

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024eff064-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	r-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24	—	—	—	—	_	—	—	—					
23.16	U-0	R-0	R-1	R-0	R-0	R-0	R-1	R/W-y					
23.10	—	IPLW	<1:0>			MCU	ISAONEXC ⁽¹⁾						
15.0	R-y	R-y	R-1	R-1	R-1	R-1	U-0	R-1					
10.0	ISA<1	l:0> ⁽¹⁾	ULRI	RXI	DSP2P	DSPP	—	ITL					
7.0	U-0	R-1	R-1	R-0	R-1	U-0	U-0	R-0					
7:0		VEIC	VINT	SP	CDMM	—		TL					

REGISTER 3-3: CONFIG3: CONFIGURATION REGISTER 3; CP0 REGISTER 16, SELECT 3

Legend:	r = Reserved bit	y = Value set from Configuration bits on POR						
R = Readable bit	W = Writable bit	U = Unimplemented b	vit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31 **Reserved:** This bit is hardwired as '1' to indicate the presence of the Config4 register

- bit 30-23 Unimplemented: Read as '0'
- bit 22-21 **IPLW<1:0>:** Width of the Status IPL and Cause RIPL bits 01 = IPL and RIPL bits are 8-bits in width
- bit 20-18 **MMAR<2:0>:** microMIPS Architecture Revision Level bits 000 = Release 1
- bit 17 MCU: MIPS[®] MCU[™] ASE Implemented bit
 - 1 = MCU ASE is implemented
- bit 16 **ISAONEXC:** ISA on Exception bit⁽¹⁾ 1 = microMIPS is used on entrance to an exception vector 0 = MIPS32 ISA is used on entrance to an exception vector
- bit 15-14 **ISA<1:0>:** Instruction Set Availability bits⁽¹⁾ 11 = Both MIPS32 and microMIPS are implemented; microMIPS is used when coming out of reset
 - 10 = Both MIPS32 and microMIPS are implemented; MIPS32 ISA used when coming out of reset
- bit 13 ULRI: UserLocal Register Implemented bit
- 1 = UserLocal Coprocessor 0 register is implemented
- bit 12 RXI: RIE and XIE Implemented in PageGrain bit
- 1 = RIE and XIE bits are implemented
- bit 11 **DSP2P:** MIPS DSP ASE Revision 2 Presence bit 1 = DSP Revision 2 is present
- bit 10 **DSPP:** MIPS DSP ASE Presence bit
- 1 = DSP is present
- bit 9 Unimplemented: Read as '0'
- bit 8 ITL: Indicates that iFlowtrace[®] hardware is present
 - $1 = \text{The iFlowtrace}^{\mathbb{R}}$ is implemented in the core
- bit 7 Unimplemented: Read as '0'
- bit 6 **VEIC:** External Vector Interrupt Controller bit
 - 1 = Support for an external interrupt controller is implemented
- bit 5 **VINT:** Vector Interrupt bit
- 1 = Vector interrupts are implemented
- bit 4 SP: Small Page bit
- 0 = 4 KB page size
- bit 3 CDMM: Common Device Memory Map bit
- 1 = CDMM is implemented
- bit 2-1 Unimplemented: Read as '0'
- bit 0 **TL:** Trace Logic bit
 - 0 = Trace logic is not implemented

Note 1: These bits are set based on the value of the BOOTISA Configuration bit (DEVCFG0<6>).

