0)          |                   |                   |                   |                  |                  |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|
| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
| 04.04        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 31:24        |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| 00.40        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 23:16        | BASE<13:6>        |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R-0              | U-0              |  |  |  |
| 15:8         |                   | PRI               | —                 |                   |                   |                   |                  |                  |  |  |  |
| 7:0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | U-0               | U-0              | U-0              |  |  |  |
|              |                   |                   |                   | _                 | _                 |                   |                  |                  |  |  |  |

### Legend:

| J. J.             |                  |                                    |  |
|-------------------|------------------|------------------------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               |  |

more information.

| bit 31-10 | BASE<21:0>: Region Base Address bits                                                                                         |
|-----------|------------------------------------------------------------------------------------------------------------------------------|
| bit 9     | PRI: Region Priority Level bit                                                                                               |
|           | 1 = Level 2                                                                                                                  |
|           | 0 = Level 1                                                                                                                  |
| bit 8     | Unimplemented: Read as '0'                                                                                                   |
| bit 7-3   | SIZE<4:0>: Region Size bits                                                                                                  |
|           | Permissions for a region are only active is the SIZE is non-zero. 11111 = Region size = $2^{(SIZE - 1)} \times 1024$ (bytes) |
|           | •                                                                                                                            |
|           | •                                                                                                                            |
|           | •                                                                                                                            |
|           | 00001 = Region size = 2 <sup>(SIZE - 1)</sup> x 1024 (bytes)                                                                 |
|           | 00000 = Region is not present                                                                                                |
| bit 2-0   | Unimplemented: Read as '0'                                                                                                   |

Note 1: Refer to Table 4-6 for the list of available targets and their descriptions. 2: For some target regions, certain bits in this register are read-only with preset values. See Table 4-6 for

## PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

# REGISTER 4-10: SBTxWRy: SYSTEM BUS TARGET 'x' REGION 'y' WRITE PERMISSIONS REGISTER ('x' = 0-13; 'y' = 0-8)

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 21.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31.24        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 22.16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23.10        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 45.0         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 15:8         | —                 | —                 | —                 | _                 | —                 | —                 | —                | —                |
| 7.0          | U-0               | U-0               | U-0               | U-0               | R/W-0             | R/W-1             | R/W-1            | R/W-1            |
| 7:0          |                   | _                 |                   |                   | GROUP3            | GROUP2            | GROUP1           | GROUP0           |

### Legend:

| 3                 |                  |                                    |
|-------------------|------------------|------------------------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               |

### bit 31-4 Unimplemented: Read as '0'

more information.

| bit 3 |    | Group3: Group 3 Write Permissions bits                                                                     |
|-------|----|------------------------------------------------------------------------------------------------------------|
|       |    | 1 = Privilege Group 3 has write permission                                                                 |
|       |    | 0 = Privilege Group 3 does not have write permission                                                       |
| bit 2 |    | Group2: Group 2 Write Permissions bits                                                                     |
|       |    | 1 = Privilege Group 2 has write permission                                                                 |
|       |    | 0 = Privilege Group 2 does not have write permission                                                       |
| bit 1 |    | Group1: Group 1 Write Permissions bits                                                                     |
|       |    | 1 = Privilege Group 1 has write permission                                                                 |
|       |    | 0 = Privilege Group 1 does not have write permission                                                       |
| bit 0 |    | Group0: Group 0 Write Permissions bits                                                                     |
|       |    | 1 = Privilege Group 0 has write permission                                                                 |
|       |    | 0 = Privilege Group 0 does not have write permission                                                       |
| Note  | 1: | Refer to Table 4-6 for the list of available targets and their descriptions.                               |
|       | 2: | For some target regions, certain bits in this register are read-only with preset values. See Table 4-6 for |

DS60001320D-page 98

#### **TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)**

| ress<br>()             |                                 | e        |       |       |       |       |       |       |      | Bi         | ts   |      |      |      |      |      |       |        | s         |
|------------------------|---------------------------------|----------|-------|-------|-------|-------|-------|-------|------|------------|------|------|------|------|------|------|-------|--------|-----------|
| Virtual Add<br>(BF81 # | Register<br>Name <sup>(1)</sup> | Bit Rang | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8       | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1  | 16/0   | All Reset |
| 0000                   | 055000                          | 31:16    | _     | —     | -     | _     | _     | _     | _    | _          | _    | _    | _    | _    | _    | _    | VOFF< | 17:16> | 0000      |
| 0638                   | 3 OFF062                        | 15:0     |       |       |       |       |       |       |      | VOFF<15:1> |      |      |      |      |      |      |       | —      | 0000      |
| 0620                   | OFFOR                           | 31:16    | —     | —     | _     | _     | _     | _     | _    | _          | -    | _    | _    | —    | _    | _    | VOFF< | 17:16> | 0000      |
| 0030                   | JOFF003                         | 15:0     |       |       |       |       |       |       |      | VOFF<15:1> | •    |      |      |      |      |      |       | —      | 0000      |
| 0640                   |                                 | 31:16    | _     | _     | -     | -     | —     | —     | —    | —          |      | —    | -    | —    | —    | _    | VOFF< | 17:16> | 0000      |
| 0040                   | 011004                          | 15:0     |       | -     |       |       |       |       |      | VOFF<15:1> |      |      |      | -    |      |      |       | -      | 0000      |
| 0644                   |                                 | 31:16    | _     | —     | —     | —     | —     | —     | -    | —          | —    | —    | —    | —    | -    | —    | VOFF< | 17:16> | 0000      |
| 0041                   | 011000                          | 15:0     |       |       |       |       |       |       |      | VOFF<15:1> |      |      |      |      |      |      |       |        | 0000      |
| 0648                   |                                 | 31:16    | —     | —     | _     | —     | —     | —     | —    | —          | _    | —    | —    | —    | —    | _    | VOFF< | 17:16> | 0000      |
| 0010                   |                                 | 15:0     |       | i     | -     |       | -     | •     | -    | VOFF<15:1> |      | -    |      |      | -    | -    | -     |        | 0000      |
| 0640                   | OFF067                          | 31:16    | —     | —     | —     | —     | —     | —     | —    | —          | —    | —    | —    | —    | —    | —    | VOFF< | 17:16> | 0000      |
| 00.0                   |                                 | 15:0     |       |       |       |       |       |       |      | VOFF<15:1> |      |      |      |      |      |      |       |        | 0000      |
| 0650                   | OFF068                          | 31:16    | _     | —     | —     | —     | —     | _     | —    | —          | —    | —    | —    | —    | —    | —    | VOFF< | 7:16>  | 0000      |
|                        |                                 | 15:0     |       |       |       |       |       |       |      | VOFF<15:1> |      |      |      |      |      |      |       |        | 0000      |
| 0654                   | OFF069                          | 31:16    | _     | —     | —     | _     | —     | _     | _    | —          | —    | —    | _    | —    | _    | —    | VOFF< | 7:16>  | 0000      |
|                        |                                 | 15:0     |       |       |       |       |       |       |      | VOFF<15:1> |      |      |      |      |      |      |       |        | 0000      |
| 0658                   | 3 OFF070                        | 31:16    |       | —     | -     | —     | -     | —     | -    | —          | —    | —    | -    | —    | -    |      | VOFF< | 17:16> | 0000      |
|                        |                                 | 15:0     |       |       |       |       |       | -     |      | VOFF<15:1> |      |      |      | -    |      |      |       |        | 0000      |
| 0650                   | OFF071                          | 31:16    |       | —     | —     | —     | _     | —     | _    | —          | —    | —    | —    | —    | _    | _    | VOFF< | 17:16> | 0000      |
|                        |                                 | 15:0     |       |       |       |       |       |       |      | VOFF<15:1> |      |      |      |      |      |      |       |        | 0000      |
| 0660                   | OFF072                          | 31:16    | _     | —     | -     | -     | —     | —     | —    | —          | —    | —    | —    | —    | —    | —    | VOFF< | 17:16> | 0000      |
|                        |                                 | 15:0     |       |       |       | -     |       |       |      | VOFF<15:1> |      |      |      | -    |      |      | 1055  |        | 0000      |
| 0664                   | OFF073                          | 31:16    | _     | —     |       | -     |       | -     | -    |            | —    | -    | -    | —    |      |      | VOFF< | 7:16>  | 0000      |
|                        | -                               | 15:0     |       |       | r     | r     |       | 1     | [    | VOFF<15:1> |      | 1    | r    | 1    | r    |      | VOFF  |        | 0000      |
| 0668                   | 3 OFF074                        | 31:16    | _     | -     | -     | -     | —     | —     | —    |            | -    | _    | -    | -    | _    | -    | VOFF< | /:16>  | 0000      |
|                        | -                               | 15:0     |       |       | r     | r     |       | 1     | [    | VOFF<15:1> |      | 1    | r    | 1    | r    |      | VOFF  |        | 0000      |
| 0660                   | OFF075                          | 31:16    | —     | —     | —     | —     | —     | —     | -    |            | —    | —    | —    | —    | —    | —    | VOFF< | /:16>  | 0000      |
|                        | +                               | 15:0     |       |       |       |       |       |       |      | VUFF<15:1> |      | 1    |      |      |      |      | VOFE  |        | 0000      |
| 0670                   | OFF076                          | 31:16    | —     | —     | -     | -     | -     | —     | -    | -          | —    | -    | -    |      | -    | -    | VOFF< | /:16>  | 0000      |
|                        |                                 | 15:0     |       |       |       |       |       |       |      | VUFF<15:1> |      |      |      |      |      |      |       |        | 0000      |

