

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 [®] M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024eff064t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-19: SYSTEM BUS TARGET 11 REGISTER MAP

SSS											Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
AC20	SBT11ELOG1	31:16	MULTI	—	—	—		CODE	<3:0>		_	—			—	—	—		0000
AC20	SBITTELOGI	15:0				INI	ΓID<7:0>				REGION<3:0> —				—	C	MD<2:0>		0000
AC24	SBT11ELOG2	31:16	_	-	_	—	-	-	_	-	_	-			—	-	-		0000
AC24	3BTTTELOG2	15:0	_	-	_	—	-	-	_	-	_	-			—	-	GROU	P<1:0>	0000
AC28	SBT11ECON	31:16	_	-	_	—	-	-	_	ERRP	_	-			—	-	-		0000
AC20	SBITTECON	15:0	_	-	_	—	-	-	_	-	_	-			—	-	-		0000
AC30	SBT11ECLRS	31:16	—	—	—	—	—	—	—	—	_	—	_	_	—	_	—	-	0000
AC30	SBITTECERS	15:0	—	_	—	—	—	—	—	—	_	—	_	_	—	_	—	CLEAR	0000
AC 38	SBT11ECLRM	31:16	—	_	—	—	—	—	—	—	_	—	_	_	—	_	—	_	0000
AC30	SBITTECERM	15:0	—	-	_	—	_	_	—	_	_	—	_	_	_	_	—	CLEAR	0000
AC40	SBT11REG0	31:16								BA	SE<21:6>								xxxx
7040	SBITIKEGO	15:0		_	BA	ASE<5:0>	-	-	PRI	—		-	SIZE<4:0	>		—	—		xxxx
AC50	SBT11RD0	31:16	—	—	_	_	_	_	—	_	_	_	_	_	_	_	_	_	xxxx
7030	30111120	15:0	—	—	_	_	_	_	—	_	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
AC58	SBT11WR0	31:16	—	—	—	—	—	—	—	—	—	—	_		—	—	—		xxxx
//000	OBTITUTO	15:0	—	—	—	—	—	—	—	—	—	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
AC60	SBT11REG1	31:16								BA	BASE<21:6>						xxxx		
/.000	OBTINEOT	15:0			BA	ASE<5:0>			PRI		SIZE<4:0>				_	_	_	xxxx	
AC70	SBT11RD1	31:16	—	—	—	—	—	—	—	—	—	—	_	_	—	—	—	—	xxxx
	55111151	15:0	—	—	—	—	—	—	—	—	—	—	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
AC78	SBT11WR1	31:16	—	—	—	—	—	—	—	—	—	—	_	_	—	—	—	—	xxxx
	021110101	15:0	_	—	_	—	_	_	—	_	_	_	-	-	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_			—			—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_		_	—	_		_	_
45.0	R/W-0, HC	R/W-0	R-0, HS, HC	R-0, HS, HC	U-0	U-0	U-0	U-0
15:8	WR ⁽¹⁾	WREN ⁽¹⁾	WRERR ⁽¹⁾	LVDERR ⁽¹⁾	_		—	_
7.0	R/W-0	R/W-x	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	PFSWAP	BFSWAP	—			NVMOP	<3:0>	

REGISTER 5-1: NVMCON: FLASH PROGRAMMING CONTROL REGISTER

Legend:	HC = Hardware Set	HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 WR: Write Control bit⁽¹⁾

This bit cannot be cleared and can be set only when WREN = 1 and the unlock sequence has been performed.

- 1 = Initiate a Flash operation
- 0 = Flash operation is complete or inactive

bit 14 WREN: Write Enable bit⁽¹⁾

- 1 = Enable writes to the WR bit and disables writes to the NVMOP<3:0> bits
- 0 = Disable writes to WR bit and enables writes to the NVMOP<3:0> bits

bit 13 WRERR: Write Error bit⁽¹⁾

This bit can be cleared only by setting the NVMOP<3:0> bits = 0000 and initiating a Flash operation.

- 1 = Program or erase sequence did not complete successfully
- 0 = Program or erase sequence completed normally

bit 12 LVDERR: Low-Voltage Detect Error bit⁽¹⁾

This bit can be cleared only by setting the NVMOP<3:0> bits = 0000 and initiating a Flash operation. 1 = Low-voltage detected (possible data corruption, if WRERR is set)

0 =Voltage level is acceptable for programming

bit 11-8 Unimplemented: Read as '0'

bit 7 **PFSWAP:** Program Flash Bank Swap Control bit

This bit is only writable when WREN = 0 and the unlock sequence has been performed.