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress ()		e								В	its								s
Virtual Add (BF81 #	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0550	055047	31:16	_	—	-	—	-	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
05FC	OFF047	15:0		•	•		•			VOFF<15:1>	•							—	0000
0600		31:16	_	—	_	_	—	_	_	—	—	_	—	—	—		VOFF<	17:16>	0000
0000	011040	15:0		-		-				VOFF<15:1>	•		-	-			_	_	0000
0604	OFF049	31:16	_	—	_	_	—	_	_	—	_	—	—		—	_	VOFF<	17:16>	0000
0004	011040	15:0 VOFF<15:1> -													—	0000			
0608	OFF050	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
	0.1.000	15:0								VOFF<15:1>	, 						1	_	0000
0600	OFF051	31:16		—	—	—	—	_	_	—	—	—	—	—	—	—	VOFF<	17:16>	0000
		15:0		i	-	i	i	1	1	VOFF<15:1>	, i	1	i	i	1		r	—	0000
0610	OFF052	31:16		_	—	_	—	_	_	_	_	_	_	_	_	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>	, 						1/055		0000
0614	OFF053	31:16		_	_	_	—	_		-	_		_	_	_	_	VOFF<	17:16>	0000
		15:0								VOFF<15:1>	> 						VOFF	-	0000
0618	OFF054	31:16		_	_	_	_	_	_	VOEE -15:1>	_	_	_		—	_	VUFF<	17:16>	0000
		31.16			_		_			VOFF<15.12							VOFE	17:16	0000
061C	OFF055	15.0								VOFE<15:1							VOITS		0000
		31.16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
0620	OFF056	15:0								VOFF<15:1>	•							_	0000
		31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
0624	OFF057	15:0								VOFF<15:1>	•							_	0000
		31:16	_	—	_		—	_	_	_	_	_	—	_	_	_	VOFF<	17:16>	0000
0628	OFF058	15:0			•		•			VOFF<15:1>	•							_	0000
0000	055050	31:16	_	—	_	_	_	_	_	—	_	—	—	—	_	—	VOFF<	17:16>	0000
0620	OFF059	15:0								VOFF<15:1>	•							—	0000
0620	OFFORD	31:16	_	—	—	_	—	_	_	_	—	_	—	—	_	-	VOFF<	17:16>	0000
0030		15:0								VOFF<15:1>								_	0000
0624	OFE061	31:16	_	—	-	—	-	—	-	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0034		15:0								VOFF<15:1>	•							_	0000
Lege	nd: v=	inknow	n value on F	Reset: — = u	nimplemente	d read as '0	' Reset value	s are shown i	n hexadecima	1									

DS60001320D-page 134

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress)		۵	Bits																
Virtual Add (BF81 #	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0744		31:16	_	_	_	_	_	_	_	—	_	_	_	_	_	_	VOFF<	17:16>	0000
07A4	+ OFF 153	15:0								VOFF<15:1>								—	0000
0749		31:16		—	—	—	—	_	—	—		_	—	—	—	—	VOFF<	17:16>	0000
0770	5011134	15:0								VOFF<15:1>			-	-				—	0000
0740	OFF155	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
01110		15:0		-	-	•			_	VOFF<15:1>			•	•	-				0000
07B0	OFF156	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	VOFF<	7:16>	0000
0.20		15:0								VOFF<15:1>							1	<u> </u>	0000
07B4	1 OFF157	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	VOFF<	7:16>	0000
		15:0								VOFF<15:1>									0000
07B8	3 OFF158	31:16	—	—	—	—	—		_	_	—	—	—	—	_	_	VOFF<	7:16>	0000
		15:0								VOFF<15:1>							1		0000
07BC	OFF159	31:16	—	—	—	—	—	—	—	_	_	—	—	—	—	—	VOFF<	17:16>	0000
		15:0		-	-	-			-	VOFF<15:1>					-				0000
07C0	OFF160	31:16	—	—	—	—	—	_	—		—	—	—	—	—	—	VOFF<	7:16>	0000
		15:0								VOFF<15:1>									0000
07C4	1 OFF161	31:16	_	-	-	—	-	—	-		—	—	-	-		-	VOFF<	7:16>	0000
		15:0				1				VOFF<15:1>									0000
07C8	3 OFF162	31:16	—	—	—	—	_		—	-	—			_	—	_	VOFF<	/:16>	0000
		15:0								VOFF<15:1>							VOFF		0000
07CC	OFF163	31:16	_	_	_	—	—	_	—		_	_	—	—	_	—	VOFF<	7:16>	0000
		15:0								VUFF<15:1>								17:10:	0000
07D0	OFF164	15.0				_	_	—				_				_	VUFF<	7.10>	0000
	+	15.0		_	_		_		_	VUFF<15.1>				_	_		VOFE	17:16	0000
07D4	4 OFF165	15.0	_	_	_	—	_	_	_	VOEE<15:1>	_	_	_	_	_	_	VOFFS	.7.10>	0000
	+	31.16		_	_		_		_	VOFF<13.12				_	_		VOFE	17:16	0000
07D8	BOFF166	15.0		_	_					VOEE-15:1>					_		VOITS		0000
		31.16					_		_					_			VOFF-	17:16>	0000
07DC	OFF167	15.0								VOFE<15.1							VOIT		0000
Lege	nd: x=	unknow	n value on F	Reset: — = u	nimplemente	d. read as '0	'. Reset value	s are shown i	n hexadecima	al.								-	0000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	U-0	U-0											
31:24	—	—	—	—	—	—	—	—					
22.16	U-0	U-0											
23:16	—	—	—	—	—	—	—	—					
15.0	U-0	U-0	U-0	U-0	U-0	R-0 R-0		R-0					
15:8	—	—	—	—	—	9	SRIPL<2:0> ⁽¹⁾						
7.0	R-0 R-0		R-0	R-0	R-0	R-0	R-0	R-0					
7:0	SIRQ<7:0>												