© 2015-2016 Microchip Technology Inc.

Legend:

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### 8.0 OSCILLATOR CONFIGURATION

| Note: | This data sheet summarizes the           |
|-------|------------------------------------------|
|       | features of the PIC32MZ EF family of     |
|       | devices. It is not intended to be a      |
|       | comprehensive reference source. To       |
|       | complement the information in this data  |
|       | sheet, refer to Section 42. "Oscillators |
|       | with Enhanced PLL" (DS60001250) in       |
|       | the "PIC32 Family Reference Manual",     |
|       | which is available from the Microchip    |
|       | web site (www.microchip.com/PIC32).      |

The PIC32MZ EF oscillator system has the following modules and features:

- A total of five external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown with dedicated Back-up FRC (BFRC)
- Dedicated On-Chip PLL for USB peripheral
- Flexible reference clock output
- Multiple clock branches for peripherals for better performance flexibility
- · Clock switch/slew control with output divider

A block diagram of the oscillator system is shown in Figure 8-1. The clock distribution is provided in Table 8-1.

Note: Devices that support 252 MHz operation should be configured for SYSCLK <= 200 MHz operation. Adjust the dividers of the PBCLKs, and then increase the SYSCLK to the desired speed.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 04.04        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23.10        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 45.0         | R/W-0             | U-0               | U-0               | R/W-0             | R/W-0             | U-0               | U-0              | U-0              |
| 15:8         | ON                | —                 | —                 | SUSPEND           | DMABUSY           | —                 | —                | —                |
| 7:0          | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
|              | _                 | _                 | _                 | _                 |                   | _                 | _                | _                |

### REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
|-------------------|------------------|-----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

### bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** DMA On bit
  - 1 = DMA module is enabled
  - 0 = DMA module is disabled
- bit 14-13 Unimplemented: Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
  - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
  - 0 = DMA operates normally
- bit 11 DMABUSY: DMA Module Busy bit
  - 1 = DMA module is active and is transferring data
  - 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'

