

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024eff100-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-6: SYSTEM BUS TARGETS AND ASSOCIATED PROTECTION REGISTERS

				SBTxREC	Gy Register				SBTxRD	y Register	SBTxWRy Register	
Target Number	Target Description ⁽⁵⁾	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1, GROUP0)	Name	Write Permissior (GROUP3, GROUP2, GROUP1, GROUP0)
<u>^</u>	System Bus	SBT0REG0	R	0x1F8F0000	R	64 KB	—	0	SBT0RD0	R/W ⁽¹⁾	SBT0WR0	R/W ⁽¹⁾
0		SBT0REG1	R	0x1F8F8000	R	32 KB	—	3	SBT0RD1	R/W ⁽¹⁾	SBT0WR1	R/W ⁽¹⁾
	Flash Memory ⁽⁶⁾ :	SBT1REG0	R	0x1D000000	R ⁽⁴⁾	R ⁽⁴⁾	—	0	SBT1RD0	R/W ⁽¹⁾	SBT1WR0	0, 0, 0, 0
	Program Flash Boot Flash	SBT1REG2	R	0x1F8E0000	R	4 KB	1	2	SBT1RD2	R/W ⁽¹⁾	SBT1WR2	R/W ⁽¹⁾
	Prefetch Module	SBT1REG3	R/W	R/W	R/W	R/W	1	2	SBT1RD3	R/W ⁽¹⁾	SBT1WR3	0, 0, 0, 0
4		SBT1REG4	R/W	R/W	R/W	R/W	1	2	SBT1RD4	R/W ⁽¹⁾	SBT1WR4	0, 0, 0, 0
1		SBT1REG5	R/W	R/W	R/W	R/W	1	2	SBT1RD5	R/W ⁽¹⁾	SBT1WR5	0, 0, 0, 0
		SBT1REG6	R/W	R/W	R/W	R/W	1	2	SBT1RD6	R/W ⁽¹⁾	SBT1WR6	0, 0, 0, 0
		SBT1REG7	R/W	R/W	R/W	R/W	0	1	SBT1RD7	R/W ⁽¹⁾	SBT1WR7	0, 0, 0, 0
		SBT1REG8	R/W	R/W	R/W	R/W	0	1	SBT1RD8	R/W ⁽¹⁾	SBT1WR8	0, 0, 0, 0
	RAM Bank 1 Memory	SBT2REG0	R	0x00000000	R ⁽⁴⁾	R ⁽⁴⁾	_	0	SBT2RD0	R/W ⁽¹⁾	SBT2WR0	R/W ⁽¹⁾
2		SBT2REG1	R/W	R/W	R/W	R/W	—	3	SBT2RD1	R/W ⁽¹⁾	SBT2WR1	R/W ⁽¹⁾
		SBT2REG2	R/W	R/W	R/W	R/W	0	1	SBT2RD2	R/W ⁽¹⁾	SBT2WR2	R/W ⁽¹⁾
	RAM Bank 2 Memory	SBT3REG0	R ⁽⁴⁾	R ⁽⁴⁾	R ⁽⁴⁾	R ⁽⁴⁾	—	0	SBT3RD0	R/W ⁽¹⁾	SBT3WR0	R/W ⁽¹⁾
3		SBT3REG1	R/W	R/W	R/W	R/W	—	3	SBT3RD1	R/W ⁽¹⁾	SBT3WR1	R/W ⁽¹⁾
		SBT3REG2	R/W	R/W	R/W	R/W	0	1	SBT3RD2	R/W ⁽¹⁾	SBT3WR2	R/W ⁽¹⁾
4	External Memory via EBI and EBI Module ⁽⁶⁾	SBT4REG0	R	0x20000000	R	64 MB	—	0	SBT4RD0	R/W ⁽¹⁾	SBT4WR0	R/W ⁽¹⁾
4	Module	SBT4REG2	R	0x1F8E1000	R	4 KB	0	1	SBT4RD2	R/W ⁽¹⁾	SBT4WR2	R/W ⁽¹⁾
	Peripheral Set 1: System Control	SBT5REG0	R	0x1F800000	R	128 KB	_	0	SBT5RD0	R/W ⁽¹⁾	SBT5WR0	R/W ⁽¹⁾
	Flash Control	SBT5REG1	R/W	R/W	R/W	R/W	—	3	SBT5RD1	R/W ⁽¹⁾	SBT5WR1	R/W ⁽¹⁾
5	DMT/WDT RTCC CVR PPS Input PPS Output Interrupts DMA	SBT5REG2	R/W	R/W	R/W	R/W	0	1	SBT5RD2	R/W ⁽¹⁾	SBT5WR2	R/W ⁽¹⁾

Note 1: Reset values for these bits are '0', '1', '1', '1', respectively.