- 1 = Program Flash Bank 2 is mapped to the lower mapped region and program Flash Bank 1 is mapped to the upper mapped region
- 0 = Program Flash Bank 1 is mapped to the lower mapped region and program Flash Bank 2 is mapped to the upper mapped region
- Note 1: These bits are only reset by a Power-on Reset (POR) and are not affected by other reset sources.
 - 2: This operation results in a "no operation" (NOP) when the Dynamic Flash ECC Configuration bits = 00 (FECCCON<1:0> (DVCFG0<9:8>)), which enables ECC at all times. For all other FECCCON<1:0> bit settings, this command will execute, but will not write the ECC bits for the word and can cause DED errors if dynamic Flash ECC is enabled (FECCCON<1:0> = 01). Refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) for information regarding ECC and Flash programming.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24	PWPULOCK	—	_	—	—		_	_						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16				PWP<2	3:16>									
45.0	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0						
15:8	PWP<15:8>													
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
7:0	PWP<7:0>													

REGISTER 5-7: NVMPWP: PROGRAM FLASH WRITE-PROTECT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 PWPULOCK: Program Flash Memory Page Write-protect Unlock bit

1 = Register is not locked and can be modified

0 = Register is locked and cannot be modified

This bit is only clearable and cannot be set except by any reset.

bit 30-24 Unimplemented: Read as '0'

bit 23-0 PWP<23:0>: Flash Program Write-protect (Page) Address bits

Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31.24	—	—	_		-		—	—						
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16	—	—	_	_	_	—	—	—						
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
15:8				CHSPTR	<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
7:0		CHSPTR<7:0>												

REGISTER 10-14: DCHxSPTR: DMA CHANNEL x SOURCE POINTER REGISTER

Legend:

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits

111111111111111 = Points to byte 65,535 of the source

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24			_		—			—						
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16	_	—	—	—	—	—	_	—						
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
15:8				CHDPTR	<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
7:0	CHDPTR<7:0>													

REGISTER 10-15: DCHxDPTR: DMA CHANNEL x DESTINATION POINTER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits

111111111111111 = Points to byte 65,535 of the destination

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

ss											Bits								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3340	USB	31:16	_	_	—	—	—	_		_	EP7TXD	EP6TXD	EP5TXD	EP4TXD	EP3TXD	EP2TXD	EP1TXD	_	0000
3340	DPBFD	15:0	_	—	—	—	—	_	_	—	EP7RXD	EP6RXD	EP5RXD	EP4RXD	EP3RXD	EP2RXD	EP1RXD	—	0000
3344	USB 31:16 THSRTN<15:0>												05E6						
5544	TMCON1	15:0	5:0 TUCH<15:0>													4074			
3348	000	31:16	_		_	_	—	—	_	_	_	—	—	_	_	_	_	_	0000
0040	TMCON2	15:0	_	—	—	_	—	—	-	—		—	—	_	THSBT<3:0>				0000
		31:16		_	LPM	LPM		LPMNYIE	LPMSTIE	LPMTOIE				LPMNAK ⁽¹⁾		N<1:0>	LPMRES		0000
3360	USB LPMR1	51.10	_		ERRIE	RESIE						_	_	_(2)	(2)	(2)			0000
	2	15:0		ENDPOIN	T<3:0>		—	_	_	RMTWAK		HIRI	D<3:0>			LNKSTATE	<3:0>		0000
		31:16	_	—	_	_	—	_	_	—	_	—	—	_	_	_	—		0000
3364	USB LPMR2	15:0	_			LPI	MFADDR<6:	0>			_	_	LPMERR ⁽¹⁾	LPMRES	LPMNC	LPMACK	LPMNY	LPMST	0000

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1: Device mode.

2: Host mode.