#### **SQI Control Registers** 20.1

### TABLE 20-1: SERIAL QUADRATURE INTERFACE (SQI) REGISTER MAP

| ess                     |                  |                          |                           |                   |         |           |        |               |              | В            | its            |               |             |              |                |               |               |               | s l       |
|-------------------------|------------------|--------------------------|---------------------------|-------------------|---------|-----------|--------|---------------|--------------|--------------|----------------|---------------|-------------|--------------|----------------|---------------|---------------|---------------|-----------|
| Virtual Addr<br>(BF8E_# | Register<br>Name | Bit Range                | 31/15                     | 30/14             | 29/13   | 28/12     | 27/11  | 26/10         | 25/9         | 24/8         | 23/7           | 22/6          | 21/5        | 20/4         | 19/3           | 18/2          | 17/1          | 16/0          | All Reset |
| 2000                    | SQI1             | 31:16                    | —                         | —                 | l –     | -         | —      | —             | —            | -            | DUN            | /MYBYTES<     | :2:0>       | AD           | DRBYTES<       | 2:0>          | READOPC       | CODE<7:6>     | 0000      |
| 2000                    | XCON1            | 15:0                     |                           |                   | READOPO | CODE<5:0> |        |               | TYPEDA       | ATA<1:0>     | TYPEDU         | MMY<1:0>      | TYPEMC      | DE<1:0>      | TYPEAD         | DR<1:0>       | TYPEC         | MD<1:0>       | 0000      |
| 2004                    | SQI1             | 31:16                    |                           | -                 | -       |           | -      | -             | -            | -            | -              | —             | —           | —            | -              | -             | -             | —             | 0000      |
|                         | XCON2            | 15:0                     | _                         | _                 |         |           | DEVSE  | L<1:0>        | MODEBY       | 'TES<1:0>    |                |               |             | MODECO       | ODE<7:0>       |               |               |               | 0000      |
| 2008                    | SQI1CFG          | 31:16                    | —                         | _                 | -       | -         | _      | _             | CSEN         | V<1:0>       | SQIEN          | —             | DATAE       | N<1:0>       | CON<br>FIFORST | RXFIFO<br>RST | TXFIFO<br>RST | RESET         | 0000      |
|                         |                  | 15:0                     | _                         | —                 | —       | BURSTEN   | —      | HOLD          | WP           | —            | —              | —             | LSBF        | CPOL         | CPHA           |               | MODE<2:0>     |               | 0000      |
| 200C                    | SQI1CON          | 31:16                    | _                         | —                 | -       | -         | _      | —             | —            | SCHECK       | —              | DASSERT       | DEVSE       | L<1:0>       | LANEMO         | DDE<1:0>      | CMDIN         | IT<1:0>       | 0000      |
| 2000                    |                  | 15:0                     |                           |                   |         |           |        |               |              | TXRXCO       | UNT<15:0>      |               |             |              |                |               |               |               | 0000      |
| 2010                    | SQI1             | 31:16                    | —                         | —                 | -       | _         | —      | —             | —            | _            | _              | _             | _           | _            | _              | 0             | LKDIV<10:8    | >             | 0000      |
|                         | CLKCON           | 15:0                     |                           |                   |         | CLKDI     | V<7:0> |               |              |              | _              | _             |             | _            | -              |               | STABLE        | EN            | 0000      |
| 2014                    | SQI1             | 31:16                    | _                         | _                 | _       | -         | —      | —             | —            | _            | _              | _             | _           | _            | -              |               | -             | _             | 0000      |
|                         | CMDTHR           | 15:0                     | _                         | -                 | -       |           | тх     | CMDTHR<4      | :0>          |              | —              | _             |             |              | RX             | CMDTHR<4      | 1:0>          |               | 0000      |
| 2018                    | SQI1             | 31:16                    | _                         | _                 | _       | -         | —      | —             | —            | —            | _              | _             | _           | _            | -              |               | -             | —             | 0000      |
|                         | INTTHR           | 15:0                     | —                         | —                 | —       |           | T)     | KINTTHR<4:    | 0>           |              | —              | _             | _           |              | R              | XINTTHR<4:    | :0>           |               | 0000      |
|                         | SQI1             | 31:16                    | _                         | —                 | -       | _         | _      | —             | —            | —            | —              | —             | —           | —            | -              | -             | _             | —             | 0000      |
| 2010                    | INTEN            | 15:0                     | _                         | _                 | _       | _         | DMAEIE | PKT<br>COMPIE | BD<br>DONEIE | CON<br>THRIE | CON<br>EMPTYIE | CON<br>FULLIE | RX<br>THRIE | RX<br>FULLIE | RX<br>EMPTYIE  | TX<br>THRIE   | TX<br>FULLIE  | TX<br>EMPTYIE | 0000      |
|                         | SQI1             | 31:16                    | _                         | —                 | -       | -         | -      | -             | -            | -            | -              | -             | —           | —            | -              | -             | -             | —             | 0000      |
| 2020                    | INTSTAT          | 15:0                     | _                         | —                 | -       | -         | DMAEIF | PKT<br>COMPIF | BD<br>DONEIF | CON<br>THRIF | CON<br>EMPTYIF | CON<br>FULLIF | RX<br>THRIF | RX<br>FULLIF | RX<br>EMPTYIF  | TX<br>THRIF   | TX<br>FULLIF  | TX<br>EMPTYIF | 0000      |
| 2024                    | SQI1             | 31:16                    |                           |                   |         |           |        |               |              | TXDATA       | 4<31:16>       |               |             |              |                |               |               |               | 0000      |
|                         | TXDATA           | 15:0                     |                           |                   |         |           |        |               |              | TXDAT        | A<15:0>        |               |             |              |                |               |               |               | 0000      |
| 2028                    | SQI1             | 31:16                    |                           |                   |         |           |        |               |              | RXDATA       | A<31:16>       |               |             |              |                |               |               |               | 0000      |
|                         | RXDATA           | 15:0                     |                           |                   |         |           |        |               |              | RXDAT        | A<15:0>        |               |             |              |                |               |               |               | 0000      |
| 202C                    | SQI1             | 31:16                    | _                         | _                 | -       |           |        | _             | _            |              |                |               |             | TXFIFOF      | REE<7:0>       |               |               |               | 0000      |
|                         | STAT1            | 15:0                     | _                         | —                 | -       | -         |        | -             | _            |              |                |               |             | RXFIFO       | CNT<7:0>       |               | i             |               | 0000      |
| 2030                    | SQI1             | 31:16                    | _                         | _                 | -       |           | -      | -             | —            | —            | -              | -             | —           | —            | -              |               | CMDST         | AT<1:0>       | 0000      |
|                         | STAT2            | 15:0                     | —                         | —                 | —       | -         |        | C             | ONAVAIL<4:   | :0>          | -              | SDID3         | SDID2       | SDID1        | SDID0          | —             | RXUN          | TXOV          | 00x0      |
| 2034                    | SQI1             | 31:16                    | _                         | _                 | -       |           |        | _             | _            |              | -              | -             |             | _            | -              | -             | -             | _             | 0000      |
|                         | BDCON            | 15:0                     | —                         | —                 | —       | —         | —      | —             | —            | —            | —              | —             | —           | —            | —              | START         | POLLEN        | DMAEN         | 0000      |
| 2038                    | SQI1BD           | 31:16                    |                           |                   |         |           |        |               |              | BDCURRA      | DDR<31:16>     |               |             |              |                |               |               |               | 0000      |
|                         | CURADD           | 15:0                     | 5:0 BDCURRADDR<15:0> 0000 |                   |         |           |        |               |              |              |                |               |             |              |                |               |               |               |           |
| 2040                    | SQI1BD           | 31:16 BDADDR<31:16> 0000 |                           |                   |         |           |        |               |              |              |                |               |             |              |                |               |               |               |           |
|                         | BASEADD          | 15:0                     |                           | BDADDR<15:0> 0000 |         |           |        |               |              |              |                |               |             |              |                |               |               |               |           |

### 26.0 CRYPTO ENGINE

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246) in the "PIC32 Family Reference Manual". which is available from the Microchip web site (www.microchip.com/PIC32).

The Crypto Engine is intended to accelerate applications that need cryptographic functions. By executing these functions in the hardware module, software overhead is reduced and actions, such as encryption, decryption, and authentication can execute much more quickly.

The Crypto Engine uses an internal descriptor-based DMA for efficient programming of the security association data and packet pointers (allowing scatter/ gather data fetching). An intelligent state machine schedules the Crypto Engines based on the protocol selection and packet boundaries. The hardware engines can perform the encryption and authentication in sequence or in parallel.

