

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024eff064-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: PIN NAMES FOR 144-PIN DEVICES

144-PIN LQFP AND TQFP (TOP VIEW)

PIC32MZ0512EF(E/F/K)144 PIC32MZ1024EF(G/H/M)144 PIC32MZ1024EF(E/F/K)144 PIC32MZ2048EF(G/H/M)144

144

1

Pin Number	Full Pin Name		Pin Number	Full Pin Name
1	AN23/RG15		37	PGEC2/AN46/RPB6/RB6
2	EBIA5/AN34/PMA5/RA5	1 1	38	PGED2/AN47/RPB7/RB7
3	EBID5/AN17/RPE5/PMD5/RE5	1 1	39	VREF-/CVREF-/AN27/RA9
4	EBID6/AN16/PMD6/RE6	1 1	40	VREF+/CVREF+/AN28/RA10
5	EBID7/AN15/PMD7/RE7	1 1	41	AVdd
6	EBIA6/AN22/RPC1/PMA6/RC1	1 1	42	AVss
7	AN35/ETXD0/RJ8	1	43	AN38/ETXD2/RH0
8	AN36/ETXD1/RJ9	1 1	44	AN39/ETXD3/RH1
9	EBIBS0/RJ12	1 [45	EBIRP/RH2
10	EBIBS1/RJ10	1 1	46	RH3
11	EBIA12/AN21/RPC2/PMA12/RC2	1 1	47	EBIA10/AN48/RPB8/PMA10/RB8
12	EBIWE/AN20/RPC3/PMWR/RC3	1 1	48	EBIA7/AN49/RPB9/PMA7/RB9
13	EBIOE/AN19/RPC4/PMRD/RC4	1	49	CVREFOUT/AN5/RPB10/RB10
14	AN14/C1IND/RPG6/SCK2/RG6		50	AN6/RB11
15	AN13/C1INC/RPG7/SDA4/RG7	1 1	51	EBIA1/PMA1/RK1
16	AN12/C2IND/RPG8/SCL4/RG8		52	EBIA3/PMA3/RK2
17	Vss	1 1	53	EBIA17/RK3
18	Vdd		54	Vss
19	EBIA16/RK0	1	55	VDD
20	MCLR		56	TCK/AN29/RA1
21	EBIA2/AN11/C2INC/RPG9/PMA2/RG9	1 1	57	TDI/AN30/RPF13/SCK5/RF13
22	TMS/AN24/RA0		58	TDO/AN31/RPF12/RF12
23	AN25/RPE8/RE8		59	AN7/RB12
24	AN26/RPE9/RE9		60	AN8/RB13
25	AN45/C1INA/RPB5/RB5		61	AN9/RPB14/SCK3/RB14
26	AN4/C1INB/RB4		62	AN10/RPB15/OCFB/RB15
27	AN37/ERXCLK/EREFCLK/RJ11		63	Vss
28	EBIA13/PMA13/RJ13		64	VDD
29	EBIA11/PMA11/RJ14		65	AN40/ERXERR/RH4
30	EBIA0/PMA0/RJ15		66	AN41/ERXD1/RH5
31	AN3/C2INA/RPB3/RB3		67	AN42/ERXD2/RH6
32	Vss		68	EBIA4/PMA4/RH7
33	VDD		69	AN32/RPD14/RD14
34	AN2/C2INB/RPB2/RB2		70	AN33/RPD15/SCK6/RD15
35	PGEC1/AN1/RPB1/RB1		71	OSC1/CLKI/RC12
36	PGED1/AN0/RPB0/RB0	l l	72	OSC2/CLKO/RC15

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See Section 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

		Pin Number					
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
AERXD0	- 1	18	_	—	Ι	ST	Alternate Ethernet Receive Data 0
AERXD1	—	19	_	—	Ι	ST	Alternate Ethernet Receive Data 1
AERXD2	—	28	_	—	Ι	ST	Alternate Ethernet Receive Data 2
AERXD3	—	29	—	—	I	ST	Alternate Ethernet Receive Data 3
AERXERR	—	1	—	—	I	ST	Alternate Ethernet Receive Error Input
AERXDV	—	12	—	—	I	ST	Alternate Ethernet Receive Data Valid
AERXCLK	—	16	—	—	I	ST	Alternate Ethernet Receive Clock
AETXD0	—	47	—	—	0	—	Alternate Ethernet Transmit Data 0
AETXD1	—	48	—	—	0	—	Alternate Ethernet Transmit Data 1
AETXD2	—	44	—	—	0	—	Alternate Ethernet Transmit Data 2
AETXD3	—	43	—	—	0	—	Alternate Ethernet Transmit Data 3
AETXERR	—	35	—	—	0	—	Alternate Ethernet Transmit Error
AECOL	—	42	—	—	I	ST	Alternate Ethernet Collision Detect
AECRS	—	41	—	—	I	ST	Alternate Ethernet Carrier Sense
AETXCLK	—	66	—	—	I	ST	Alternate Ethernet Transmit Clock
AEMDC	—	70	—	—	0	—	Alternate Ethernet Management Data Clock
AEMDIO	—	71	_	—	I/O	—	Alternate Ethernet Management Data
AETXEN	—	67	—	—	0	—	Alternate Ethernet Transmit Enable
Legend:	CMOS = CN	MOS-compa	atible input	or output		Analog =	Analog input P = Power