2: The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset.

3: The SIZE<4:0> bits must be set to the corresponding Region Size, based on the following formula: Region Size = 2^(SIZE-1) x 1024 bytes. For read-only bits, this value is set by hardware on Reset.

4: Refer to the Device Memory Maps (Figure 4-1 through Figure 4-4) for specific device memory sizes and start addresses.

5: See Table 4-1for information on specific target memory size and start addresses.

6: The SBTxREG1 SFRs are reserved, and therefore, are not listed in this table for this target.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	_		_	_
45.0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
15:8	LBWPULOCK	—	_	LBWP4 ⁽¹⁾	LBWP3 ⁽¹⁾	LBWP2 ⁽¹⁾	LBWP1 ⁽¹⁾	LBWP0 ⁽¹⁾
7.0	R/W-1	r-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
7:0	UBWPULOCK	_		UBWP4 ⁽¹⁾	UBWP3 ⁽¹⁾	UBWP2 ⁽¹⁾	UBWP1 ⁽¹⁾	UBWP0 ⁽¹⁾

REGISTER 5-8: NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER

Legend:		r = Reserved				
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15		LBWPULOCK: Lower Boot Alias Write-protect Unlock bit
		1 = LBWPx bits are not locked and can be modified
		0 = LBWPx bits are locked and cannot be modified
		This bit is only clearable and cannot be set except by any reset.
bit 14-	-13	Unimplemented: Read as '0'
bit 12		LBWP4: Lower Boot Alias Page 4 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF enabled 0 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF disabled
bit 11		LBWP3: Lower Boot Alias Page 3 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF enabled 0 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF disabled
bit 10		LBWP2: Lower Boot Alias Page 2 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF enabled 0 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF disabled
bit 9		LBWP1: Lower Boot Alias Page 1 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF enabled 0 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF disabled
bit 8		LBWP0: Lower Boot Alias Page 0 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF enabled 0 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF disabled
bit 7		UBWPULOCK: Upper Boot Alias Write-protect Unlock bit
		 1 = UBWPx bits are not locked and can be modified 0 = UBWPx bits are locked and cannot be modified This bit is only user-clearable and cannot be set except by any reset.
bit 6		Reserved: This bit is reserved for use by development tools
bit 5		Unimplemented: Read as '0'