The following are key features of the Crypto Engine:

- Bulk ciphers and hash engines
- Integrated DMA to off-load processing:
  - Buffer descriptor-based
  - Secure association per buffer descriptor
- Some functions can execute in parallel

Bulk ciphers that are handled by the Crypto Engine include:

- AES:
  - 128-bit, 192-bit, and 256-bit key sizes
  - CBC, ECB, CTR, CFB, and OFB modes
- DES/TDES:
  - CBC, ECB, CFB, and OFB modes

Authentication engines that are available through the Crypto Engine include:

- SHA-1
- SHA-256
- MD-5
- AES-GCM
- HMAC operation (for all authentication engines)

The rate of data that can be processed by the Crypto Engine depends on these factors:

- Which engine is in use
- Whether the engines are used in parallel or in series
- The demands on source and destination memories by other parts of the system (i.e., CPU, DMA, etc.)
- The speed of PBCLK5, which drives the Crypto Engine

Table 26-1 shows typical performance for various engines.

### TABLE 26-1: CRYPTO ENGINE PERFORMANCE

| Engine/<br>Algorithm | Performance<br>Factor<br>(Mbps/MHz) | Maximum Mbps<br>(PBCLK5 = 100 MHz) |
|----------------------|-------------------------------------|------------------------------------|
| DES                  | 14.4                                | 1440                               |
| TDES                 | 6.6                                 | 660                                |
| AES-128              | 9.0                                 | 900                                |
| AES-192              | 7.9                                 | 790                                |
| AES-256              | 7.2                                 | 720                                |
| MD5                  | 15.6                                | 1560                               |
| SHA-1                | 13.2                                | 1320                               |
| SHA-256              | 9.3                                 | 930                                |

### FIGURE 26-1: CRYPTO ENGINE BLOCK DIAGRAM



### 26.1 Crypto Engine Control Registers

### TABLE 26-2: CRYPTO ENGINE REGISTER MAP

| ess                      |                  |           | Bits                |                |       |         |          |       |        | <i>"</i> |            |       |        |       |          |         |         |        |           |
|--------------------------|------------------|-----------|---------------------|----------------|-------|---------|----------|-------|--------|----------|------------|-------|--------|-------|----------|---------|---------|--------|-----------|
| Virtual Addr<br>(BF8E_#) | Register<br>Name | Bit Range | 31/15               | 30/14          | 29/13 | 28/12   | 27/11    | 26/10 | 25/9   | 24/8     | 23/7       | 22/6  | 21/5   | 20/4  | 19/3     | 18/2    | 17/1    | 16/0   | All Reset |
| 5000                     |                  | 31:16     |                     |                |       | REVISIO | ON<7:0>  |       |        |          |            |       |        | VERSI | ON<7:0>  |         |         |        | 0000      |
| 5000                     | CEVER            | 15:0      |                     |                |       |         |          |       |        | IC       | <15:0>     |       |        |       |          |         |         |        | 0000      |
| 5004                     | CECON            | 31:16     |                     | —              | —     | —       | —        | —     | _      | —        | _          |       | -      |       | —        | _       | _       | —      | 0000      |
| 3004                     | CECCIN           | 15:0      |                     | —              | —     | —       | —        | —     | —      | —        | SWAPOEN    | SWRST | SWAPEN |       | —        | BDPCHST | BDPPLEN | DMAEN  | 0000      |
| 5008                     | CEBDADDR         | 31:16     |                     |                |       |         |          |       |        | BDPA     |            |       |        |       |          |         |         |        | 0000      |
| 0000                     | OLDBRODER        | 15:0      |                     |                |       |         |          |       |        | BBIT     | DDI((01.0) |       |        |       |          |         |         |        | 0000      |
| 500C                     | CEBDPADDR        | 31:16     |                     | BASEADDR<31:0> |       |         |          |       |        |          | 0000       |       |        |       |          |         |         |        |           |
|                          |                  | 15:0      |                     |                |       |         |          |       |        |          |            |       |        |       |          |         |         |        | 0000      |
| 5010                     | CESTAT           | 31:16     | ER                  | RMODE<2        | 2:0>  | E       | RROP<2:0 | 0>    | ERRPHA | ASE<1:0> | —          | —     |        | BDSTA | TE<3:0>  |         | START   | ACTIVE | 0000      |
|                          |                  | 15:0      |                     | 1              |       |         |          | i     |        | BDC      | FRL<15:0>  |       |        |       |          | i       | i       |        | 0000      |
| 5014                     | CEINTSRC         | 31:16     | _                   |                | —     | -       | —        | -     |        | —        | _          |       |        |       | —        | —       | —       |        | 0000      |
|                          |                  | 15:0      | _                   | _              | -     | -       | —        | -     |        | —        |            | _     | —      | _     | AREIF    | PKTIF   | CBDIF   | PENDIF | 0000      |
| 5018                     | CEINTEN          | 31:16     | _                   |                |       |         |          |       |        |          |            | _     |        |       | -        | -       | -       | -      | 0000      |
|                          |                  | 15:0      |                     |                |       |         | _        |       |        | _        |            |       | _      |       | AREIE    | PKTE    | CBDIE   | PENDIE | 0000      |
| 501C                     | CEPOLLCON        | 31:16     |                     | —              | —     | _       |          | _     |        |          | -          |       | —      |       | —        | _       |         | —      | 0000      |
|                          |                  | 15:0      | 15:0 BDPPLCON<15:0> |                |       |         |          |       |        | 0000     |            |       |        |       |          |         |         |        |           |
| 5020                     | CEHDLEN          | 31:16     |                     | _              | _     |         | _        |       |        | _        | _          | _     | _      |       |          | _       | _       | _      | 0000      |
| 15:0 HDRLEN<7:0>         |                  |           |                     |                |       |         | 0000     |       |        |          |            |       |        |       |          |         |         |        |           |
| 5024                     | CETRLLEN         | 31:16     | _                   | _              | _     |         | _        | _     |        | _        | _          | _     | _      |       |          | _       | _       | -      | 0000      |
|                          |                  | 15:0      | _                   | _              |       |         |          |       | —      | _        |            |       |        | IKLKL | EIN<7:U> |         |         |        | 0000      |

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 04.04        | R-0               | R-0               | R-0               | R-0               | R-0               | R-0               | R-0              | R-0              |
| 31.24        | EF                | RRMODE<2:0        | >                 |                   | ERRPHASE<1:0>     |                   |                  |                  |
| 22.16        | U-0 U-0           |                   | R-0               | R-0 R-0           |                   | R-0               | R-0              | R-0              |
| 23.10        | —                 | —                 |                   | BDSTAT            | FE<3:0>           |                   | START            | ACTIVE           |
| 15.0         | R-0               | R-0               | R-0               | R-0               | R-0               | R-0               | R-0              | R-0              |
| 10.0         |                   |                   |                   | BDCTRL            | <15:8>            |                   |                  |                  |
| 7.0          | R-0               | R-0               | R-0               | R-0               | R-0               | R-0               | R-0              | R-0              |
| 7.0          |                   |                   |                   | BDCTRI            | <7:0>             |                   |                  |                  |