TABLE 1-18: ALTERNATE ETHERNET MII PINOUT I/O DESCRIPTIONS

CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output

I = Input

PPS = Peripheral Pin Select

TABLE 1-19: ALTERNATE ETHERNET RMII PINOUT I/O DESCRIPTIONS

	Pin Nu	mber						
64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description		
43	18	-	_	Ι	ST	Alternate Ethernet Receive Data 0		
46	19		—	I	ST	Alternate Ethernet Receive Data 1		
51	1		—	I	ST	Alternate Ethernet Receive Error Input		
57	47		—	0		Alternate Ethernet Transmit Data 0		
56	48		—	0		Alternate Ethernet Transmit Data 1		
30	70		—	0		Alternate Ethernet Management Data Clock		
49	71		—	I/O		Alternate Ethernet Management Data		
50	67		—	0		Alternate Ethernet Transmit Enable		
45	16	—	—	Ι	ST	Alternate Ethernet Reference Clock		
62	12	_	—	I	ST	Alternate Ethernet Carrier Sense Data Valid		
	QFN/ TQFP 43 46 51 57 56 30 49 50 45	64-pin QFN/ TQFP 100-pin TQFP 43 18 46 19 51 1 57 47 56 48 30 70 49 71 50 67 45 16	QFN/ TQFP 100-pin TQFP 124-pin VTLA 43 18 46 19 51 1 57 47 56 48 30 70 49 71 50 67 45 16	64-pin QFN/ TQFP 100-pin TQFP 124-pin VTLA 144-pin TQFP/ LQFP 43 18 46 19 51 1 57 47 56 48 30 70 49 71 50 67 45 16	64-pin QFN/ TQFP 100-pin TQFP 124-pin VTLA 144-pin TQFP/ LQFP Pin Type 43 18 1 46 19 1 51 1 1 57 47 0 56 48 0 30 70 0 49 71 0 50 67 0 45 16 1	64-pin QFN/ TQFP 100-pin TQFP 124-pin VTLA 144-pin TQFP/ LQFP Pin TQFP/ LQFP Buffer Type 43 18 1 ST 46 19 1 ST 51 1 I ST 57 47 0 56 48 0 30 70 0 49 71 N/O 50 67 0 45 16 I ST		

CMOS = CMOS-compatible input or output Legend: ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output PPS = Peripheral Pin Select