REGISTER 7-3: INTSTAT: INTERRUPT STATUS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

bit 10-8 SRIPL<2:0>: Requested Priority Level bits for Single Vector Mode bits⁽¹⁾ 111-000 = The priority level of the latest interrupt presented to the CPU

- bit 7-6 Unimplemented: Read as '0'
- bit 7-0 SIRQ<7:0>: Last Interrupt Request Serviced Status bits 11111111-00000000 = The last interrupt request number serviced by the CPU
- Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31.24	IPTMR<31:24>													
23.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23.10	IPTMR<23:16>													
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8	IPTMR<15:8>													
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7.0	IPTMR<7:0>													

IPTMR: INTERRUPT PROXIMITY TIMER REGISTER REGISTER 7-4:

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 IPTMR<31:0>: Interrupt Proximity Timer Reload bits

Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER

bit 10-8 PLLIDIV<2:0>: System PLL Input Clock Divider bits

- 111 =Divide by 8
- 110 = Divide by 7
- 101 =Divide by 6
- 100 = Divide by 5
- 011 = Divide by 4
- 010 = Divide by 3
- 001 = Divide by 2
- 000 = Divide by 1

The default setting is specified by the FPLLIDIV<2:0> Configuration bits in the DEVCFG2 register. If the PLLICLK is set for FRC, this setting is ignored by the PLL and the divider is set for Divide-by-1. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

- bit 7 PLLICLK: System PLL Input Clock Source bit
 - 1 = FRC is selected as the input to the System PLL
 - 0 = Posc is selected as the input to the System PLL
 The POR default is specified by the FPLLICLK Configuration bit in the DEVCFG2 register. Refer to
 Register 34-5 in Section 34.0 "Special Features" for information.
- bit 6-3 Unimplemented: Read as '0'

bit 2-0 PLLRANGE<2:0>: System PLL Frequency Range Selection bits

111 = Reserved 110 = Reserved 101 = 34-64 MHz 100 = 21-42 MHz 011 = 13-26 MHz 010 = 8-16 MHz 001 = 5-10 MHz 000 = Bypass The default setting

The default setting is specified by the FPLLRNG<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

- Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.
 - 2: Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0 U-0		U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_					_	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_			_	_	_	
7:0	U-0	U-0	R-0	R-0	U-0	R-0	R-0	R-0
	_	_	LPRCRDY	SOSCRDY	_	POSCRDY	DIVSPLLRDY	FRCRDY

REGISTER 8-8: CLKSTAT: OSCILLATOR CLOCK STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-6 Unimplemented: Read as '0'