### **REGISTER 26-5: CESTAT: CRYPTO ENGINE STATUS REGISTER**

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-29 ERRMODE<2:0>: Internal Error Mode Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CEK operation
- 010 = KEK operation
- 001 = Preboot authentication
- 000 = Normal operation

### bit 28-26 ERROP<2:0>: Internal Error Operation Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Authentication
- 011 = Reserved
- 010 = Decryption
- 001 = Encryption
- 000 = Reserved

### bit 25-24 ERRPHASE<1:0>: Internal Error Phase of DMA Status bits

- 11 = Destination data
- 10 = Source data
- 01 = Security Association (SA) access
- 00 = Buffer Descriptor (BD) access

### bit 23-22 Unimplemented: Read as '0'

### bit 21-18 BDSTATE<3:0>: Buffer Descriptor Processor State Status bits

The current state of the BDP:

- 1111 = Reserved
- •
- 0111 = Reserved
- 0110 = SA fetch
- 0101 = Fetch BDP is disabled
- 0100 = Descriptor is done
- 0011 = Data phase
- 0010 = BDP is loading
- 0001 = Descriptor fetch request is pending
- 0000 = BDP is idle
- bit 17 START: DMA Start Status bit
  - 1 = DMA start has occurred
  - 0 = DMA start has not occurred

| Bit Range | Bit<br>31/23/15/7     | Bit<br>30/22/14/6     | Bit<br>29/21/13/5     | Bit<br>28/20/12/4     | Bit<br>27/19/11/3     | Bit<br>26/18/10/2     | Bit<br>25/17/9/1      | Bit<br>24/16/8/0      |
|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 04-04     | R/W-0                 |
| 31:24     | DIFF31 <sup>(1)</sup> | SIGN31 <sup>(1)</sup> | DIFF30 <sup>(1)</sup> | SIGN30 <sup>(1)</sup> | DIFF29 <sup>(1)</sup> | SIGN29 <sup>(1)</sup> | DIFF28 <sup>(1)</sup> | SIGN28 <sup>(1)</sup> |
| 00.40     | R/W-0                 |
| 23:16     | DIFF27 <sup>(1)</sup> | SIGN27 <sup>(1)</sup> | DIFF26 <sup>(1)</sup> | SIGN26 <sup>(1)</sup> | DIFF25 <sup>(1)</sup> | SIGN25 <sup>(1)</sup> | DIFF24 <sup>(1)</sup> | SIGN24 <sup>(1)</sup> |
| 45-0      | R/W-0                 |
| 15:8      | DIFF23 <sup>(1)</sup> | SIGN23 <sup>(1)</sup> | DIFF22 <sup>(1)</sup> | SIGN22 <sup>(1)</sup> | DIFF21 <sup>(1)</sup> | SIGN21 <sup>(1)</sup> | DIFF20 <sup>(1)</sup> | SIGN20 <sup>(1)</sup> |
| 7.0       | R/W-0                 |
| 7:0       | DIFF19 <sup>(1)</sup> | SIGN19 <sup>(1)</sup> | DIFF18                | SIGN18                | DIFF17                | SIGN17                | DIFF16                | SIGN16                |

### REGISTER 28-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, r | ead as '0'         |
|-------------------|------------------|--------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

| bit 31                                         | DIFF31: AN31 Mode bit <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | 1 = AN31 is using Differential mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                | 0 = AN31 is using Single-ended mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| bit 30                                         | SIGN31: AN31 Signed Data Mode bit <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                | 1 = AN31 is using Signed Data mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                | 0 = AN31 is using Unsigned Data mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| bit 29                                         | DIFF30: AN30 Mode bit <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                | 1 = AN30 is using Differential mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                | 0 = AN30 is using Single-ended mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| bit 28                                         | <b>SIGN30:</b> AN30 Signed Data Mode bit <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                | 1 = AN30 is using Signed Data mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                | 0 = AN30 is using Unsigned Data mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| bit 27                                         | DIFF29: AN29 Mode bit <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                | 1 = AN29 is using Differential mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                | 0 = AN29 is using Single-ended mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| bit 26                                         | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| bit 26                                         | <b>SIGN29:</b> AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| bit 26                                         | <b>SIGN29:</b> AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| bit 26<br>bit 25                               | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode<br>DIFF28: AN28 Mode bit <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| bit 26<br>bit 25                               | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode<br>DIFF28: AN28 Mode bit <sup>(1)</sup><br>1 = AN28 is using Differential mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| bit 26<br>bit 25                               | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode<br>DIFF28: AN28 Mode bit <sup>(1)</sup><br>1 = AN28 is using Differential mode<br>0 = AN28 is using Single-ended mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| bit 26<br>bit 25<br>bit 24                     | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode<br>DIFF28: AN28 Mode bit <sup>(1)</sup><br>1 = AN28 is using Differential mode<br>0 = AN28 is using Single-ended mode<br>SIGN28: AN28 Signed Data Mode bit <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| bit 26<br>bit 25<br>bit 24                     | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode<br>DIFF28: AN28 Mode bit <sup>(1)</sup><br>1 = AN28 is using Differential mode<br>0 = AN28 is using Single-ended mode<br>SIGN28: AN28 Signed Data Mode bit <sup>(1)</sup><br>1 = AN28 is using Signed Data mode                                                                                                                                                                                                                                                                                                                                                                                                                     |
| bit 26<br>bit 25<br>bit 24                     | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode<br>DIFF28: AN28 Mode bit <sup>(1)</sup><br>1 = AN28 is using Differential mode<br>0 = AN28 is using Single-ended mode<br>SIGN28: AN28 Signed Data Mode bit <sup>(1)</sup><br>1 = AN28 is using Signed Data mode<br>0 = AN28 is using Unsigned Data mode                                                                                                                                                                                                                                                                                                                                                                             |
| bit 25<br>bit 24<br>bit 23                     | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode<br>DIFF28: AN28 Mode bit <sup>(1)</sup><br>1 = AN28 is using Differential mode<br>0 = AN28 is using Single-ended mode<br>SIGN28: AN28 Signed Data Mode bit <sup>(1)</sup><br>1 = AN28 is using Signed Data mode<br>0 = AN28 is using Unsigned Data mode<br>DIFF27: AN27 Mode bit <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                     |
| bit 25<br>bit 24<br>bit 23                     | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode<br>DIFF28: AN28 Mode bit <sup>(1)</sup><br>1 = AN28 is using Differential mode<br>0 = AN28 is using Single-ended mode<br>SIGN28: AN28 Signed Data Mode bit <sup>(1)</sup><br>1 = AN28 is using Signed Data mode<br>0 = AN28 is using Unsigned Data mode<br>DIFF27: AN27 Mode bit <sup>(1)</sup><br>1 = AN27 is using Differential mode                                                                                                                                                                                                                                                                                              |
| bit 25<br>bit 24<br>bit 23                     | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode<br>DIFF28: AN28 Mode bit <sup>(1)</sup><br>1 = AN28 is using Differential mode<br>0 = AN28 is using Single-ended mode<br>SIGN28: AN28 Signed Data Mode bit <sup>(1)</sup><br>1 = AN28 is using Signed Data mode<br>0 = AN28 is using Unsigned Data mode<br>0 = AN28 is using Unsigned Data mode<br>0 = AN27 is using Differential mode<br>0 = AN27 is using Single-ended mode                                                                                                                                                                                                                                                       |
| bit 25<br>bit 25<br>bit 24<br>bit 23<br>bit 22 | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode<br>DIFF28: AN28 Mode bit <sup>(1)</sup><br>1 = AN28 is using Differential mode<br>0 = AN28 is using Single-ended mode<br>SIGN28: AN28 Signed Data Mode bit <sup>(1)</sup><br>1 = AN28 is using Signed Data mode<br>0 = AN28 is using Unsigned Data mode<br>0 = AN28 is using Unsigned Data mode<br>DIFF27: AN27 Mode bit <sup>(1)</sup><br>1 = AN27 is using Differential mode<br>0 = AN27 is using Single-ended mode<br>SIGN27: AN27 Signed Data Mode bit <sup>(1)</sup>                                                                                                                                                           |
| bit 25<br>bit 24<br>bit 23<br>bit 22           | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode<br>DIFF28: AN28 Mode bit <sup>(1)</sup><br>1 = AN28 is using Differential mode<br>0 = AN28 is using Single-ended mode<br>SIGN28: AN28 Signed Data Mode bit <sup>(1)</sup><br>1 = AN28 is using Signed Data mode<br>0 = AN28 is using Unsigned Data mode<br>DIFF27: AN27 Mode bit <sup>(1)</sup><br>1 = AN27 is using Differential mode<br>0 = AN27 is using Single-ended mode<br>SIGN27: AN27 Signed Data Mode bit <sup>(1)</sup><br>1 = AN27 is using Signed Data mode                                                                                                                                                             |
| bit 25<br>bit 24<br>bit 23<br>bit 22           | SIGN29: AN29 Signed Data Mode bit <sup>(1)</sup><br>1 = AN29 is using Signed Data mode<br>0 = AN29 is using Unsigned Data mode<br>DIFF28: AN28 Mode bit <sup>(1)</sup><br>1 = AN28 is using Differential mode<br>0 = AN28 is using Single-ended mode<br>SIGN28: AN28 Signed Data Mode bit <sup>(1)</sup><br>1 = AN28 is using Signed Data mode<br>0 = AN28 is using Unsigned Data mode<br>DIFF27: AN27 Mode bit <sup>(1)</sup><br>1 = AN27 is using Differential mode<br>0 = AN27 is using Single-ended mode<br>SIGN27: AN27 Signed Data Mode bit <sup>(1)</sup><br>1 = AN27 is using Signed Data mode<br>0 = AN27 is using Signed Data mode<br>0 = AN27 is using Signed Data mode<br>0 = AN27 is using Unsigned Data mode<br>0 = AN27 is using Unsigned Data mode |