Note	1:	These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress)		ø					-			Bi	ts								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0050	100.44	31:16	_	—	—		FCEIP<2:0>		FCEIS	<1:0>	_	_	—		RTCCIP<2:0)>	RTCCI	S<1:0>	0000
03D0	IPC41	15:0	_	_	_		SPI4TXIP<2:0)>	SPI4TXI	S<1:0>	-	_	-	SPI4RXIP<2:0>		SPI4RXIS<1:0>		0000	
0250	IPC42	31:16		_	_		U4RXIP<2:0:	>	U4RXIS	S<1:0>	_	_	_		U4EIP<2:0:	>	U4EIS	S<1:0>	0000
03E0	IPC42	15:0 -		_	—		SQI1IP<2:0>		SQI1IS	5<1:0>	_	_	_		PREIP<2:0	>	PREIS	S<1:0>	0000
0250	IPC43	31:16	_	_	—		I2C4MIP<2:0>		I2C4MI	S<1:0>	_	_	_		I2C4SIP<2:0)>	I2C4SI	S<1:0>	0000
03F0	IPC43	15:0		_	_		I2C4BIP<2:0:	I2C4BIS	S<1:0>	_	_	-		U4TXIP<2:0	>	U4TXI	S<1:0>	0000	
0.400	10044	31:16	_	_	—		U5EIP<2:0>		U5EIS	<1:0>	_	_	_	SPI5TXIP<2:0> ⁽²⁾		SPI5TXIS	S<1:0> (2)	0000	
0400	IPC44	15:0	-	_	—	5	SPI5RXIP<2:0>(2)		SPI5RXIS	S<1:0> (2)	—	_	-	5	SPI5EIP<2:0:	>(2)	SPI5EIS	S<1:0> (2)	0000
0410	IPC45	31:16	_	_	_		I2C5SIP<2:0>		12C5S1	S<1:0>		_	—		I2C5BIP<2:0)>	I2C5BI	S<1:0>	0000
0410	IPC45	15:0		_	_		U5TXIP<2:0:	>	U5TXIS	6<1:0>	_	_	_		U5RXIP<2:0)>	U5RXI	S<1:0>	0000
0420	IPC46	31:16	_	_	_	S	SPI6TXIP<2:0> ⁽²⁾ SPI6EIP<2:0> ⁽²⁾		SPI6TXIS	6<1:0> ⁽²⁾	-	_	—	SPI6RXIP<2:0> ⁽²⁾			SPI6RXI	S<1:0> ⁽²⁾	0000
0420		15:0	_	_	_				SPI6EIS	<1:0> ⁽²⁾		_	—	I2C5MIP<2:0>			I2C5MI	S<1:0>	0000
0420	IPC47	31:16	_	—	—	—			-			_	_	U6TXIP<2:0>		U6TXI	S<1:0>	0000	
0430	IFC47	15:0	_	-	—		U6RXIP<2:0:	>	U6RXIS	S<1:0>		_	—	U6EIP<2:0>			U6EIS	6<1:0>	0000
0440	IPC48	31:16	_	_	_	_	_		_			_	—	ADCURDYIP<2:0>		ADCURD	YIS<1:0>	0000	
0440	IF U40	15:0	_	—	—	A	DCARDYIP<2	:0>	ADCARD	YIS<1:0>		_	_	ADCEOSIP<2:0>		ADCEOSIS<1:0>		0000	
0450	IPC49	31:16	_	-	—		ADC1EIP<2:0	>	ADC1EI	ADC1EIS<1:0> A		ADC0EIP<2:0>		ADC0E	IS<1:0>	0000			
0430	1FC49	15:0	_	—	—	_	_	_	_	_				A	DCGRPIP<2	2:0>	ADCGRPIS<1:0>		0000
0460	IPC50	31:16	_	_	_	_	_		_						ADC4EIP<2:	0>	ADC4E	IS<1:0>	0000
0400	1FC30	15:0	_	_	_		ADC3EIP<2:0	>	ADC3EI	S<1:0>					ADC2EIP<2:	0>	ADC2E	IS<1:0>	0000
0470	IPC51	31:16	_	_	_		ADC1WIP<2:0)>	ADC1W	IS<1:0>					ADC0WIP<2:	:0>	ADC0W	'IS<1:0>	0000
0470	IPC51	15:0		_	_		ADC7EIP<2:0	>	ADC7EI	S<1:0>				_	_	_	-	_	0000
0490	IPC52	31:16	_	_	_	_	_	-	_						ADC4WIP<2:	:0>	ADC4W	'IS<1:0>	0000
0460	IPC52	15:0		—	_		ADC3WIP<2:0)>	ADC3W	IS<1:0>					ADC2WIP<2:	:0>	ADC2W	'IS<1:0>	0000
0400	IPC53	31:16	-	_	_	—	-	—	-	_				—	—	—	—	—	0000
0490	IPC53	15:0	_	_	—		ADC7WIP<2:0>		ADC7W	IS<1:0>				_	_	—	_	_	0000
0540	055000	31:16	_	—	—	_			_	—	_	—	-	_	—	—	VOFF<	:17:16>	0000
0540	OFF000	15:0								VOFF<15:1>								—	0000
0544	055004	31:16	_	—	—	_	—	—	—	—	—	_	—	—	—	_	VOFF<	:17:16>	0000
0544	0FF001	OFF001 15:0							VOFF<15:1>									0000	