P = Power I = Input

7.3 **Interrupt Control Registers**

TABLE 7-3: INTERRUPT REGISTER MAP

ress ()		e								B	its								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16				NMIK	EY<7:0>				—	—	_	_	_	_	—	_	0000
0000	INTCON	15:0	_	_	_	MVEC	_		TPC<2:0>		—	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
0010		31:16		PRI7S	S<3:0>			PRI6SS<3:0>				PRI5S	S<3:0>			PRI4S	S<3:0>		0000
0010	PRISS	15:0		PRI3SS	S<3:0>			PRI2SS	8<3:0>			PRI1S	S<3:0>		_	-	—	SS0	0000
0020	INTSTAT	31:16	_		_	_		-		_	_	_		_	_		_	—	0000
0020		15:0	_	_	—	—	_		SRIPL<2:0>					SIR	Q<7:0>				0000
0030	IPTMR	31:16								IPTMR	<31.0>								0000
0000		15:0												1				T	0000
0040	IFS0	31:16	OC6IF	IC6IF	IC6EIF	T6IF	OC5IF	IC5IF	IC5EIF	T5IF	INT4IF	OC4IF	IC4IF	IC4EIF	T4IF	INT3IF	OC3IF	IC3IF	0000
00.0		15:0	IC3EIF	T3IF	INT2IF	OC2IF	IC2IF	IC2EIF	T2IF	INT1IF	OC1IF	IC1IF	IC1EIF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
0050	IFS1	31:16	ADCD4IF	ADCD3IF	ADCD2IF	ADCD1IF	ADCD0IF	ADCFLTIF	ADCDF6IF	ADCDF5IF	ADCDF4IF	ADCDF3IF	ADCDF2IF	ADCDF1IF	ADCDC6IF	ADCDC5IF	ADCDC4IF	ADCDC3IF	
		15:0	ADCDC2IF		ADCFIFOIF	ADCIF	OC9IF	IC9IF	IC9EIF	T9IF	OC8IF	IC8IF	IC8EIF	T8IF	OC7IF	IC7IF	IC7EIF	T7IF	0000
0060	IFS2 ⁽⁵⁾	31:16	ADCD36IF	ADCD35IF	ADCD34IF	ADCD33IF	ADCD32IF	ADCD31IF	ADCD30IF	ADCD29IF	ADCD28IF	ADCD27IF	ADCD26IF	ADCD25IF	ADCD24IF	ADCD23IF	ADCD22IF	ADCD21IF	-
		15:0	ADCD20IF	ADCD19IF	ADCD18IF	ADCD17IF	ADCD16IF	ADCD15IF	ADCD14IF	ADCD13IF	ADCD12IF	ADCD11IF	ADCD10IF	ADCD9IF	ADCD8IF	ADCD7IF	ADCD6IF	ADCD5IF	0000
0070	IFS3 ⁽⁶⁾	31:16	CNKIF ⁽⁸⁾	CNJIF	CNHIF	CNGIF	CNFIF	CNEIF	CNDIF	CNCIF	CNBIF	CNAIF	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	0000
		15:0	SPI1TXIF	SPI1RXIF	SPI1EIF	—	CRPTIF ⁽⁷⁾	SBIF	CFDCIF	CPCIF	ADCD44IF	ADCD43IF	ADCD42IF	ADCD41IF	ADCD40IF	ADCD39IF	ADCD38IF	ADCD37IF	
0080	IFS4	31:16	U3TXIF	U3RXIF	U3EIF	SPI3TXIF	SPI3RXIF	SPI3EIF	ETHIF	CAN2IF ⁽³⁾	CAN1IF ⁽³⁾	I2C2MIF ⁽²⁾	12C2SIF ⁽²⁾	I2C2BIF ⁽²⁾	U2TXIF	U2RXIF	U2EIF	SPI2TXIF	0000
		15:0	SPI2RXIF	SPI2EIF	DMA7IF	DMA6IF	DMA5IF	DMA4IF	DMA3IF	DMA2IF	DMA1IF	DMA0IF	USBDMAIF	USBIF	CMP2IF	CMP1IF	PMPEIF	PMPIF	0000
0090	IFS5	31:16	—	U6TXIF	U6RXIF	U6EIF	SPI6TX ⁽²⁾	SPI6RXIF ⁽²⁾	SPI6IF ⁽²⁾	I2C5MIF	I2C5SIF	I2C5BIF	U5TXIF	U5RXIF	U5EIF	SPI5TXIF ⁽²⁾	SPI5RXIF ⁽²⁾	SPI5EIF ⁽²⁾	
		15:0	I2C4MIF	I2C4SIF	I2C4BIF	U4TXIF	U4RXIF	U4EIF	SQI1IF	PREIF	FCEIF	RTCCIF	SPI4TXIF	SPI4RXIF	SPI4EIF	I2C3MIF	I2C3SIF	I2C3BIF	0000
00A0	IFS6	31:16	_	-	_	_	_	-	_	_		_	ADC7WIF	_	—	ADC4WIF	ADC3WIF		0000
		15:0	ADC1WIF	ADC0WIF	ADC7EIF	—	_	ADC4EIF	ADC3EIF	ADC2EIF	ADC1EIF	ADC0EIF	-	ADCGRPIF	—	ADCURDYIF		ADCEOSIF	_
00C0	IEC0	31:16	OC6IE	IC6IE	IC6EIE	T6IE	OC5IE	IC5IE	IC5EIE	T5IE	INT4IE	OC4IE	IC4IE	IC4EIE	T4IE	INT3IE	OC3IE	IC3IE	0000
		15:0	IC3EIE	T3IE	INT2IE	OC2IE	IC2IE	IC2EIE	T2IE	INT1IE	OC1IE	IC1IE	IC1EIE	T1IE	INTOIE	CS1IE	CS0IE	CTIE	0000
00D0	IEC1	31:16	ADCD4IE	ADCD3IE	ADCD2IE	ADCD1IE	ADCD0IE	ADCFLTIE	ADCDF6IE	ADCDF5IE	ADCDF4IE	ADCDF3IE	ADCDF2IE	ADCDF1IE	ADCDC6IE	ADCDC5IE	ADCDC4IE	ADCDC3IE	-
		15:0	ADCDC2IE		ADCFIFOIE	ADCIE	OC9IE	IC9IE	IC9EIE	T9IE	OC8IE	IC8IE	IC8EIE	T8IE	OC7IE	IC7IE	IC7EIE	T7IE	0000
00E0	IEC2 ⁽⁵⁾	31:16			ADCD34IE	ADCD33IE	ADCD32IE	ADCD31IE	ADCD30IE	ADCD29IE	ADCD28IE	ADCD27IE	ADCD26IE	ADCD25IE	ADCD24IE	ADCD23IE	ADCD22IE	ADCD21IE	
			ADCD20IE	ADCD19IE	ADCD18IE	ADCD17IE	ADCD16IE	ADCD15IE	ADCD14IE	ADCD13IE	ADCD12IE	ADCD11IE	ADCD10IE	ADCD9IE	ADCD8IE	ADCD7IE	ADCD6IE	ADCD5IE	0000
Legei	nd: x =	unknow	n value on R	teset; — = ur	nimplemente	d, read as '0'	. Reset values	s are shown ir	n hexadecima	l.									

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: Registers" for more information.

This bit or register is not available on 64-pin devices. 2:

3: This bit or register is not available on devices without a CAN module. This bit or register is not available on 100-pin devices.

4:

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. This bit or register is not available on devices without a Crypto module. 6: 7:

8: This bit or register is not available on 124-pin devices.

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

- bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾
 - 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
 - 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 CRCTYP: CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