3:

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7). 4:

TABLE 11-2: USB REGISTER MAP 2

s										Bi	s								
Virtual Addres (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_	—	—	_	—	USBIF	USBRF	USBWKUP	_	—	—	—	_	—	—	_	0100
4000	USB CRCON	15:0	_	_	_	_	_	_	USB IDOVEN	USB IDVAL	PHYIDEN	VBUS MONEN	ASVAL MONEN	BSVAL MONEN	SEND MONEN	USBIE	USBRIE	USB WKUPEN	8000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 12-16: PORTG REGISTER MAP FOR 64-PIN DEVICES ONLY

SSS										Bi	ts								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	ANSELG	31:16	_	—	—	-	—	—	—	—	—		-	—	-	—	_	—	0000
0000	ANGLEG	15:0	_	_	_	_	_	_	ANSG9	ANSG8	ANSG7	ANSG6	_	_	_	_	_	—	03C0
0610	TRISG	31:16	—	_	—	_	—	_	—	_	_	_	_	—	_	_		—	0000
0010	11100	15:0	—	_	—	_	—	_	TRISG9	TRISG8	TRISG7	TRISG6	_	—	_	—		—	03C0
0620	PORTG	31:16	—	_	—	_	—	_	—	_	_	_	_	—	_	_		—	0000
0020	TOKIO	15:0	—	_	—	_	—	_	RG9	RG8	RG7	RG6	_	—	_	—		—	xxxx
0630	LATG	31:16	—	_	—	_	—	_	—	_	_	—	_	—	_	—		—	0000
0000	DAIO	15:0	—	_	—	_	—	_	LATG9	LATG8	LATG7	LATG6	_	—	_	—	_	—	xxxx
0640	ODCG	31:16	—	_	—	_	—	_	—			—	_	—	_	—	_	—	0000
0040	0000	15:0	—	_	—	_	—	_	ODCG9	ODCG8	ODCG7	ODCG6	_	—	_	—	_	—	0000
0650	CNPUG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
0000		15:0	_	_	—	—	—	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	—	—	—	—	_	—	0000
0660	CNPDG	31:16	_	-	—	-	—	_	—	_	_		-	—	-	—	_	-	0000
	0.1. 20	15:0	_	-	—	-	—	_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	-	—	-	—	_	-	0000
		31:16	—	-	—	-	—	_	—	—	—		-	—	-	—	_	-	0000
0670	CNCONG	15:0	ON	_	_		EDGE DETECT	—	—	—	—	_		—	-	—	_	_	0000
0680	CNENG	31:16	-		_		_	_	—					_		-		—	0000
0000	CINEINO	15:0	_	-	_	-	—	_	CNENG9	CNENG8	CNENG7	CNENG6	-	_	_	_	_	—	0000
		31:16	—	-	—	-	—	—	—	_	_	—	-	—	-	—	-	—	0000
0690	CNSTATG	15:0	—	-	_	_	—	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6		—		—		—	0000
0640		31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
06A0	CNNEG	15:0	_	_	—	_	—	_	CNNEG9	CNNEG8	CNNEG7	CNNEG6	_	_		—	_	—	0000
06B0	CNFG	31:16	_	_					—	—	—	—		—		—		—	0000
0000	UNFG	15:0	_	_	_	_	—	_	CNFG9	CNFG8	CNFG7	CNFG6	-	—		_	-	—	0000
0600	SRCON0G	31:16	—	_	—	_	—	_	—	_	_		_	—	_	—	_	—	0000
	GREUNUG	15:0	_	_	_		—	_	SR0G9	_	_	SR0G6	-	—		—	-	—	0000
	SRCON1G	31:16	_	_	—	_	—	—	-	—	—		_	—	_	—	_	—	0000
	SILCONIG	15:0	_	_	_	_	_	_	SR1G9	_		SR1G6	_	_	_		_	—	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

The timer source for each Input Capture module depends on the setting of the ICACLK bit in the CFGCON register. The available configurations are shown in Table 17-1.