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

ss			Bits																
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3248	USB	31:16								DMA	ADDR<31:16	>							0000
3248	DMA5A	15:0								DM	ADDR<15:0	•							0000
324C	USB	31:16								DMA	COUNT<31:10	i>							0000
0240	DMA5N	15:0				-				DMA	COUNT<15:0	>							0000
3254	USB	31:16	_	_	—	—		_	—	-	_	—	—	-	-	-	_	-	0000
	DMA6C	15:0	—	—	—		-	DMABR	STM<1:0>	DMAERR			EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	
3258	USB DMA6A	31:16									ADDR<31:16								0000
		15:0									ADDR<15:0								0000
325C	USB DMA6N	31:16		DMACOUNT<31:16> 0000 DMACOUNT<15:0> 0000															
\vdash		15:0																	
3264	USB DMA7C	31:16 15:0			_		_		 STM<1:0>		—		 EP<3:0>	_	 DMAIE	 DMAMODE			
		31:16	—	_	—		_	DIMABR	51M<1:0>	DMAERR	ADDR<31:16		EP<3:0>		DIVIAIE	DMAMODE	DMADIR	DMAEN	0000
3268	USB DMA7A	15:0									ADDR<15:0:								0000
	USB	31:16									COUNT<31:10								0000
326C	DMA7N	15:0									COUNT<15:0								0000
	USB	31:16	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	0000
3274	DMA8C	15:0	_	_	_	_	_	DMABR	STM<1:0>	DMAERR		DMA	EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
0070	USB	31:16						1		DMA	ADDR<31:16	>			1		1	J	0000
3278	DMA8A	15:0								DM	ADDR<15:0	•							0000
327C	USB	31:16								DMA	COUNT<31:10	i>							0000
3270	DMA8N	15:0								DMA	COUNT<15:0	>							0000
3304	USB	31:16	—		—	_	—	_	—	—	_	—	_	-	—	_	_	—	0000
5504	E1RPC	15:0				-		-		RQP	KTCNT<15:0	>		-					0000
3308	USB	31:16	—	—	—	—	-	—	—	—	—	—	-	-	—	-	—	—	0000
	E2RPC	15:0								RQP	KTCNT<15:0	>	1						0000
330C	USB	31:16	_	_	—		—		—	—			_	_	_	_	_	—	0000
	E3RPC	15:0					1				KTCNT<15:0								0000
3310	USB E4RPC	31:16	_	_	—		-	_	—	<u> </u>	-	_	_	-	_	_	_		0000
\vdash		15:0									KTCNT<15:0								0000
3314	USB E5RPC	31:16 15:0	—	_	—	_	—	_	—			_	—	—	_	—	—	—	0000
\vdash											KTCNT<15:0								0000
3318	USB E6RPC	31:16 15:0	—	_	—	_	_	_	_		— KTCNT<15:0	_	_	_	_	_	_	—	0000
\vdash		31:16	_	_	_			_				<u> </u>		_	_	_		_	0000
331C	USB E7RPC	15:0	_	_			_			ROP			_	_		_			
1		10.0	0000 RQPKTCNT<15:0> 0000 nown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																

Legend: Note x = unknownDevice mode.

Host mode.

1: 2: 3: 4: Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).

REGISTER 11-5: USBIE0CSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 0) (CONTINUED)

bit 21 SENDSTALL: Send Stall Control bit (Device mode)

- 1 = Terminate the current transaction and transmit a STALL handshake. This bit is automatically cleared.
- 0 = Do not send STALL handshake.

REQPKT: IN transaction Request Control bit (Host mode)

- 1 = Request an IN transaction. This bit is cleared when the RXPKTRDY bit is set.
- 0 = Do not request an IN transaction
- bit 20 SETUPEND: Early Control Transaction End Status bit (Device mode)
 - 1 = A control transaction ended before the DATAEND bit has been set. An interrupt will be generated and the FIFO flushed at this time.
 - 0 = Normal operation

This bit is cleared by writing a '1' to the SVCSETEND bit in this register.

ERROR: No Response Error Status bit (Host mode)

- 1 = Three attempts have been made to perform a transaction with no response from the peripheral. An interrupt is generated.
- 0 = Clear this flag. Software must write a '0' to this bit to clear it.

DATAEND: End of Data Control bit (Device mode)

The software sets this bit when:

bit 19

- Setting TXPKTRDY for the last data packet
- Clearing RXPKTRDY after unloading the last data packet
- Setting TXPKTRDY for a zero length data packet

Hardware clears this bit.

SETUPPKT: Send a SETUP token Control bit (*Host mode*)

- 1 = When set at the same time as the TXPKTRDY bit is set, the module sends a SETUP token instead of an OUT token for the transaction
- 0 = Normal OUT token operation

Setting this bit also clears the Data Toggle.