ŝ											Bits								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3028	USB	31:16									ATA<31:16>								00
020	FIFO2	15:0									ATA<15:0>								00
02C	USB FIFO3	31:16									ATA<31:16>								00
		15:0									ATA<15:0>								00
8030	USB FIFO4	31:16 15:0		DATA<31:16> 00 DATA<15:0> 00															
	USB	31:16		DATA<15:0> 00 DATA<31:16> 00															
3034	FIFO5	15:0									ATA<15:0>								00
	USB	31:16									ATA<31:16>								00
3038	FIFO6	15:0									ATA<15:0>								00
	USB	31:16								D	ATA<31:16>								0(
03C	FIF07	15:0								D	ATA<15:0>								00
	USBOTO	31:16	_	_	_	RXDPB		RXFIFC)SZ<3:0>		_	_	_	TXDPB		TXFIFOSZ	<3:0>		0 (
8060	USBOTG	15:0	_	_	-	—	_	_	TXEDMA	RXEDMA	BDEV	FSDEV	LSDEV	VBUS	<1:0>	HOSTMODE	HOSTREQ	SESSIO	N 00
8064	USB	31:16																	
004	FIFOA	15:0	—	-	—							TXFIFOAD<1	2:0>						00
806C	USB	31:16	—		—	_	_	_	—	—	—	_	_	—	_	_	—	—	00
	HWVER	15:0	RC VERMAJOR<4:0> VERMINOR<9:0> 08																
3078	USB	31:16				VPLEN	l<7:0>						DN<3:0>			WTID<3			30
	INFO	15:0		DMACHAN	IS<3:0>			RAMBI	TS<3:0>	· · ·		RXEND	PTS<3:0>			TXENDPTS	<3:0>		8C
307C	USB EOFRST	31:16	—	_	_	-		-	NRSTX	NRST				LSEOF<7:					00
		15:0				FSEOF	-<7:0> (HUBPRT<6							HSEOF<7:					77
3080	USB E0TXA	31:16 15:0			_			>	_	_	MULTTRAN				BADD<6:0> DDR<6:0>				00
		31:16		_	_		HUBPRT<6		_	_	— MULTTRAN				BADD<6:0>				00
3084	USB E0RXA	15:0			_				_	_		_	_	_		_	_	_	00
	USB	31:16	_			ТХ	HUBPRT<6	:0>			MULTTRAN			TXHU	BADD<6:0>				0.0
3088	E1TXA	15:0	_	_	_	_	_	_	_	_	_				DDR<6:0>				0.0
	USB	31:16	_			RX	HUBPRT<6	6:0>			MULTTRAN			RXHU	BADD<6:0>				00
08C	E1RXA	15:0	_		_		_	_	_	_	_			RXFA	DDR<6:0>				0.0
0000	USB	31:16	_		•	ТХ	HUBPRT<6	:0>			MULTTRAN			TXHU	BADD<6:0>				0.0
3090	E2TXA	15:0	_	_	_	_	—	—	_	—				TXFA	DDR<6:0>				0.0
3094	USB	31:16	—			RX	(HUBPRT<6	6:0>			MULTTRAN RXHUBADD<6:0>					00			
-034	E2RXA	15:0	—		_	—	—	-	—	_	_				DDR<6:0>				00
3098	USB	31:16	_			ТХ	HUBPRT<6	:0>			MULTTRAN				BADD<6:0>				00
	E3TXA	15:0	_	_	_	_		_	_					TXFA	DDR<6:0>				00

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

REGISTER 11-9: USBIENCSR1: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 1 (ENDPOINT 1-7) (CONTINUED)

bit 18 **OVERRUN:** Data Overrun Status bit (*Device mode*)

- 1 = An OUT packet cannot be loaded into the RX FIFO.
- 0 = Written by software to clear this bit

This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always returns zero.

ERROR: No Data Packet Received Status bit (Host mode)

- 1 = Three attempts have been made to receive a packet and no data packet has been received. An interrupt is generated.
- 0 = Written by the software to clear this bit.

This bit is only valid when the RX endpoint is operating in Bulk or Interrupt mode. In ISO mode, it always returns zero.

- bit 17 FIFOFULL: FIFO Full Status bit
 - 1 = No more packets can be loaded into the RX FIFO
 - 0 = The RX FIFO has at least one free space
- bit 16 RXPKTRDY: Data Packet Reception Status bit
 - 1 = A data packet has been received. An interrupt is generated.
 - 0 = Written by software to clear this bit when the packet has been unloaded from the RX FIFO.
- bit 15-11 MULT<4:0>: Multiplier Control bits

For Isochronous/Interrupt endpoints or of packet splitting on Bulk endpoints, multiplies TXMAXP by MULT+1 for the payload size.

For Bulk endpoints, MULT can be up to 32 and defines the number of "USB" packets of the specified payload into which a single data packet placed in the FIFO should be split, prior to transfer. The data packet is required to be an exact multiple of the payload specified by TXMAXP.

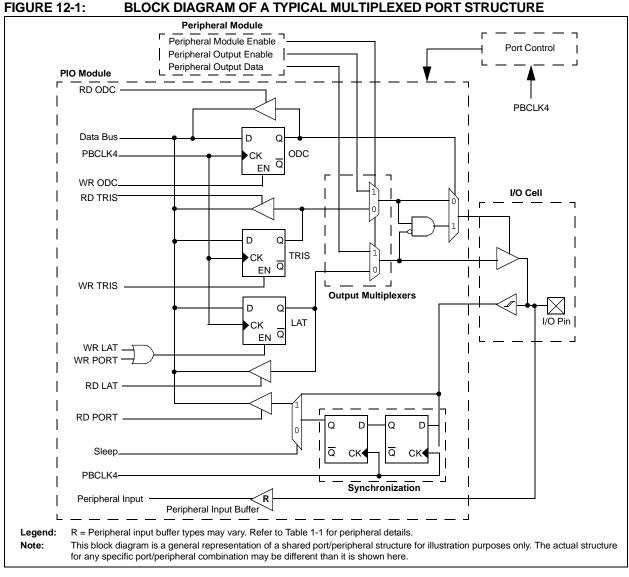
For Isochronous/Interrupts endpoints operating in Hi-Speed mode, MULT may be either 2 or 3 and specifies the maximum number of such transactions that can take place in a single microframe.

bit 10-0 RXMAXP<10:0>: Maximum RX Payload Per Transaction Control bits

This field sets the maximum payload (in bytes) transmitted in a single transaction. The value is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt and Isochronous transfers in Full-Speed and Hi-Speed operations.

RXMAXP must be set to an even number of bytes for proper interrupt generation in DMA Mode 1.

12.0 I/O PORTS


Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC32MZ EF family device to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

Some of the key features of the I/O ports are:

- Individual output pin open-drain enable/disable
- Individual input pin weak pull-up and pull-down
- · Monitor selective inputs and generate interrupt when change in pin state is detected
- · Operation during Sleep and Idle modes
- · Fast bit manipulation using CLR, SET and INV registers

Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE

12.2 Registers for Slew Rate Control

Some I/O pins can be configured for various types of slew rate control on its associated port. This is controlled by the Slew Rate Control bits in the SRCON1x and SRCON0x registers that are associated with each I/O port. The slew rate control is configured using the corresponding bit in each register, as shown in Table 12-1.