- bit 5
 LPRCRDY: Low-Power RC (LPRC) Oscillator Ready Status bit

 1 = LPRC is stable and ready
 0 = LPRC is disabled or not operating

 bit 4
 SOSCRDY: Secondary Oscillator (Sosc) Ready Status bit

 1 = Sosc is stable and ready
 - 0 = SOSC is disabled or not operating
- bit 3 Unimplemented: Read as '0'
- bit 2 **POSCRDY:** Primary Oscillator (Posc) Ready Status bit
 - 1 = Posc is stable and ready
 - 0 = Posc is disabled or not operating
- bit 1 DIVSPLLRDY: Divided System PLL Ready Status bit
 - 1 = Divided System PLL is ready
 - 0 = Divided System PLL is not ready
- bit 0 FRCRDY: Fast RC (FRC) Oscillator Ready Status bit
 - 1 = FRC is stable and ready
 - 0 = FRC is disabled for not operating

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

ess										Bit	s	-							
Virtual Addre (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1390	DCH4SSA	31:16 15:0				•				CHSSA	<31:0>								0000
13A0	DCH4DSA	31:16 15:0								CHDSA	<31:0>								0000
13B0	DCH4SSIZ	31:16 15:0	—	—	—	—	—	—	—	- CHSSIZ	— <15:0>	—	-	—	—	—	—	—	0000
13C0	DCH4DSIZ	31:16 15 [.] 0	—	—	—	—	—	—	—	- CHDSIZ	— <15 [.] 0>	—	—	—	—	—	—	—	0000
13D0	DCH4SPTR	31:16 15:0	—	—	—	—	—	—	—	CHSPTR		—	—	—	—	—	—	_	0000
13E0	DCH4DPTR	31:16 15:0	—	—	_	—	—	_	_			_	—	—	_	_	_	—	0000
13F0	DCH4CSIZ	31:16	_	—	_	_	—	—	_			_	_	_	—	_	_	—	0000
1400	DCH4CPTR	31:16	—	—	—	—	—	—	—			—	—	—	—	—	—	—	0000
1410	DCH4DAT	31:16	_	—	_	—	—	—	—		-	—	_	—	_	—	—	—	0000
1420	DCH5CON	15:0 31:16			-	CHPIG	N<7:0>			CHPDAI	<15:0>	—	_	_	_	—	—	_	0000
1420		15:0 31:16	CHBUSY —		CHPIGNEN —		CHPATLEN —			CHCHNS —	CHEN	CHAED	CHCHN	CHAEN CHAIR	— Q<7:0>	CHEDET	CHPR	l<1:0>	0000 00FF
1430	DOUGINT	15:0 31:16	_	_	_	CHSIR	Q<7:0>	_	_	_	CFORCE CHSDIE	CABORT CHSHIE	PATEN CHDDIE	SIRQEN CHDHIE	AIRQEN CHBCIE	— CHCCIE	— CHTAIE	— CHERIE	FF00 0000
1440		15:0 31:16	—	—	-	—	—	_	—	-	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
1450	DCH5SSA	15:0 31:16								CHSSA	<31:0>								0000
1460	DCH5DSA	15:0 31:16	_	_	_	_	_	_	_	CHDSA	<31:0>	_	_	_	_	_	_	_	0000
1470	DCH5SSIZ	15:0								CHSSIZ	<15:0>								0000
1480	DCH5DSIZ	15:0				_	_			CHDSIZ			_	_			_		0000
1490	DCH5SPTR	31:16 15:0	_	—	—	—	—	_	_	CHSPTR	— <15:0>	—	—	—	_	—	—	—	0000
Leger	d: x = u	nknown	value on F	Reset: — =	unimplemen	ted read as	s '0' Reset v	alues are s	hown in he	xadecimal									

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24		—	—	—	—		—				
22.16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
23.10	CHAIRQ<7:0> ⁽¹⁾										
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
10.0	CHSIRQ<7:0> ⁽¹⁾										
7.0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN						