TABLE 17-1:	TIMER SOURCE			
	CONFIGURATIONS			

Input Capture Module	Timerx	Timery						
ICACLK (CFGCC	N<17>) = 0							
IC1	Timer2	Timer3						
•	•	•						
•	٠	•						
•	•	•						
IC9	Timer2	Timer3						
ICACLK (CFGCON<17>) = 1								
IC1	Timer4	Timer5						
IC2	Timer4	Timer5						
IC3	Timer4	Timer5						
IC4	Timer2	Timer3						
IC5	Timer2	Timer3						
IC6	Timer2	Timer3						
IC7	Timer6	Timer7						
IC8	Timer6	Timer7						
IC9	Timer6	Timer7						

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	_	_	—
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_			_	_		—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF			OB3E	OB2E	OB1E	OB0E

REGISTER 23-7: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HS = Hardware Set	SC = Software Cleared			
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, rea			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 **IBF:** Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer is occurred (must be cleared in software)
 - 0 = No overflow is occurred

bit 13-12 Unimplemented: Read as '0'

- bit 11-8 **IBxF:** Input Buffer x Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data

bit 7 **OBE:** Output Buffer Empty Status bit

- 1 = All readable output buffer registers are empty
- 0 = Some or all of the readable output buffer registers are full

bit 6 **OBUF:** Output Buffer Underflow Status bit

- 1 = A read occurred from an empty output byte buffer (must be cleared in software)
- 0 = No underflow is occurred
- bit 5-4 Unimplemented: Read as '0'

bit 3-0 **OBxE:** Output Buffer x Status Empty bits

- 1 = Output buffer is empty (writing data to the buffer will clear this bit)
- 0 = Output buffer contains data that has not been transmitted

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_		_	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—						_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_		_	—
7.0	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	SWAPOEN	SWRST	SWAPEN			BDPCHST	BDPPLEN	DMAEN

REGISTER 26-2: CECON: CRYPTO ENGINE CONTROL REGISTER

Legend:		HC = Hardware Cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-8 Unimplemented: Read as '0'

- bit 7 SWAPOEN: Swap Output Data Enable bit
 - 1 = Output data is byte swapped when written by dedicated DMA
 - 0 = Output data is not byte swapped when written by dedicated DMA
- bit 6 SWRST: Software Reset bit
 - 1 = Initiate a software reset of the Crypto Engine
 - 0 = Normal operation
- bit 5 **SWAPEN:** Input Data Swap Enable bit
 - 1 = Input data is byte swapped when read by dedicated DMA
 - 0 = Input data is not byte swapped when read by dedicated DMA
- bit 4-3 Unimplemented: Read as '0'

bit 2 BDPCHST: Buffer Descriptor Processor (BDP) Fetch Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

- 1 = BDP descriptor fetch is enabled
- 0 = BDP descriptor fetch is disabled

bit 1 **BDPPLEN:** Buffer Descriptor Processor Poll Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

- 1 = Poll for descriptor until valid bit is set
- 0 = Do not poll

bit 0 DMAEN: DMA Enable bit

- 1 = Crypto Engine DMA is enabled
- 0 = Crypto Engine DMA is disabled

ADCIMCON3: ADC INPUT MODE CONTROL REGISTER 3 (CONTINUED) **REGISTER 28-7:** bit 16 SIGN40: AN40 Signed Data Mode bit⁽²⁾ 1 = AN40 is using Signed Data mode 0 = AN40 is using Unsigned Data mode DIFF39: AN39 Mode bit⁽²⁾ bit 15 1 = AN39 is using Differential mode 0 = AN39 is using Single-ended mode bit 14 SIGN39: AN39 Signed Data Mode bit⁽²⁾ 1 = AN39 is using Signed Data mode 0 = AN39 is using Unsigned Data mode bit 13 DIFF38: AN38 Mode bit⁽²⁾ 1 = AN38 is using Differential mode 0 = AN38 is using Single-ended mode SIGN38: AN38 Signed Data Mode bit⁽²⁾ bit 12 1 = AN38 is using Signed Data mode 0 = AN38 is using Unsigned Data mode DIFF37: AN37 Mode bit⁽²⁾ bit 11 1 = AN37 is using Differential mode 0 = AN37 is using Single-ended mode bit 10 SIGN37: AN37 Signed Data Mode bit⁽²⁾ 1 = AN37 is using Signed Data mode 0 = AN37 is using Unsigned Data mode DIFF36: AN36 Mode bit⁽²⁾ bit 9 1 = AN36 is using Differential mode 0 = AN36 is using Single-ended mode SIGN36: AN36 Signed Data Mode bit⁽²⁾ bit 8 1 = AN36 is using Signed Data mode 0 = AN36 is using Unsigned Data mode bit 7 DIFF35: AN35 Mode bit⁽²⁾ 1 = AN35 is using Differential mode 0 = AN35 is using Single-ended mode SIGN35: AN35 Signed Data Mode bit⁽²⁾ bit 6 1 = AN35 is using Signed Data mode 0 = AN35 is using Unsigned Data mode DIFF34: AN34 Mode bit⁽¹⁾ bit 5 1 = AN34 is using Differential mode 0 = AN34 is using Single-ended mode SIGN34: AN34 Signed Data Mode bit⁽¹⁾ bit 4 1 = AN34 is using Signed Data mode 0 = AN34 is using Unsigned Data mode DIFF33: AN33 Mode bit⁽¹⁾ bit 3 1 = AN33 is using Differential mode 0 = AN33 is using Single-ended mode SIGN33: AN33 Signed Data Mode bit⁽¹⁾ bit 2 1 = AN33 is using Signed Data mode 0 = AN33 is using Unsigned Data mode