As an example, writing 0x0001, 0x0000 to SRCON1A and SRCON0A, respectively, will enable slew rate control on the RA0 pin and sets the slew rate to the slow edge rate.

SRCON1x	SRCON0x	Description									
1	1	Slew rate control is enabled and is set to the slowest edge rate.									
1	0	Slew rate control is enabled and is set to the slow edge rate.									
0	1	Slew rate control is enabled and is set to the medium edge rate.									
0	0	Slew rate control is disabled and is set to the fastest									

TABLE 12-1: SLEW RATE CONTROL BIT SETTINGS

Note: By default, all of the Port pins are set to the fastest edge rate.

edge rate.

12.3 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

12.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option. PPS configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

12.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

12.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digitalonly peripherals. These include general serial communications (UART, SPI, and CAN), general purpose timer clock inputs, timer-related peripherals (input capture and output compare), interrupt-on-change inputs, and reference clocks (input and output).

In comparison, some digital-only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin. NOTES:

REGISTER 20-13:	SQI1STAT2: SQI STATUS REGISTER 2
-----------------	----------------------------------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
23:16	—	_		—	_	_	CMDST	AT<1:0>
45.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
15:8	—	—	—	—		CONAVAIL<4:1>		
7.0	R-0	R-0	R-0	R-0	R-0	U-0	R-0	R-0
7:0	CONAVAIL<0>	SQID3	SQID2	SQID1	SQID0		RXUN	TXOV

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-18 Unimplemented: Read as '0'

- bit 17-16 **CMDSTAT<1:0>:** Current Command Status bits These bits indicate the current command status.
 - 11 = Reserved
 - 10 = Receive
 - 01 = Transmit
 - 00 = Idle
- bit 15-12 Unimplemented: Read as '0'

bit 11-7 **CONAVAIL<4:0>:** Control FIFO Space Available bits These bits indicate the available control Word space. 11111 = 32 bytes are available 11110 = 31 bytes are available

- 00001 = 1 byte is available
- 00000 = No bytes are available

bit 6 SQID3: SQID3 Status bit

- 1 = Data is present on SQID3
- 0 = Data is not present on SQID3 bit 5 **SQID2:** SQID2 Status bit
 - 1 = Data is present on SQID2
 - 0 = Data is not present on SQID2
- bit 4 **SQID1:** SQID1 Status bit
 - 1 = Data is present on SQID1
 - 0 = Data is not present on SQID1
- bit 3 SQID0: SQID0 Status bit
 - 1 = Data is present on SQID0
 - 0 = Data is not present on SQID0
- bit 2 Unimplemented: Read as '0'
- bit 1 RXUN: Receive FIFO Underflow Status bit
 - 1 = Receive FIFO Underflow has occurred
 - 0 = Receive FIFO underflow has not occurred
- bit 0 TXOV: Transmit FIFO Overflow Status bit
 - 1 = Transmit FIFO overflow has occurred
 - 0 = Transmit FIFO overflow has not occurred

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24				BDADDR	<31:24>							
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	BDADDR<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	BDADDR<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0		BDADDR<7:0>										

REGISTER 20-16: SQI1BDBASEADD: SQI BUFFER DESCRIPTOR BASE ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BDADDR<31:0>: DMA Base Address bits

These bits contain the physical address of the root buffer descriptor. This register should be updated only when the DMA is idle.

REGISTER 20-17: SQI1BDSTAT: SQI BUFFER DESCRIPTOR STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	—	—	—	—			
00.40	U-0	U-0	R-x	R-x	R-x	R-x	R-x	R-x			
23:16	—	—		BDSTAT	DMASTART	DMAACTV					
45.0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x			
15:8	BDCON<15:8>										
7.0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x			
7:0				BDCO	N<7:0>						

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

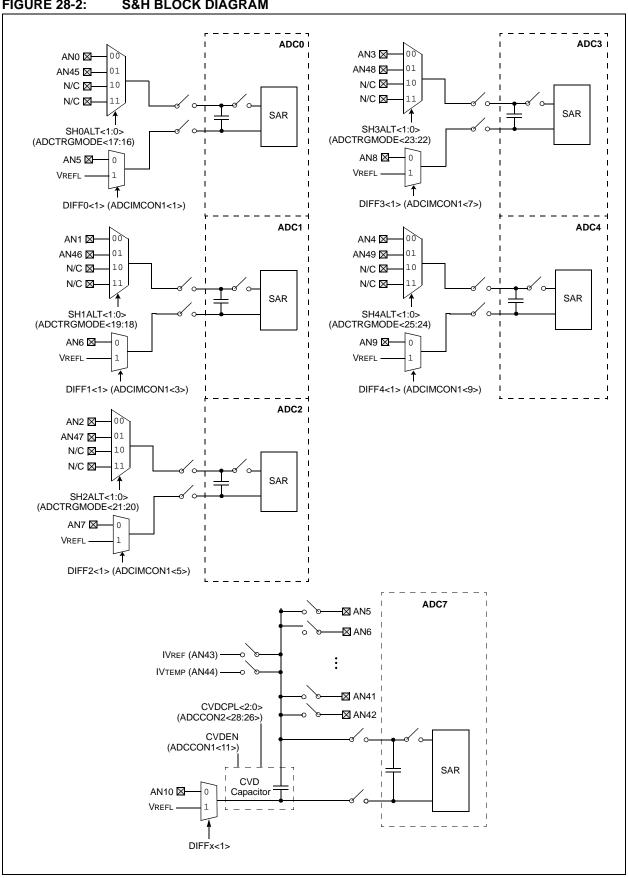
bit 31-22 Unimplemented: Read as '0'