- bit 18 SENTSTALL: STALL sent status bit (Device mode)
 - 1 = STALL handshake has been transmitted
 - 0 = Software clear of bit

RXSTALL: STALL handshake received Status bit (Host mode)

- 1 = STALL handshake was received
- 0 = Software clear of bit
- bit 17 **TXPKTRDY:** TX Packet Ready Control bit
 - 1 = Data packet has been loaded into the FIFO. It is cleared automatically.
 - 0 = No data packet is ready for transmit
- bit 16 **RXPKTRDY:** RX Packet Ready Status bit
 - 1 = Data packet has been received. Interrupt is generated (when enabled) when this bit is set.
 - 0 = No data packet has been received

This bit is cleared by setting the SVCRPR bit.

bit 15-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	-	—	-	_	_	-
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_		—		-		
15:8	R-0	R-0	R-0	R-0	R-1	R-0	R-0	R-0
10.0	RC		VE	RMAJOR<4:	0>		VERMIN	OR<9:8>
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				VERMIN	OR<7:0>			

REGISTER 11-15: USBHWVER: USB HARDWARE VERSION REGISTER

Legend:

3							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

- bit 15 RC: Release Candidate bit
 - 1 = USB module was created using a release candidate
 - 0 = USB module was created using a full release
- bit 14-10 VERMAJOR<4:0>: USB Module Major Version number bits This read-only number is the Major version number for the USB module.
- bit 9-0 VERMINOR<9:0>: USB Module Minor Version number bits This read-only number is the Minor version number for the USB module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—				—	—		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—				—	—		_
15:8	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
10.0	—	—	—	—	—	DMABRS	TM<1:0>	DMAERR
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		DMAE	P<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN

REGISTER 11-21: USBDMAxC: USB DMA CHANNEL 'x' CONTROL REGISTER ('x' = 1-8)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

- bit 10-9 DMABRSTM<1:0>: DMA Burst Mode Selection bit
 - 11 = Burst Mode 3: INCR16, INCR8, INCR4 or unspecified length
 - 10 = Burst Mode 2: INCR8, INCR4 or unspecified length
 - 01 = Burst Mode 1: INCR4 or unspecified length
 - 00 = Burst Mode 0: Bursts of unspecified length

bit 8 DMAERR: Bus Error bit

- 1 = A bus error has been observed on the input
- 0 = The software writes this to clear the error
- bit 7-4 DMAEP<3:0>: DMA Endpoint Assignment bits
 - These bits hold the endpoint that the DMA channel is assigned to. Valid values are 0-7.

bit 3 DMAIE: DMA Interrupt Enable bit

- 1 = Interrupt is enabled for this channel
- 0 = Interrupt is disabled for this channel

bit 2 DMAMODE: DMA Transfer Mode bit

- 1 = DMA Mode1 Transfers
- 0 = DMA Mode0 Transfers
- bit 1 DMADIR: DMA Transfer Direction bit
 - 1 = DMA Read (TX endpoint)
 - 0 = DMA Write (RX endpoint)

bit 0 DMAEN: DMA Enable bit

- 1 = Enable the DMA transfer and start the transfer
- 0 = Disable the DMA transfer

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24		—	_	—	—	-	_	—			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16		—						—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				POLLCON	N<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	POLLCON<7:0>										

REGISTER 20-18: SQI1BDPOLLCON: SQI BUFFER DESCRIPTOR POLL CONTROL REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **POLLCON<15:0>:** Buffer Descriptor Processor Poll Status bits These bits indicate the number of cycles the BDP would wait before refetching the descriptor control word if the previous descriptor fetched was disabled.

REGISTER 20-19: SQI1BDTXDSTAT: SQI BUFFER DESCRIPTOR DMA TRANSMIT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	R-x	R-x	R-x	R-x	U-0
31:24		—	_		TXSTAT	ΓE<3:0>		_
00.40	U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
23:16	—	—	_					
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	_	_	—	—	_	—
7.0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
7:0				TXCURBUF	LEN<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-25 **TXSTATE<3:0>:** Current DMA Transmit State Status bits These bits provide information on the current DMA receive states.

bit 24-21 Unimplemented: Read as '0'

bit 20-16 **TXBUFCNT<4:0>:** DMA Buffer Byte Count Status bits

These bits provide information on the internal FIFO space.

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 **TXCURBUFLEN<7:0>:** Current DMA Transmit Buffer Length Status bits These bits provide the length of the current DMA transmit buffer.