Note 1: This bit is not available on 64-pin devices.

### 29.0 CONTROLLER AREA NETWORK (CAN)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Controller Area Network (CAN)" (DS60001154) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Controller Area Network (CAN) module supports the following key features:

- Standards Compliance:
  - Full CAN 2.0B compliance
  - Programmable bit rate up to 1 Mbps
- Message Reception and Transmission:
  - 32 message FIFOs
  - Each FIFO can have up to 32 messages for a total of 1024 messages

- FIFO can be a transmit message FIFO or a receive message FIFO
- User-defined priority levels for message FIFOs used for transmission
- 32 acceptance filters for message filtering
- Four acceptance filter mask registers for message filtering
- Automatic response to remote transmit request
- DeviceNet<sup>™</sup> addressing support
- Additional Features:
  - Loopback, Listen All Messages and Listen Only modes for self-test, system diagnostics and bus monitoring
  - Low-power operating modes
  - CAN module is a bus master on the PIC32 System Bus
  - Use of DMA is not required
  - Dedicated time-stamp timer
  - Dedicated DMA channels
  - Data-only Message Reception mode

Figure 29-1 illustrates the general structure of the CAN module.

### FIGURE 29-1: PIC32 CAN MODULE BLOCK DIAGRAM



| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6     | Bit<br>29/21/13/5     | Bit<br>28/20/12/4    | Bit<br>27/19/11/3 | Bit<br>26/18/10/2     | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-----------------------|-----------------------|----------------------|-------------------|-----------------------|------------------|------------------|
| 21.24        | U-0               | U-0                   | U-0                   | U-0                  | U-0               | U-0                   | U-0              | U-0              |
| 31.24        | —                 | —                     | —                     | -                    | —                 | —                     | —                | —                |
| 22.16        | U-0               | U-0                   | U-0                   | R/W-0                | R/W-0             | R/W-0                 | R/W-0            | R/W-0            |
| 23.10        | —                 | —                     | —                     |                      |                   | FSIZE<4:0> <b>(</b> 1 | )                |                  |
| 15.0         | U-0               | S/HC-0                | S/HC-0                | R/W-0                | U-0               | U-0                   | U-0              | U-0              |
| 10.0         | —                 | FRESET                | UINC                  | DONLY <sup>(1)</sup> | —                 | —                     | —                | —                |
| 7.0          | R/W-0             | R-0                   | R-0                   | R-0                  | R/W-0             | R/W-0                 | R/W-0            | R/W-0            |
| 7.0          | TXEN              | TXABAT <sup>(2)</sup> | TXLARB <sup>(3)</sup> | TXERR <sup>(3)</sup> | TXREQ             | RTREN                 | TXPR             | R<1:0>           |

### **REGISTER 29-20:** CiFIFOCONn: CAN FIFO CONTROL REGISTER 'n' ('n' = 0-31)

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

### bit 31-21 Unimplemented: Read as '0'

- bit 20-16 FSIZE<4:0>: FIFO Size bits<sup>(1)</sup>
  - 11111 = FIFO is 32 messages deep
  - •

  - •

00010 = FIFO is 3 messages deep 00001 = FIFO is 2 messages deep 00000 = FIFO is 1 message deep

### bit 15 Unimplemented: Read as '0'

### bit 14 FRESET: FIFO Reset bits

1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset. After setting, the user application should poll whether this bit is clear before taking any action
 0 = No effect

### bit 13 **UINC:** Increment Head/Tail bit

 $\frac{TXEN = 1:}{PFO}$  (FIFO configured as a Transmit FIFO) When this bit is set, the FIFO head will increment by a single message  $\frac{TXEN = 0:}{PFO}$  (FIFO configured as a Receive FIFO) When this bit is set, the FIFO tail will increment by a single message

### bit 12 DONLY: Store Message Data Only bit<sup>(1)</sup>

<u>TXEN = 1:</u> (FIFO configured as a Transmit FIFO) This bit is not used and has no effect.