bit 21-18 BDSTATE<3:0>: DMA Buffer Descriptor Processor State Status bits

- These bits return the current state of the buffer descriptor processor:
- 5 = Fetched buffer descriptor is disabled
- 4 = Descriptor is done
- 3 = Data phase
- 2 = Buffer descriptor is loading
- 1 = Descriptor fetch request is pending
- 0 = Idle
- bit 17 DMASTART: DMA Buffer Descriptor Processor Start Status bit
 - 1 = DMA has started
 - 0 = DMA has not started
- bit 16 DMAACTV: DMA Buffer Descriptor Processor Active Status bit
 - 1 = Buffer Descriptor Processor is active
 - 0 = Buffer Descriptor Processor is idle
- bit 15-0 **BDCON<15:0>:** DMA Buffer Descriptor Control Word bits These bits contain the current buffer descriptor control word.

REGISTER 25-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER (CONTINUED)

bit 10-9 RTCCLKSEL<1:0>: RTCC Clock Select bits


When a new value is written to these bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.

- 11 = Reserved
- 10 = Reserved
- 01 = RTCC uses the external 32.768 kHz Secondary Oscillator (SOSC)
- 00 = RTCC uses the internal 32 kHz oscillator (LPRC)
- bit 8-7 RTCOUTSEL<1:0>: RTCC Output Data Select bits⁽²⁾
 - 11 = Reserved
 - 10 = RTCC Clock is presented on the RTCC pin
 - 01 = Seconds Clock is presented on the RTCC pin
 - 00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered
- bit 6 RTCCLKON: RTCC Clock Enable Status bit⁽⁵⁾
 - 1 = RTCC Clock is actively running
 - 0 = RTCC Clock is not running
- bit 5-4 Unimplemented: Read as '0'
- bit 3 RTCWREN: Real-Time Clock Value Registers Write Enable bit⁽³⁾
 - 1 = Real-Time Clock Value registers can be written to by the user
 - 0 = Real-Time Clock Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: Real-Time Clock Value Registers Read Synchronization bit
 - 1 = Real-time clock value registers can change while reading (due to a rollover ripple that results in an invalid data read). If the register is read twice and results in the same data, the data can be assumed to be valid.
 - 0 = Real-time clock value registers can be read without concern about a rollover ripple

bit 1 HALFSEC: Half-Second Status bit⁽⁴⁾

- 1 = Second half period of a second
- 0 = First half period of a second
- bit 0 RTCOE: RTCC Output Enable bit
 - 1 = RTCC output is enabled
 - 0 = RTCC output is not enabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - **2**: Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 3: The RTCWREN bit can be set only when the write sequence is enabled.
 - 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).
 - 5: This bit is undefined when RTCCLKSEL<1:0> = 00 (LPRC is the clock source).

Note: This register is reset only on a Power-on Reset (POR).

FIGURE 28-2: S&H BLOCK DIAGRAM

TABLE 30-5: ETHERNET CONTROLLER REGISTER SUMMARY (CONTINUED)

ess										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2110	ETH FRMTXOK	31:16	—	_	-	-	-	—	—		-	_	_	—	—	_	_	—	00
		15:0 31:16	_						_	FRMTXOK	CN1<15:0>	_	_			_	_	_	00
2120	ETH SCOLFRM	15:0							00										
	ETH	31:16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0
2130	MCOLFRM	15:0								MCOLFRM	CNT<15:0>								0
	ETH	31:16	_	_			_		_	_	_	_	_	_		_	_	_	0
2140	FRMRXOK	15:0								FRMRXOK	CNT<15:0>								00
	ETH	31:16	_	_	_	_	_		_		_	_	_	_	_	_	_	_	0
2150	FCSERR	15:0								FCSERRO	CNT<15:0>								0
	ETH	31:16	_	_	_	_	_	—	—	—	—	_	—	—	—	_	_	_	0
2160	ALGNERR	15:0			•					ALGNERR	CNT<15:0>								0
	FNAOA	31:16	_	—	_	—	—	—	—	—	—	_	—	—	—	—	_	-	00
2200	EMAC1 CFG1	15:0	SOFT RESET	SIM RESET	_	_	RESET RMCS	RESET RFUN	RESET TMCS	RESET TFUN	_	_	_	LOOPBACK	TXPAUSE	RXPAUSE	PASSALL	RXENABLE	E 80
	EMAC1	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	00
2210	CFG2	15:0	_	EXCESS DFR	BP NOBKOFF	NOBKOFF	_	_	LONGPRE	PUREPRE	AUTOPAD	VLANPAD	PAD ENABLE	CRC ENABLE	DELAYCRC	HUGEFRM	LENGTHCK	FULLDPLX	X 40
2220	EMAC1	31:16	_		_	—	_	_	—	_	-			—	_	-	_	_	00
2220	IPGT	15:0	_		_	—	_	_	_	_				B	2BIPKTGP<6	:0>			00
2230	EMAC1	31:16	_		—	—	_	_	_	_	_		_	_	—	_	_	—	00
2230	IPGR	15:0	—			NB2	BIPKTGP1<	6:0>	-	-	_			NB	2BIPKTGP2<	6:0>			00
2240	EMAC1	31:16	—	_		—	—	—	—	—	_	—	_	—	—	—	—	—	00
2240	CLRT	15:0	—	_			CWINDO	DW<5:0>			_	—	_	—		RET>	<3:0>	-	37
2250	EMAC1	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	00
2200	MAXF	15:0								MACMA	<f<15:0></f<15:0>								05
	EMAC1	31:16	—			—					_	_	_		—				00
2260	SUPP	15:0	_	_	_	_	RESET RMII	_	_	SPEED RMII	_	_	_	_	_	_	_	_	10
2270	EMAC1	31:16	—			—					_	_	_		—				00
2210	TEST	15:0	_	_	_	—	_	_	_	_	_	_	_	—	—	TESTBP	TESTPAUSE	SHRTQNTA	A 00
	EMAC1	31:16	_	_	_	—	_				_	_	_	_	_	_	_	_	00
2280	MCFG	15:0	RESET MGMT	_	—	—	_	_	_	_	_	_		CLKSE	L<3:0>		NOPRE	SCANINC	; 00
2290	EMAC1	31:16	_	_	-	_	_	—	—	—	1	-	-	—	—	-	1	-	00
2230	MCMD	15:0	-		_	—	_	—	—	—	1	-	-	—	—	-	SCAN	READ	00
22A0	EMAC1	31:16	-	_	-	_	_			—	_	-			—	_	_	-	00
	MADR	15:0	_	_	_	1	Р	HYADDR<4:0)>		_	_		1	R	EGADDR<4:)>		01