Note 1: This bit is not available on 64-pin devices.

2: This bit is not available on 64-pin and 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC		
31:24	AFEN	DATA16EN	DFMODE	OVRSAM<2:0>			AFGIEN	AFRDY		
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	_	_		CHNLID<4:0>						
45.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC							
15:8	FLTRDATA<15:8>									
7.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC							
7:0				FLTRDAT	A<7:0>					

REGISTER 28-16: ADCFLTRx: ADC DIGITAL FILTER 'x' REGISTER ('x' = 1 THROUGH 6)

Legend:	HS = Hardware Set	HC = Hardware Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31 **AFEN:** Digital Filter 'x' Enable bit

- 1 = Digital filter is enabled
- 0 = Digital filter is disabled and the AFRDY status bit is cleared
- bit 30 DATA16EN: Filter Significant Data Length bit
 - 1 = AII 16 bits of the filter output data are significant
 - 0 =Only the first 12 bits are significant, followed by four zeros
 - **Note:** This bit is significant only if DFMODE = 1 (Averaging Mode) and FRACT (ADCCON1<23>) = 1 (Fractional Output Mode).

bit **DFMODE:** ADC Filter Mode bit

- 1 = Filter 'x' works in Averaging mode
- 0 = Filter 'x' works in Oversampling Filter mode (default)

bit 28-26 **OVRSAM<2:0>:** Oversampling Filter Ratio bits

If DFMODE is '0':

- 111 = 128 samples (shift sum 3 bits to right, output data is in 15.1 format)
- 110 = 32 samples (shift sum 2 bits to right, output data is in 14.1 format)
- 101 = 8 samples (shift sum 1 bit to right, output data is in 13.1 format)
- 100 = 2 samples (shift sum 0 bits to right, output data is in 12.1 format)
- 011 = 256 samples (shift sum 4 bits to right, output data is 16 bits)
- 010 = 64 samples (shift sum 3 bits to right, output data is 15 bits)
- 001 = 16 samples (shift sum 2 bits to right, output data is 14 bits)
- 000 = 4 samples (shift sum 1 bit to right, output data is 13 bits)

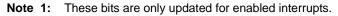
If DFMODE is '1':

- 111 = 256 samples (256 samples to be averaged)
- 110 = 128 samples (128 samples to be averaged)
- 101 = 64 samples (64 samples to be averaged)
- 100 = 32 samples (32 samples to be averaged)
- 011 = 16 samples (16 samples to be averaged)
- 010 = 8 samples (8 samples to be averaged)
- 001 = 4 samples (4 samples to be averaged)
- 000 = 2 samples (2 samples to be averaged)
- bit 25 **AFGIEN:** Digital Filter 'x' Interrupt Enable bit
 - 1 = Digital filter interrupt is enabled and is generated by the AFRDY status bit
 - 0 = Digital filter is disabled