REGISTER 10-8: DCHxECON: DMA CHANNEL x EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

and set CHAIF flag

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress
	•
	•
	•

00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag

bit 15-8 CHSIRQ<7:0>: Channel Transfer Start IRQ bits⁽¹⁾

11111111 = Interrupt 255 will initiate a DMA transfer

• 00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer

bit 7 CFORCE: DMA Forced Transfer bit

1 = A DMA transfer is forced to begin when this bit is written to a '1'

0 = This bit always reads '0'

bit 6 CABORT: DMA Abort Transfer bit

- 1 = A DMA transfer is aborted when this bit is written to a '1'
- 0 = This bit always reads '0'

bit 5 **PATEN:** Channel Pattern Match Abort Enable bit

- 1 = Abort transfer and clear CHEN on pattern match
- 0 = Pattern match is disabled
- bit 4 SIRQEN: Channel Start IRQ Enable bit
 - 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
 - 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-2: "Interrupt IRQ, Vector, and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	CHPDAT<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				CHPDA	[<7:0>					

REGISTER 10-18: DCHxDAT: DMA CHANNEL x PATTERN DATA REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **CHPDAT<15:0>:** Channel Data Register bits <u>Pattern Terminate mode:</u> Data to be matched must be stored in this register to allow terminate on match.

> All other modes: Unused.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	DMAADDR<31:24>										
22.46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	DMAADDR<23:16>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	DMAADDR<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
7.0				DMAADI	DR<7:0>						

REGISTER 11-22: USBDMAXA: USB DMA CHANNEL 'x' MEMORY ADDRESS REGISTER ('x' = 1-8)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Memory Address bits

This register identifies the current memory address of the corresponding DMA channel. The initial memory address written to this register during initialization must have a value such that its modulo 4 value is equal to '0'. The lower two bits of this register are read only and cannot be set by software. As the DMA transfer progresses, the memory address will increment as bytes are transferred.

REGISTE	ER 11-23: l	JSBDMAxN:	: USB DMA	CHANNEL	'x' COUNT I	REGISTER (('X' = 1-8)	
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
Danara	24/22/45/7	20/22/4 4/0	20/24/42/5	20/20/42/4	07/40/44/0	00/40/40/0	05/47/0/4	04/40/

Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0				
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
		DMACOUNT<31:24>										
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16		DMACOUNT<23:16>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	DMACOUNT<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7.0				DMACOL	JNT<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMACOUNT<31:0>: DMA Transfer Count bits

This register identifies the current DMA count of the transfer. Software will set the initial count of the transfer which identifies the entire transfer length. As the count progresses this count is decremented as bytes are transferred.