<u>TXEN = 0:</u> (FIFO configured as a Receive FIFO)

- 1 =Only data bytes will be stored in the FIFO
- 0 = Full message is stored, including identifier
- bit 11-8 Unimplemented: Read as '0'
- bit 7 **TXEN:** TX/RX Buffer Selection bit
  - 1 = FIFO is a Transmit FIFO
    - 0 = FIFO is a Receive FIFO
- **Note 1:** These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
  - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
  - 3: This bit is reset on any read of this register or when the FIFO is reset.

### **30.0 ETHERNET CONTROLLER**

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Ethernet Controller" (DS60001155) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Ethernet controller is a bus master module that interfaces with an off-chip Physical Layer (PHY) to implement a complete Ethernet node in a system.

Key features of the Ethernet Controller include:

- Supports 10/100 Mbps data transfer rates
- Supports full-duplex and half-duplex operation

- · Supports RMII and MII PHY interface
- Supports MIIM PHY management interface
- Supports both manual and automatic Flow Control
- RAM descriptor-based DMA operation for both receive and transmit path
- Fully configurable interrupts
- Configurable receive packet filtering
  - CRC check
  - 64-byte pattern match
  - Broadcast, multicast and unicast packets
  - Magic Packet™
  - 64-bit hash table
  - Runt packet
- Supports packet payload checksum calculation
- Supports various hardware statistics counters

Figure 30-1 illustrates a block diagram of the Ethernet controller.



### 34.3 On-Chip Voltage Regulator

The core and digital logic for all PIC32MZ EF devices is designed to operate at a nominal 1.8V. To simplify system designs, devices in the PIC32MZ EF family incorporate an on-chip regulator providing the required core logic voltage from VDD.

### 34.3.1 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

### 34.3.2 ON-CHIP REGULATOR AND BOR

PIC32MZ EF devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 37.1** "**DC Characteristics**".

### 34.4 On-chip Temperature Sensor

PIC32MZ EF devices include a temperature sensor that provides accurate measurement of a device's junction temperature (see Section 37.2 "AC Characteristics and Timing Parameters" for more information).

The temperature sensor is connected to the ADC module and can be measured using the shared S&H circuit (see Section 28.0 "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)" for more information).

### 34.5 Programming and Diagnostics

PIC32MZ EF devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

### FIGURE 34-1:

### BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS



| DC CHA        | ARACTER | RISTICS                                                               | Standard Operating Conditions: 2.1V to 3.6V (unless otherwise<br>stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial<br>$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |                        |                       |       |                                                                                                                                                                                                      |  |  |  |
|---------------|---------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Param.<br>No. | Symbol  | Characteristics                                                       | Min.                                                                                                                                                                                                        | Typical <sup>(1)</sup> | Max.                  | Units | Conditions                                                                                                                                                                                           |  |  |  |
| DI60a         | licl    | Input Low Injection<br>Current                                        | 0                                                                                                                                                                                                           | _                      | <sub>-5</sub> (2,5)   | mA    | This parameter applies<br>to all pins, with the<br>exception of RB10.<br>Maximum IICH current<br>for this exception is<br>0 mA.                                                                      |  |  |  |
| DI60b         | lich    | Input High Injection<br>Current                                       | 0                                                                                                                                                                                                           | _                      | +5 <sup>(3,4,5)</sup> | mA    | This parameter applies<br>to all pins, with the<br>exception of all 5V toler-<br>ant pins, OSCI, OSCO,<br>SOSCI, SOSCO, D+, D-<br>and RB10. Maximum<br>IICH current for these<br>exceptions is 0 mA. |  |  |  |
| DI60c         | ∑lict   | Total Input Injection<br>Current (sum of all I/O<br>and control pins) | -20 <sup>(6)</sup>                                                                                                                                                                                          | _                      | +20 <sup>(6)</sup>    | mA    | Absolute instantaneous<br>sum of all $\pm$ input<br>injection currents from<br>all I/O pins<br>(   IICL +   IICH   ) $\leq \sum$ IICT                                                                |  |  |  |

### TABLE 37-10: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: VIL source < (Vss - 0.3). Characterized but not tested.

**3:** VIH source > (VDD + 0.3) for non-5V tolerant pins only.

4: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS - 0.3)).</li>

6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 2, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 3, IICH = ((IICH source - (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss - 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

| DC CHA        | RACTERI | STICS                                   | $\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |         |       |       |                                                                               |  |  |
|---------------|---------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|-------------------------------------------------------------------------------|--|--|
| Param.<br>No. | Symbol  | Characteristics                         | Min.                                                                                                                                                                                                                                                                                           | Typical | Max.  | Units | Comments                                                                      |  |  |
| D300          | VIOFF   | Input Offset Voltage                    | _                                                                                                                                                                                                                                                                                              | ±10     | —     | mV    | AVDD = VDD, AVSS = VSS                                                        |  |  |
| D301          | VICM    | Input Common Mode Voltage               | 0                                                                                                                                                                                                                                                                                              | _       | Vdd   | V     | AVDD = VDD, AVSS = VSS<br>(Note 2)                                            |  |  |
| D302          | CMRR    | Common Mode Rejection<br>Ratio          | 55                                                                                                                                                                                                                                                                                             | —       | —     | dB    | Max VICM = (VDD – 1)V<br>(Note 2, 4)                                          |  |  |
| D303          | TRESP   | Response Time                           | _                                                                                                                                                                                                                                                                                              | 150     | —     | ns    | AVDD = VDD, AVSS = VSS<br>(Notes 1, 2)                                        |  |  |
| D304          | ON2ov   | Comparator Enabled to Out-<br>put Valid | _                                                                                                                                                                                                                                                                                              | —       | 10    | μs    | Comparator module is configured before setting the comparator ON bit (Note 2) |  |  |
| D305          | IVREF   | Internal Voltage Reference              | 1.194                                                                                                                                                                                                                                                                                          | 1.2     | 1.206 | V     | _                                                                             |  |  |

### TABLE 37-14: COMPARATOR SPECIFICATIONS

**Note 1:** Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

- 2: These parameters are characterized but not tested.
- **3:** The Comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.
- 4: CMRR measurement characterized with a 1 MΩ resistor in parallel with a 25 pF capacitor to Vss.