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and Note 1: INV Registers" for more information.

2: Reset values default to the factory programmed value.

	RE	GISTER								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	—	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	_	_	_	_	_	_	—		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.6	PMCS<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				PMCS	S<7:0>					

REGISTER 30-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits

bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 30-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
51.24	—	—	_			_		_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	_	—	—	—	—		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.6	PMO<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				PMO	<7:0>					

Le	gend:	
	Deside to the test	

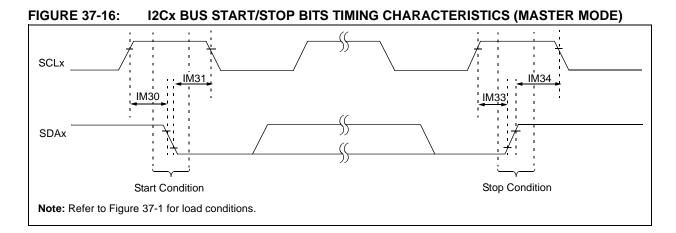
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

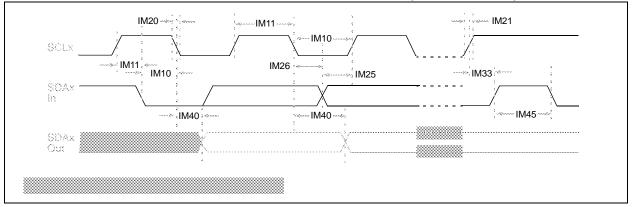
bit 15-0 **PMO<15:0>:** Pattern Match Offset 1 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	r-1	R/P	R/P	R/P	R/P	r-1	R/P	R/P			
31:24	—	FUSBIDIO	IOL1WAY	PMDL1WAY	PGL1WAY		FETHIO	FMIIEN			
23:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1			
23.10	—	—	_	—	—	—	-				
45.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
15:8	USERID<15:8>										
7.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
7:0				USERID<	7:0>						


REGISTER 34-6: DEVCFG3/ADEVCFG3: DEVICE CONFIGURATION WORD 3

Legend:	r = Reserved bit	P = Programmable bi	t
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


- bit 31 Reserved: Write as '1'
- bit 30 FUSBIDIO: USB USBID Selection bit
 - 1 = USBID pin is controlled by the USB module
 - 0 = USBID pin is controlled by the port function
 - If USBMD is '1', USBID reverts to port control.
- bit 29 IOL1WAY: Peripheral Pin Select Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 28 **PMDL1WAY:** Peripheral Module Disable Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 27 PGL1WAY: Permission Group Lock One Way Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 26 Reserved: Write as '1'
- bit 25 FETHIO: Ethernet I/O Pin Selection Configuration bit
 - 1 = Default Ethernet I/O pins
 - 0 = Alternate Ethernet I/O pins

This bit is ignored for devices that do not have an alternate Ethernet pin selection.

- bit 24 FMIIEN: Ethernet MII Enable Configuration bit
 - 1 = MII is enabled
 - 0 = RMII is enabled
- bit 23-16 Reserved: Write as '1'
- bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG

FIGURE 37-17: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)

TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le T_A \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	Max.	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	—		
			400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	—		
			1 MHz mode (Note 2)	ТРВСLК2 * (BRG + 2)	_	μs			
IM11	THI:SCL	Clock High Time	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	—		
			400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	—		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs	—		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode (Note 2)	—	100	ns			

Note 1: BRG is the value of the I²C Baud Rate Generator.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** The typical value for this parameter is 104 ns.

AC CHA	RACTER	ISTICS		Standard Operating (unless otherwise s Operating temperatu	tated) re -40°	C ≤ TA ≤ ·	V to 3.6V +85°C for Industrial +125°C for Extended
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	Max.	Units	Conditions
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode (Note 2)	—	300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode (Note 2)	100		ns	
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μs	—
		Hold Time	400 kHz mode	0	0.9	μs]
			1 MHz mode (Note 2)	0	0.3	μs	
IM30	TSU:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	Only relevant for
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	Repeated Start
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	μs	condition
IM31	THD:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	After this period, the
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	first clock pulse is
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	μs	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	—
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs	
IM34	THD:STO	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		ns	—
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)		ns	
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	ns	
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	
		from Clock	400 kHz mode	—	1000	ns	—
			1 MHz mode (Note 2)	—	350	ns	—
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time
			400 kHz mode	1.3	—	μs	the bus must be free
			1 MHz mode (Note 2)	0.5		μs	before a new transmission can start
IM50	Св	Bus Capacitive L	oading	—	_	pF	See parameter DO58
IM51	TPGD	Pulse Gobbler De	elay	52	312	ns	See Note 3

TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)

Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

APPENDIX A: MIGRATING FROM PIC32MX5XX/6XX/7XX TO PIC32MZ EF

This appendix provides an overview of considerations for migrating from PIC32MX5XX/6XX/7XX devices to the PIC32MZ EF family of devices. The code developed for PIC32MX5XX/6XX/7XX devices can be ported to PIC32MZ EF devices after making the appropriate changes outlined in the following sections.