SS										E	Bits								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	10.15	31:16	_	_	_	_	_	_	—	_	—	_	—	—	-	_	_	—	0000
1444	IC4R	15:0	—	—	—	—	—	-	—	—	—	-	—	—		IC4R	<3:0>		0000
	1055	31:16	—	—	—	—	-	_	—	—	—	-	—	—	_	—	_	_	0000
1448	IC5R	15:0		—	—	—	—	—	—	—	—	—	—	—		IC5R	<3:0>		0000
4440	1000	31:16		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
144C	IC6R	15:0		—	—	—	—	—	—	—	—	—	—	—		IC6R	<3:0>		0000
4.450	1070	31:16		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1450	IC/R	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC7R	<3:0>		0000
	1000	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—		—	0000
1454	IC8R	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC8R	<3:0>		0000
4.450	1000	31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1458	IC9R	15:0			—	—	—	_	—	—	—	_	—	—		IC9R	<3:0>		0000
4.400	00545	31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1460	OCFAR	15:0			—	—	—	_	—	—	—	_	—	—		OCFA	R<3:0>		0000
		31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1468	UIRXR	15:0			—	—	—	_	—	—	—	_	—	—		U1RX	R<3:0>		0000
	LUCTOR	31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
146C	UICISR	15:0			—	—	—	_	—	—	—	_	—	—		U1CTS	SR<3:0>		0000
4.470		31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1470	U2RXR	15:0			—	—	—	_	—	—	—	_	—	—		U2RX	R<3:0>		0000
4 4 7 4	LIGOTOD	31:16	—	—	—	—	—	—	_	—	—	_	_	—	—	—	_	-	0000
1474	U2CISR	15:0	—	—	—	—	—	—	_	—	—	_	_	—		U2CTS	SR<3:0>		0000
4.470		31:16	—	—	—	—	—	—	_	—	—	_	_	—	—	—	—	-	0000
1478	UJRXR	15:0	—	—	—	—	—	—	_	—	—	_	_	—		U3RX	R<3:0>		0000
4.470	LIDOTOD	31:16	—	—	—	—	—	—	_	—	—	_	_	—	—	—	—	-	0000
147C	U3CTSR	15:0			—	—	—	_	—	—	—	_	—	—		U3CTS	SR<3:0>		0000
		31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1480	U4RXR	15:0	—	—	—	-	-	-	—	—	—	-	-	—		U4RX	R<3:0>		0000
4.40.4		31:16	—	—	_	—	—	-	—	—	—	-	—	—	—	—	—	_	0000
1484	04CTSR	15:0	_	_	—	_	—	_	_	_	_	_	_	_		U4CTS	SR<3:0>		0000

TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on devices without a CAN module.

19.0 SERIAL PERIPHERAL INTERFACE (SPI) AND INTER-IC SOUND (I²S)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/ PIC32).

The SPI/I²S module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices, as well as digital audio devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters, and so on.

The SPI/I²S module is compatible with Motorola[®] SPI and SIOP interfaces.

The following are key features of the SPI module:

- Master and Slave modes support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during Sleep and Idle modes
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

FIGURE 19-1: SPI/I²S MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—	—	DMAEISE	PKT DONEISE	BD DONEISE	CON THRISE
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CON EMPTYISE	CON FULLISE	RX THRISE	RX FULLISE	RX EMPTYISE	TX THRISE	TX FULLISE	TX EMPTYISE

REGISTER 20-22: SQI1INTSIGEN: SQI INTERRUPT SIGNAL ENABLE REGISTER

Legend:

· J · · ·			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11	DMAEISE: DMA Bus Error Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 10	PKTDONEISE: Receive Error Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 9	BDDONEISE: Transmit Error Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 8	CONTHRISE: Control Buffer Threshold Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 7	CONEMPTYISE: Control Buffer Empty Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 6	CONFULLISE: Control Buffer Full Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
DIT 5	RXTHRISE: Receive Buffer Threshold Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
hi+ 1	0 = Interrupt Signal is disabled
DIL 4	1 - Interrupt signal is applied
	1 = Interrupt signal is disabled
hit 3	BYEMPTYISE: Receive Buffer Empty Interrupt Signal Enable bit
bit 5	1 – Interrunt signal is enabled
	0 = Interrupt signal is disabled
bit 2	TXTHRISE: Transmit Buffer Threshold Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 1	TXFULLISE: Transmit Buffer Full Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 0	TXEMPTYISE: Transmit Buffer Empty Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled

REGIST	ER 29-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('n' = 0-31) (CONTINUED)
bit 9	TXHALFIF: FIFO Transmit FIFO Half Empty Interrupt Flag bit ⁽¹⁾ $\underline{TXEN = 1}$: (FIFO configured as a Transmit Buffer) $1 = FIFO$ is \leq half full 0 = FIFO is $>$ half full
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) Unused, reads '0'
bit 8	TXEMPTYIF: Transmit FIFO Empty Interrupt Flag bit ⁽¹⁾ TXEN = 1:(FIFO configured as a Transmit Buffer)1 = FIFO is empty0 = FIFO is not empty, at least 1 message queued to be transmitted
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) Unused, reads '0'
bit 7-4	Unimplemented: Read as '0'
bit 3	RXOVFLIF: Receive FIFO Overflow Interrupt Flag bit <u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) 1 = Overflow event has occurred 0 = No overflow event occurred
bit 2	RXFULLIF: Receive FIFO Full Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) 1 = FIFO is full 0 = FIFO is not full
bit 1	RXHALFIF: Receive FIFO Half Full Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) 1 = FIFO is ≥ half full 0 = FIFO is < half full
bit 0	RXNEMPTYIF: Receive Buffer Not Empty Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) 1 = FIFO is not empty, has at least 1 message 0 = FIFO is empty