|--|

| DC CHARACTERISTICS |                                         |                                                             | $\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |       |                    |                       |                                                                 |  |
|--------------------|-----------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|-----------------------|-----------------------------------------------------------------|--|
| Param.<br>No.      | Symbol                                  | Characteristics                                             | Min.                                                                                                                                                                                                                                                                                             | Тур.  | Max.               | Units                 | Comments                                                        |  |
| D312               | TSET                                    | Internal 4-bit DAC<br>Comparator Reference<br>Settling time | _                                                                                                                                                                                                                                                                                                | _     | 10                 | μs                    | See Note 1                                                      |  |
| D313 DACREFH       | DACREFH                                 | CVREF Input Voltage                                         | AVss                                                                                                                                                                                                                                                                                             |       | AVdd               | V                     | CVRSRC with CVRSS = 0                                           |  |
|                    | Reference Range                         | VREF-                                                       |                                                                                                                                                                                                                                                                                                  | VREF+ | V                  | CVRSRC with CVRSS = 1 |                                                                 |  |
| D314               | DVREF                                   | CVREF Programmable<br>Output Range                          | 0                                                                                                                                                                                                                                                                                                | _     | 0.625 x<br>DACREFH | V                     | 0 to 0.625 DACREFH with<br>DACREFH/24 step size                 |  |
|                    |                                         |                                                             | 0.25 x<br>DACREFH                                                                                                                                                                                                                                                                                |       | 0.719 x<br>DACREFH | V                     | 0.25 x DACREFH to 0.719<br>DACREFH with DACREFH/32<br>step size |  |
| D315 DACRES        |                                         | Resolution                                                  | —                                                                                                                                                                                                                                                                                                |       | DACREFH/24         |                       | CVRCON <cvrr> = 1</cvrr>                                        |  |
|                    |                                         |                                                             | —                                                                                                                                                                                                                                                                                                | _     | DACREFH/32         |                       | CVRCON <cvrr> = 0</cvrr>                                        |  |
| D316               | DACACC Absolute Accuracy <sup>(2)</sup> |                                                             | _                                                                                                                                                                                                                                                                                                |       | 1/4                | LSB                   | DACREFH/24,<br>CVRCON <cvrr> = 1</cvrr>                         |  |
|                    |                                         |                                                             | —                                                                                                                                                                                                                                                                                                | _     | 1/2                | LSB                   | DACREFH/32,<br>CVRCON <cvrr> = 0</cvrr>                         |  |

**Note 1:** Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.



### FIGURE 37-17: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)



### TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

| AC CHARACTERISTICS |         |                            |                        | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |      |       |                       |  |  |
|--------------------|---------|----------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-----------------------|--|--|
| Param.<br>No.      | Symbol  | Characteristics            |                        | Min. <sup>(1)</sup>                                                                                                                                                                                                                                                                     | Max. | Units | Conditions            |  |  |
| IM10               | TLO:SCL | CL Clock Low Time          | 100 kHz mode           | TPBCLK2 * (BRG + 2)                                                                                                                                                                                                                                                                     | -    | μs    | —                     |  |  |
|                    |         |                            | 400 kHz mode           | TPBCLK2 * (BRG + 2)                                                                                                                                                                                                                                                                     |      | μs    | —                     |  |  |
|                    |         |                            | 1 MHz mode<br>(Note 2) | TPBCLK2 * (BRG + 2)                                                                                                                                                                                                                                                                     |      | μs    |                       |  |  |
| IM11               | THI:SCL | Clock High Time            | 100 kHz mode           | TPBCLK2 * (BRG + 2)                                                                                                                                                                                                                                                                     | _    | μs    | —                     |  |  |
|                    |         |                            | 400 kHz mode           | TPBCLK2 * (BRG + 2)                                                                                                                                                                                                                                                                     | _    | μs    | —                     |  |  |
|                    |         |                            | 1 MHz mode<br>(Note 2) | TPBCLK2 * (BRG + 2)                                                                                                                                                                                                                                                                     |      | μs    | _                     |  |  |
| IM20               | TF:SCL  | SDAx and SCLx<br>Fall Time | 100 kHz mode           | —                                                                                                                                                                                                                                                                                       | 300  | ns    | CB is specified to be |  |  |
|                    |         |                            | 400 kHz mode           | 20 + 0.1 Св                                                                                                                                                                                                                                                                             | 300  | ns    | from 10 to 400 pF     |  |  |
|                    |         |                            | 1 MHz mode<br>(Note 2) |                                                                                                                                                                                                                                                                                         | 100  | ns    |                       |  |  |

**Note 1:** BRG is the value of the I<sup>2</sup>C Baud Rate Generator.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** The typical value for this parameter is 104 ns.

| DC CHARACTERISTICS                |                        |                        | Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |                                   |                                                 |  |  |  |
|-----------------------------------|------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------|--|--|--|
| Param.<br>No.                     | Typical <sup>(2)</sup> | Maximum <sup>(5)</sup> | Units                                                                                                                                          | s Conditions                      |                                                 |  |  |  |
| Power-Down Current (IPD) (Note 1) |                        |                        |                                                                                                                                                |                                   |                                                 |  |  |  |
| EDC40m                            | 20                     | 46                     | mA                                                                                                                                             | hA +125°C Base Power-Down Current |                                                 |  |  |  |
| Module Differential Current       |                        |                        |                                                                                                                                                |                                   |                                                 |  |  |  |
| EDC41e                            | 15                     | 50                     | μA                                                                                                                                             | 3.6V                              | Watchdog Timer Current: ΔIWDT (Note 3)          |  |  |  |
| EDC42e                            | 25                     | 50                     | μΑ                                                                                                                                             | 3.6V                              | RTCC + Timer1 w/32 kHz Crystal: △IRTCC (Note 3) |  |  |  |
| EDC43d                            | 3                      | 3.8                    | mA                                                                                                                                             | 3.6V                              | ADC: ΔΙΑDC (Notes 3, 4)                         |  |  |  |
| EDC44                             | 15                     | 50                     | μA                                                                                                                                             | 3.6V                              | Deadman Timer Current: AIDMT (Note 3)           |  |  |  |

### TABLE 38-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)</li>

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
- CPU is in Sleep mode
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- Voltage regulator is in Stand-by mode (VREGS = 0)
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- **4:** Voltage regulator is operational (VREGS = 1).
- 5: Data in the "Maximum" column is at 3.3V, +125°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

### 100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

144-Lead Plastic Thin Quad Flat Pack (PH) - 16x16 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                           | MILLIMETERS |          |       |      |  |
|---------------------------|-------------|----------|-------|------|--|
| Dimension                 | MIN         | NOM      | MAX   |      |  |
| Contact Pitch             | E           | 0.40 BSC |       |      |  |
| Contact Pad Spacing       | C1          |          | 17.40 |      |  |
| Contact Pad Spacing       | C2          |          | 17.40 |      |  |
| Contact Pad Width (X144)  | X1          |          |       | 0.20 |  |
| Contact Pad Length (X144) | Y1          |          |       | 1.45 |  |
| Distance Between Pads     | G           | 0.20     |       |      |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2155B