21.1 I²C Control Registers

TABLE 21-1: I2C1 THROUGH I2C5 REGISTER MAP

ess										Bi	ts								
Virtual Address (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	I2C1CON	31:16	_	_	—	—	—		—			PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
0000	12010011	15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0010	I2C1STAT	31:16		—	—	—		-	—	_	—	—	-	_	_	—	—	-	0000
		15:0	ACKSTAT	TRSTAT	ACKTIM	_		BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0020	I2C1ADD	31:16	_	_			_			_	_	—			—	—		—	0000
		15:0	_				_						Address	Register					0000
0030	I2C1MSK	31:16 15:0			—				—	_	_	_	- Address Mr	ask Registe		_	—	—	0000
		31:16	_										Address Ma	ask Registe				_	0000
0040	I2C1BRG	15:0			_	_	_		Bau	d Rate Gen	erator Reg	ister	_	_	_	_	_		0000
		31:16		_	_	_		_					_	_	_	_	_	_	0000
0050	I2C1TRN	15:0	_	_	_	_		_	_	_				Transmit	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	_	_		—	_	_	_	0000
0060	I2C1RCV	15:0	_	_	_	_		_	_	_				Receive	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
0200	12C2CON ⁽²⁾	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0040	12C2STAT ⁽²⁾	31:16	_		_	—	—		_	_		_	—	—	_	_	—		0000
0210	12025TAT-	15:0	ACKSTAT	TRSTAT	ACKTIM	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0220	12C2ADD(2)	31:16	_		—	_	_		—	_	-	_	-	_	_	—	-		0000
0220	IZCZADD.	15:0	_	_	_	—	_	_					Address	Register			-		0000
0230	12C2MSK(2)	31:16	—	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	0000
0200		15:0	_			—	_						Address Ma	ask Registe	r				0000
0240	12C2BRG(2)	31:16	—	—	—	—	_	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0							Bau	d Rate Gen	erator Reg	ister							0000
0250	12C2TRN(2)	31:16	_			_	_		_	_	_	—				_		_	0000
		15:0	_				_			_				Transmit	Register				0000
0260	I2C2RCV(2)	31:16	_	_	_	_		_	_	_	-		—	-	—	—	—	—	0000
		15:0	_							_		DOIE	0015	Receive		00005		DUCH	0000
0400	I2C3CON	31:16 15:0	ON					— A10M	— DISSLW	 SMEN	— GCEN	PCIE STREN	SCIE ACKDT	BOEN ACKEN	SDAHT RCEN	SBCDE PEN	AHEN RSEN	DHEN SEN	0000
		31:16			SIDL	SULREL		A10M	DISSLW	SIMEIN	GCEN	STREN	ACKDI	ACKEN	RCEN	PEN	KSEN	SEN —	1000
0410	I2C3STAT	15:0	 ACKSTAT	 TRSTAT	ACKTIM	_		BCL	GCSTAT	ADD10		I2COV	 D/A	 P		R/W	 RBF	 TBF	0000
		31:16	-				_	BCL	GCSTAT			12000		г 	3	R/W			0000
0420	I2C3ADD	15:0											Address	 Register					0000
Logon									chown in h				/1001033	register					0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

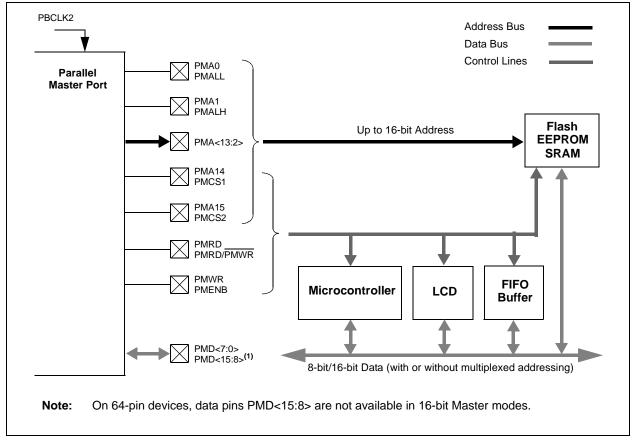
Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

2: This register is not available on 64-pin devices.

REGISTER 22-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved
	 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Data is being received
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit.
	This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state.
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed
bit 0	 URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

23.0 PARALLEL MASTER PORT (PMP)


Note:	This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive refer- ence source. To complement the informa- tion in this data sheet, refer to Section 13 .
	"Parallel Master Port (PMP)"
	(DS60001128) in the "PIC32 Family Ref-
	erence Manual", which is available from
	the Microchip web site (www.micro- chip.com/PIC32).