Note 1: This bit is read-only and reflects the status of the FIFO.

	, RE	GISTER									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	_	—	_			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10		_	_	_	_	_	—	_			
15.9	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0	PMCS<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				PMCS	S<7:0>						

REGISTER 30-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits

bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 30-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
		_	_	—	—	—	—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	—			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0	PMO<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				PMO	<7:0>						

Le	gend:	
	D	

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **PMO<15:0>:** Pattern Match Offset 1 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

NOTES:

TABLE 37-25: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS				Star (un Ope	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param. No.	Symbol	Charac	teristics ⁽²⁾		Min.	Тур.	Max.	Units	Conditions		
TA10	ТтхН	TxCK High Time	Synchronous, with prescaler		Synchronous, with prescaler		[(12.5 ns or 1 TPBCLK3) -/N] + 20 ns			ns	Must also meet parameter TA15 (Note 3)
			Asynchror with presc	nous, aler	10	—	—	ns	—		
TA11	A11 TTXL TXCK Synchronou Low Time with prescal Asynchrono with prescal		Synchronous, with prescaler		[(12.5 ns or 1 ТРВСLК3) /N] + 20 ns		_	ns	Must also meet parameter TA15 (Note 3)		
			nous, aler	10	—	_	ns	_			
TA15	TA15 TTxP TxCK Synchronou Input Period with presca		ous, aler	[(Greater of 20 ns or 2 TPBCLK3)/N] + 30 ns	—	_	ns	VDD > 2.7V (Note 3)			
					[(Greater of 20 ns or 2 ТРВСLК3)/N] + 50 ns	—	_	ns	VDD < 2.7V (Note 3)		
			Asynchror	nous,	20	—	-	ns	Vdd > 2.7V		
			with presc	aler	50	—	—	ns	Vdd < 2.7V		
OS60	FT1	SOSC1/T1C Input Freque (oscillator en TCS bit (T1C	SC1/T1CK Oscillator ut Frequency Range cillator enabled by setting S bit (T1CON<1>))		32	—	50	kHz	—		
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal Tx0 o Timer	CK	—		1	ТРВСЬКЗ	—		

Note 1: Timer1 is a Type A timer.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

AC CHARACTERISTICS ⁽²⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
Clock P	arameter	S						
AD50	TAD	ADC Clock Period	20	_	6250	ns	_	
Throug	hput Rate	!						
AD51	Fтр	Sample Rate for ADC0-ADC4 (Class 1 Inputs)	 		3.125 3.57 4.16 5	Msps Msps Msps Msps	$\begin{array}{l} \mbox{12-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{10-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{8-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{6-bit resolution Source Impedance} \leq 200\Omega \\ \end{array}$	
		Sample Rate for ADC7 (Class 2 and Class 3 Inputs)			2.94 3.33 3.84 4.55	Msps Msps Msps Msps	$\begin{array}{l} \mbox{12-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{10-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{8-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{6-bit resolution Source Impedance} \leq 200\Omega \end{array}$	
Timing	Paramete	rs						
AD60	TSAMP	Sample Time for ADC0-ADC4 (Class 1 Inputs)	3 4 5 13	_	—	Tad	Source Impedance $\leq 200\Omega$, Max ADC clock Source Impedance $\leq 500\Omega$, Max ADC clock Source Impedance $\leq 1 \ K\Omega$, Max ADC clock Source Impedance $\leq 5 \ K\Omega$, Max ADC clock	
		Sample Time for ADC7 (Class 2 and 3 Inputs)	4 5 6 14		_	Tad	Source Impedance $\leq 200\Omega$, Max ADC clock Source Impedance $\leq 500\Omega$, Max ADC clock Source Impedance $\leq 1 \text{ K}\Omega$, Max ADC clock Source Impedance $\leq 5 \text{ K}\Omega$, Max ADC clock	
		Sample Time for ADC7 (Class 2 and 3 Inputs)	See Table 37-40	_		Tad	CVDEN (ADCCON1<11>) = 1	
AD62	Τςονν	Conversion Time (after sample time is complete)			13 11 9 7	Tad	12-bit resolution 10-bit resolution 8-bit resolution 6-bit resolution	
AD65	TWAKE	Wake-up time	_	500	_	TAD		
		Power Mode	_	20	—	μs	Lesser of 500 TAD or 20 µS.	