Bit Range	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit			
	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0			
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1			
	—				ADCEIS<2:0			S<1:0>			
23:16	U-0	R/W-0	R/W-0	R/W-0	R/W-0 ADCDIV<6:0:	R/W-0	R/W-0	R/W-0			
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
15:8	—	—	—	—	—	—	SAMO	C<9:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
				SAMC	<7:0>						
Legend:											
R = Readal	ole bit	W = Writable	e bit	U = Unimple	mented bit, r	ead as '0'					
-n = Value a	at POR	'1' = Bit is se		'0' = Bit is cl		x = Bit is un	known				
bit 31-29	-	ented: Read a									
bit 28-26											
		ADCEIS<2:0>: ADCx Early Interrupt Select bits 111 = The data ready interrupt is generated 8 ADC clocks prior to the end of conversion 110 = The data ready interrupt is generated 7 ADC clocks prior to the end of conversion									
	110 = 1 he c	data ready inte	errupt is gene	rated 7 ADC	clocks prior to	o the end of c	conversion				
	•										
	• • 001 = The data ready interrupt is generated 2 ADC clocks prior to the end of conversion										
		data ready inte			-						
	Note: All options are available when the selected resolution, specified by the SELRES<1:0> bits (ADCxTIME<25:24>), is 12-bit or 10-bit. For a selected resolution of 8-bit, options from '000'										
bit 25-24		:0 '101' are va			on of 6-bit, of	Duons from 0	00 10 011 2	are valid.			
011 20-24	SELRES<1:0>: ADCx Resolution Select bits 11 = 12 bits										
	10 = 10 bits										
	01 = 8 bits										
	00 = 6 bits										
	Note:	Changing the	resolution of	the ADC does	s not shift the	result in the	corresponding				
		register. The result will still occupy 12 bits, with the corresponding lower unused bits set to '0'. For example, a resolution of 6 bits will result in ADCDATAx<5:0> being set to '0', and									
	ADCDATAX<11:6> holding the result.										
bit 23	Unimpleme	nted: Read a	IS '0'								
bit 22-16	ADCDIV<6:	0>: ADCx Clo	ock Divisor bit	S							
	These bits divide the ADC control clock with period TQ to generate the clock for ADCx (TADx).										
	1111111 = 254 * TQ = TADx										
	:										
	•	0 + T - T									
		6 * TQ = TADx 4 * TQ = TADx									
		4 TQ = TADx 2 * TQ = TADx									
	0000001 = 0000000 = 0000000000000000000		·								
bit 15-10		ented: Read a	IS '0'								
bit 9-0	-	>: ADCx Sam									
		r = period of th		rsion clock fo	r the dedicate	ed ADC contr	olled by the A	DCDIV<6:0			
		.1 = 1025 TAD	x								
	•										
	000000000										

0000000000 = 2 TADx

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—				—		-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—				—		-	—
15:8	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15.6	—					FILHIT<4:0>		
7:0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7.0	_				CODE<6:0> ⁽¹)		


REGISTER 29-4: CiVEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

	bit 12-8	FILHIT<4:0>: Filter Hit Number bit
		11111 = Filter 31
		11110 = Filter 30
		•
		•
		•
		00001 = Filter 1
		00000 = Filter 0
	bit 7	Unimplemented: Read as '0'
	bit 6-0	ICODE<6:0>: Interrupt Flag Code bits ⁽¹⁾
		1001000-1111111 = Reserved
		1001000 = Invalid message received (IVRIF)
		1000111 = CAN module mode change (MODIF)
		1000110 = CAN timestamp timer (CTMRIF)
		1000101 = Bus bandwidth error (SERRIF)
		1000100 = Address error interrupt (SERRIF)
		1000011 = Receive FIFO overflow interrupt (RBOVIF) 1000010 = Wake-up interrupt (WAKIF)
		1000001 = Error Interrupt (CERRIF)
		1000000 = No interrupt
		0100000-0111111 = Reserved
		0011111 = FIFO31 Interrupt (CiFSTAT<31> set)
		0011110 = FIFO30 Interrupt (CiFSTAT<30> set)
		•
		•
		•
		0000001 = FIFO1 Interrupt (CiFSTAT<1> set)
		0000000 = FIFO0 Interrupt (CiFSTAT<0> set)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24					-	—		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	—	—	_	_
15.0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	_	TXBUSE	RXBUSE	_	—	—	EWMARK	FWMARK
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONE	PKTPEND	RXACT		TXDONE	TXABORT	RXBUFNA	RXOVFLW

REGISTER 30-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'	
Dit 31-15 Unimplemented: Read as 0	

- bit 14 **TXBUSE:** Transmit BVCI Bus Error Interrupt bit⁽²⁾
 - 1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred

This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

- bit 13 **RXBUSE:** Receive BVCI Bus Error Interrupt bit⁽²⁾
 - 1 = BVCI Bus Error has occurred
 - 0 = BVCI Bus Error has not occurred

This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

bit 12-10 Unimplemented: Read as '0'

- bit 9 EWMARK: Empty Watermark Interrupt bit⁽²⁾
 - 1 = Empty Watermark pointer reached

0 = No interrupt pending

This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a '0' or a '1' has no effect.

bit 8 FWMARK: Full Watermark Interrupt bit⁽²⁾

1 = Full Watermark pointer reached

0 = No interrupt pending

This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.