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. The following are key features of the PMP module:

- 8-bit,16-bit interface
- Up to 16 programmable address lines
- Up to two Chip Select lines
- Programmable strobe options:
 - Individual read and write strobes, or
 - Read/write strobe with enable strobe
- Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- Parallel Slave Port support:
 - Legacy addressable
 - Address support
 - 4-byte deep auto-incrementing buffer
- Programmable Wait states
- Operate during Sleep and Idle modes
- Separate configurable read/write registers or dual buffers for Master mode
- Fast bit manipulation using CLR, SET, and INV registers

Note: On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	-	—	_	_		_	_	—	
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	-	—	_	_	—	—	—	—	
45-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	BUSY IRQM		<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	WAITB<1:0> ⁽¹⁾			WAITM	<3:0> ⁽¹⁾		WAITE<1:0> ⁽¹⁾		

REGISTER 23-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy
- bit 14-13 **IRQM<1:0>:** Interrupt Request Mode bits
 - 11 = Reserved, do not use
 - 10 = Interrupt is generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
 - 01 = Interrupt is generated at the end of the read/write cycle
 - 00 = No Interrupt is generated

bit 12-11 INCM<1:0>: Increment Mode bits

- 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
- 10 = Decrement ADDR<15:0> and ADDR<14> by 1 every read/write cycle⁽²⁾
- 01 = Increment ADDR<15:0> and ADDR<14> by 1 every read/write cycle⁽²⁾
- 00 = No increment or decrement of address

bit 10 MODE16: 8/16-bit Mode bit

- 1 = 16-bit mode: a read or write to the data register invokes a single 16-bit transfer
- 0 = 8-bit mode: a read or write to the data register invokes a single 8-bit transfer

bit 9-8 MODE<1:0>: Parallel Port Mode Select bits

- 11 = Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA<x:0>, and PMD<15:0>)⁽³⁾
- 10 = Master mode 2 (PMCSx, PMRD, PMWR, PMA<x:0>, and PMD<15:0>)⁽³⁾
- 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCSx, PMD<7:0>, and PMA<1:0>)
- 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCSx, and PMD<7:0>)

bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾

- 11 = Data wait of 4 TPBCLK2; multiplexed address phase of 4 TPBCLK2
- 10 = Data wait of 3 TPBCLK2; multiplexed address phase of 3 TPBCLK2
- 01 = Data wait of 2 TPBCLK2; multiplexed address phase of 2 TPBCLK2
- 00 = Data wait of 1 TPBCLK2; multiplexed address phase of 1 TPBCLK2 (default)

Note 1: Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK2 cycle for a write operation; WAITB = 1 TPBCLK2 cycle, WAITE = 0 TPBCLK2 cycles for a read operation.

- 2: Address bits 14 and 15 are is not subject to auto-increment/decrement if configured as Chip Select.
- 3: The PMD<15:8> bits are not active is the MODE16 bit = 1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0						
31.24				CiFIFOB	A<31:24>			
22.46	R/W-0	R/W-0						
23:16				CiFIFOB	A<23:16>			
15:8	R/W-0	R/W-0						
15:8				CiFIFOB	A<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0 ⁽¹⁾	R-0 ⁽¹⁾
7:0				CiFIFO	BA<7:0>			

REGISTER 29-19: CIFIFOBA: CAN MESSAGE BUFFER BASE ADDRESS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CiFIFOBA<31:0>: CAN FIFO Base Address bits

These bits define the base address of all message buffers. Individual message buffers are located based on the size of the previous message buffers. This address is a physical address. Note that bits <1:0> are read-only and read '0', forcing the messages to be 32-bit word-aligned in device RAM.

Note 1: This bit is unimplemented and will always read '0', which forces word-alignment of messages.

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

REGISTE	R 29-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER 'n' ('n' = 0-31) (CONTINUED)
bit 6	TXABAT: Message Aborted bit ⁽²⁾
	1 = Message was aborted
	0 = Message completed successfully
bit 5	TXLARB: Message Lost Arbitration bit ⁽³⁾
	1 = Message lost arbitration while being sent
	0 = Message did not lose arbitration while being sent
bit 4	TXERR: Error Detected During Transmission bit ⁽³⁾
	1 = A bus error occurred while the message was being sent
	0 = A bus error did not occur while the message was being sent
bit 3	TXREQ: Message Send Request
	<u>TXEN = 1:</u> (FIFO configured as a Transmit FIFO)
	Setting this bit to '1' requests sending a message.
	The bit will automatically clear when all the messages queued in the FIFO are successfully sent. Clearing the bit to '0' while set ('1') will request a message abort.
	<u>TXEN = 0:</u> (FIFO configured as a Receive FIFO) This bit has no effect.
bit 2	RTREN: Auto RTR Enable bit
	1 = When a remote transmit is received, TXREQ will be set
	0 = When a remote transmit is received, TXREQ will be unaffected
bit 1-0	TXPR<1:0>: Message Transmit Priority bits
	11 = Highest Message Priority
	10 = High Intermediate Message Priority
	01 = Low Intermediate Message Priority 00 = Lowest Message Priority
	UU - LOWEST MESSAGE I HUITY
Note 1:	These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits
	(CiCON<23:21>) = 100).