TABLE 37-39: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

FIGURE 40-6: VoL – 12x DRIVER PINS

APPENDIX C: **REVISION HISTORY**

Revision A (January 2015)

This is the initial released version of the document.

Revision B (July 2015)

The document status was updated from Advance Information to Preliminary.

The revision includes the following major changes, which are referenced by their respective chapter in Table C-1.

In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE C-1: MAJOR SECTION UPDATES					
Section Name	Update Description				
32-bit MCUs (up to 2 MB Live- Update Flash and 512 KB SRAM) with FPU, Audio and Graphics Interfaces, HS USB, Ethernet, and Advanced Analog	The Operating Conditions were updated to: 2.1V to 3.6V.				
4.0 "Memory Organization"	Legal information on the System Bus was added (see 4.2 "System Bus Arbitration").				
5.0 "Flash Program Memory"	The BOOTSWAP bit in the NVMCON register was changed to: BFSWAP (see Register 5-1).				
6.0 "Resets"	The NVMLTA bit was removed from the RCON register (see Register 6-1).				
	The GNMI bit was added to the RNMICON register (see Register 6-3).				
7.0 "CPU Exceptions and	The ADC FIFO Data Ready Interrupt, IRQ 45, was added (see Table 7-2).				
Interrupt Controller"	ADC FIFO bits were added, and Note 7 regarding devices without a Crypto module was added to the Interrupt Register Map (see Table 7-3).				
	The NMIKEY<7:0> bits were added to the INTCON register (see Register 7-1)				
8.0 "Oscillator Configuration"	The SPLLRDY bit was removed and the SPLLDIVRDY bit was added to the CLKSTAT register (see Register 8-8				
11.0 "Hi-Speed USB with On-The- Go (OTG)"	The VBUSIE and VBUSIF bits were changed to: VBUSERRIE and VBUSERRIF, respectively in the USBCSR2 register (see Register 11-3).				
15.0 "Deadman Timer (DMT)"	The POR values were updated for the PSCNT<4:0> bits in the Post Status Configure DMT Count Status register (see Register 15-6).				
	The POR values were updated for the PSINTV<2:0> bits in the Post Status Configure DMT Interval Status register (see Register 15-7).				
16.0 "Watchdog Timer (WDT)"	The WDTCON register was updated (see Register 16-1).				
23.0 "Parallel Master Port (PMP)"	The PMDOUT, PMDIN, and PMRDIN registers were added (see Register 23-4, Register 23-4, and Register 23-10).				
	The PMADDR, PMWADDR, and PMRADDR registers were updated (see Register 23-3, Register 23-8, and Register 23-9).				
	The PMRDATA register was removed.				
24.0 "External Bus Interface (EBI)"	Reset values for the EBIMSK2, EBIMSK3, EBISMT0-EBISMT2, and EBIFTRPD registers were updated in the EBI Register Map (see Table 24-2).				
	POR value changes were implemented to the EBI Static Memory Timing Register (see Register 24-3).				

MA IOD SECTION LIDDATES