- Note 1: This bit is only used for TX operations.
 - 2: This bit is are only used for RX operations.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTE	REGISTER 30-33: EMAC1MADR: ETHERNET CONTROLLER MAC MII MANAGEMENT ADDRESS										
REGISTER											
D'i											

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_			_	_		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	—	_	_	_	_	—
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
15.6	—	_	—		PF	IYADDR<4:0	>	
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0					RE	GADDR<4:0)>	

Legend:

- 3			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

- bit 12-8 **PHYADDR<4:0>:** MII Management PHY Address bits This field represents the 5-bit PHY Address field of Management cycles. Up to 31 PHYs can be addressed (0 is reserved).
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **REGADDR<4:0>:** MII Management Register Address bits This field represents the 5-bit Register Address field of Management cycles. Up to 32 registers can be accessed.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

33.3.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MZ EF devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- Configuration bit select lock

33.3.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 42.** "**Oscillators with Enhanced PLL**" (DS60001250) in the "*PIC32 Family Reference Manual*" for details.

33.3.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

34.2 Registers

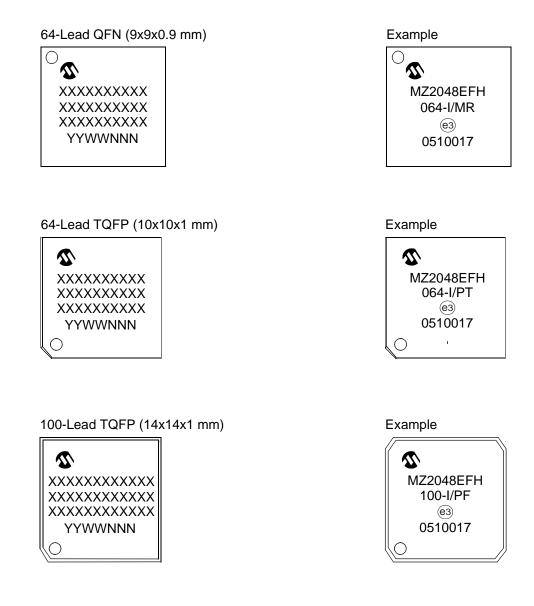
Virtual Address (BFC0_#) Bits Bit Range All Resets Register Name 16/0 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 IOL1WAY PMDL1WAY PGL1WAY FETHIO FMIIEN FUSBIDIO 31:16 _ xxxx _ FFC0 DEVCFG3 15:0 USERID<15:0> xxxx UPLLFSEL FPLLODIV<2:0> 31:16 _ — _ _ _ _ _ _ _ _ _ xxxx FFC4 DEVCFG2 15:0 FPLLIDIV<2:0> FPLLMULT<6:0> FPLLICLK FPLLRNG<2:0> _ _ xxxx 31:16 FDMTEN DMTCNT<4:0> FWDTWINSZ<1:0> FWDTEN WINDIS WDTSPGM WDTPS<4:0> xxxx FFC8 DEVCFG1 FCKSM<1:0> POSCMOD<1:0> 15:0 _ OSCIOFNC IESO FSOSCEN DMTINTV<2:0> FNOSC<2:0> xxxx _ _ 31:16 _ EJTAGBEN _ _ _ _ POSCBOOST POSCGAIN<1:0> SOSCBOOST SOSCGAIN<1:0> _ _ _ _ xxxx FFCC DEVCFG0 15:0 SMCLR DBGPER<2:0> _ FSLEEP FECCCON<1:0> _ BOOTISA TRCEN ICESEL<1:0> JTAGEN DEBUG<1:0> xxxx _ _ xxxx 31:16 _ _ _ _ _ _ _ _ _ _ _ _ FFD0 DEVCP3 15:0 _ _ _ _ _ xxxx _ _ _ ____ _ _ _ _ _ _ _ 31:16 _ _ _ _ xxxx _ _ _ _ _ _ _ _ _ _ _ _ FFD4 DEVCP2 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx 31:16 xxxx _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ FFD8 DEVCP 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx _ _ CP 31:16 _ _ — _ _ _ _ _ _ _ _ _ _ _ _ xxxx FFDC DEVCP0 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx 31:16 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx FFE0 DEVSIGN 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx _ _ _ _ _ _ xxxx 31:16 _ _ _ _ _ — _ _ _ ____ FFE4 DEVSIGN2 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx _ _ _ _ _ _ _ _ _ _ _ 31:16 _ _ _ _ _ xxxx FFE8 DEVSIGN1 15:0 _ _ _ _ _ xxxx _ _ _ _ _ _ _ _ _ _ _ _ xxxx 31:16 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ FFEC DEVSIGNO 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx

TABLE 34-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

Legend: x = unknown value on Reset; - = Reserved, read as '1'. Reset values are shown in hexadecimal

DC CHARACTI	ERISTICS		(unless of	Operating Conditions: 2.1V to 3.6V therwise stated) temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Parameter No. Typical ⁽²⁾ Maximum ⁽⁴⁾			Units	Conditions			
Idle Current (III	Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)						
DC30a	7	22	mA	4 MHz (Note 3)			
DC31a	8	24	mA	10 MHz			
DC32a	13	32	mA	60 MHz (Note 3)			
DC33a	21	42	mA	130 MHz (Note 3)			
DC34	26	48	mA	180 MHz (Note 3)			
DC35	28	52	mA	200 MHz			

TABLE 37-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)


Note 1: The test conditions for IIDLE current measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBPMD = 1), VUSB3V3 is connected to VSS, PBCLKx divisor = 1:128 ('x' ≠ 7)
- CPU is in Idle mode (CPU core Halted)
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared (except USBPMD)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: Data in the "Maximum" column is at 3.3V, +85°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

41.0 PACKAGING INFORMATION

41.1 Package Marking Information

Legend: XXX Customer-specific information							
	Y	Year code (last digit of calendar year)					
	YY	Year code (last 2 digits of calendar year)					
	WW	Week code (week of January 1 is week '01')					
	NNN						
	Pb-free JEDEC designator for Matte Tin (Sn)						
	* This package is Pb-free. The Pb-free JEDEC designator (e3)						
		can be found on the outer packaging for this package.					
Note:	lote: In the event the full Microchip part number cannot be marked on one line, it v						
	be carried over to the next line, thus limiting the number of availab						
	characters for customer-specific information.						
L							

A.2 Analog-to-Digital Converter (ADC)

The PIC32MZ EF family of devices has a new 12-bit High-Speed Successive Approximation Register (SAR) ADC module that replaces the 10-bit ADC module in PIC32MX5XX/6XX/7XX devices; therefore, the use of **Bold** type to show differences is *not* used in the following table. Note that not all register differences are described in this section; however, the key feature differences are listed in Table A-3.

TABLE A-3:ADC DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature					
Clock Selection and Operating Frequency (TAD)						
On PIC32MX devices, the ADC clock was derived from either the FRC or from the PBCLK.	On PIC32MZ EF devices, the three possible sources of the ADC clock are FRC, REFCLKO3, and SYSCLK.					
ADRC (AD1CON3<15>) 1 = FRC clock 0 = Clock derived from Peripheral Bus Clock (PBCLK)	ADCSEL<1:0> (ADCCON3<31:30>) 11 = FRC 10 = REFCLKO3 01 = SYSCLK 00 = Reserved					
On PIC32MX devices, if the ADC clock was derived from the PBCLK, that frequency was divided further down, with a maximum divisor of 512, and a minimum divisor of two.	On PIC32MZ EF devices, any ADC clock source can be divided down separately for each dedicated ADC and the shared ADC, with a maximum divisor of 254. The input clock can also be fed directly to the ADC.					
ADCS<7:0> (AD1CON3<7:0>) 11111111 = 512 * TPB = TAD • • 00000001 = 4 * TPB = TAD 00000000 = 2 * TPB = TAD	ADCDIV<6:0> (ADCTIMEx<22:16>) ADCDIV<6:0> (ADCCON2<6:0>) 1111111 = 254 * TQ = TAD • • • 0000011 = 6 * TQ = TAD 0000010 = 4 * TQ = TAD 0000001 = 2 * TQ = TAD 0000000 = TQ = TAD					