The PIC32MZ EF devices are based on a new architecture, and feature many improvements and new capabilities over PIC32MX5XX/6XX/7XX devices.

A.1 Oscillator and PLL Configuration

Because the maximum speed of the PIC32MZ EF family is greater, the configuration of the oscillator is different from prior PIC32MX5XX/6XX/7XX devices.

Table A-1 summarizes the differences (indicated by **Bold** type) between the family devices for the oscillator.

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature	
Primary Oscillator Configuration		
On PIC32MX devices, XT mode had to be selected if the input fre- quency was in the 3 MHz to 10 MHz range (4-10 for PLL), and HS mode had to be selected if the input frequency was in the 10 MHz to 20 MHz range.	On PIC32MZ EF devices, HS mode has a wider input frequency range (4 MHz to 12 MHz). The bit setting of '01' is Reserved.	
POSCMOD<1:0> (DEVCFG1<9:8>) 11 = Primary Oscillator disabled	POSCMOD<1:0> (DEVCFG1<9:8>) 11 = Primary Oscillator disabled	
10 = HS Oscillator mode selected 01 = XT Oscillator mode selected	10 = HS Oscillator mode selected 01 = Reserved	
00 = External Clock mode selected	00 = External Clock mode selected	
On PIC32MX devices, crystal mode could be selected with the HS or XT POSC setting, but an external oscillator could be fed into the OSC1/CLKI pin and the part would operate normally.	On PIC32MZ devices, this option is not available. External oscil- lator signals should only be fed into the OSC1/CLKI pin with the POSC set to EC mode.	
Oscillator Selection		
On PIC32MX devices, clock selection choices are as follows:	On PIC32MZ EF devices, clock selection choices are as follows:	
FNOSC<2:0> (DEVCFG1<2:0>) NOSC<2:0> (OSCCON<10:8>)	FNOSC<2:0> (DEVCFG1<2:0>) NOSC<2:0> (OSCCON<10:8>)	
111 = FRCDIV	111 = FRCDIV	
110 = FRCDIV16	110 = Reserved	
101 = LPRC	101 = LPRC	
100 = SOSC 011 = POSC with PLL module	100 = SOSC 011 = Reserved	
010 = POSC (XT, HS, EC)	011 = POSC (HS or EC)	
0.01 = FRCDIV+PLL	001 = System PLL (SPLL)	
000 = FRC	000 = FRCDIV	
COSC<2:0> (OSCCON<14:12>) 111 = FRC divided by FRCDIV	COSC<2:0> (OSCCON<14:12>) 111 = FRC divided by FRCDIV	
110 = FRC divided by FRCDIV	$110 = \mathbf{BFRC}$	
101 = LPRC	101 = LPRC	
100 = SOSC	100 = SOSC	
011 = POSC + PLL module	011 = Reserved	
010 = POSC	010 = POSC	
001 = FRCPLL	001 = System PLL	
000 = FRC	000 = FRC divided by FRCDIV	

Section Name	Update Description	
27.0 "Random Number Generator (RNG)"	The TRNGMODE bit was added to the RNGCON register (see Register 27-2).	
28.0 "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)"	The S&H Block Diagram was updated (see Figure 28-2).	
	The registers, ADCTRG4 through ADCTRG8, were removed.	
	The bit value definitions for the ADCSEL<1:0> and CONCLKDIV<5:0> bits in the ADCCON3 register were updated (see Register 28-3).	
	The bit names in the ADC Status registers (Register 28-12 and Register 28-13) were updated to match the names in the SFR summary table.	
	The ADCTRGSNS register was updated (see Register 28-26).	
	The POR values were changed in the ADC System Configuration registers (see Register 28-34 and Register 28-35).	
34.0 "Special Features"	The FDBGWP bit was removed from the DEVCFG0/ADEVCFG0 registers (see Register 34-3).	
37.0 "Electrical Characteristics"	V-Temp (-40°C \leq TA \leq +105°C) information was removed from all tables.	
	The operating conditions voltage range was updated in the Absolute Maximum Ratings and in all tables to: 2.1V to 3.6V.	
	Notes on Maximum value operating conditions were added to the Operating, Idle, and Power-Down Current tables (see Table 37-6, Table 37-7, and Table 37-8, respectively).	
	The conditions for System Timing Requirement parameters OS55a and OS55b were updated (see Table 37-18).	
	The Internal FRC Accuracy specifications were updated (see Table 37-20).	
	The Internal LPRC Accuracy specifications were updated (see Table 37-21).	
	The ADC Module Specifications were updated (see Table 37-38).	
	The Analog-to-Digital Conversion Timing Requirements were updated (see Table 37-39).	
Appendix B: "Migrating from PIC32MZ EC to PIC32MZ EF"	This appendix was added, which provides an overview of considerations for migrating from PIC32MZ EC devices to the PIC32MZ EF family of devices.	

TABLE C-1: MAJOR SECTION UPDATES (CONTINUED)