- 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
- **3:** This bit is reset on any read of this register or when the FIFO is reset.

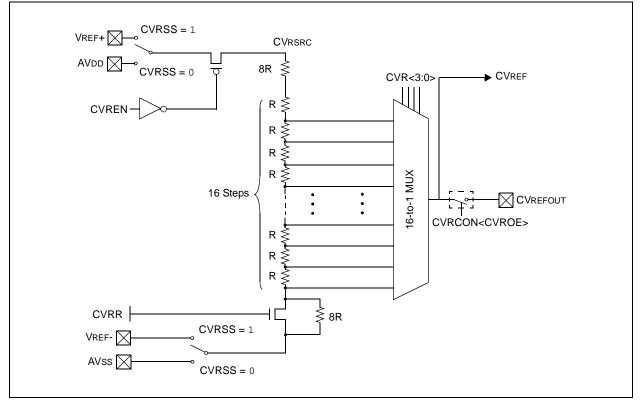
REGISTER 30-11: ETHRXFC: ETHERNET CONTROLLER RECEIVE FILTER CONFIGURATION REGISTER (CONTINUED) bit 7 **CRCERREN:** CRC Error Collection Enable bit 1 = The received packet CRC must be invalid for the packet to be accepted 0 = Disable CRC Error Collection filtering This bit allows the user to collect all packets that have an invalid CRC. bit 6 CRCOKEN: CRC OK Enable bit 1 = The received packet CRC must be valid for the packet to be accepted 0 = Disable CRC filtering This bit allows the user to reject all packets that have an invalid CRC. **RUNTERREN:** Runt Error Collection Enable bit bit 5 1 = The received packet must be a runt packet for the packet to be accepted 0 = Disable Runt Error Collection filtering This bit allows the user to collect all packets that are runt packets. For this filter, a runt packet is defined as any packet with a size of less than 64 bytes (when CRCOKEN = 0) or any packet with a size of less than 64 bytes that has a valid CRC (when CRCOKEN = 1). RUNTEN: Runt Enable bit bit 4 1 = The received packet must not be a runt packet for the packet to be accepted 0 = Disable Runt filtering This bit allows the user to reject all runt packets. For this filter, a runt packet is defined as any packet with a size of less than 64 bytes. bit 3 UCEN: Unicast Enable bit 1 = Enable Unicast Filtering 0 = Disable Unicast Filtering This bit allows the user to accept all unicast packets whose Destination Address matches the Station Address. bit 2 NOTMEEN: Not Me Unicast Enable bit 1 = Enable Not Me Unicast Filtering 0 = Disable Not Me Unicast Filtering This bit allows the user to accept all unicast packets whose Destination Address does not match the Station Address. MCEN: Multicast Enable bit bit 1 1 = Enable Multicast Filtering 0 = Disable Multicast Filtering This bit allows the user to accept all Multicast Address packets. bit 0 BCEN: Broadcast Enable bit 1 = Enable Broadcast Filtering 0 = Disable Broadcast Filtering This bit allows the user to accept all Broadcast Address packets. Note 1: XOR = True when either one or the other conditions are true, but not both. 2: This Hash Table Filter match is active regardless of the value of the HTEN bit.

3: This Magic Packet Filter match is active regardless of the value of the MPEN bit.

Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

32.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

Note:	This data sheet summarizes the
	features of the PIC32MZ EF family of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 20. "Comparator
	Voltage Reference (CVREF)"
	(DS60001109) in the "PIC32 Family
	Reference Manual", which is available
	from the Microchip web site
	(www.microchip.com/PIC32).


The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The comparator voltage reference has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin

A block diagram of the CVREF module is illustrated in Figure 32-1.

33.3.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MZ EF devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- Configuration bit select lock

33.3.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 42.** "**Oscillators with Enhanced PLL**" (DS60001250) in the "*PIC32 Family Reference Manual*" for details.

33.3.1.2 Configuration Bit Select Lock

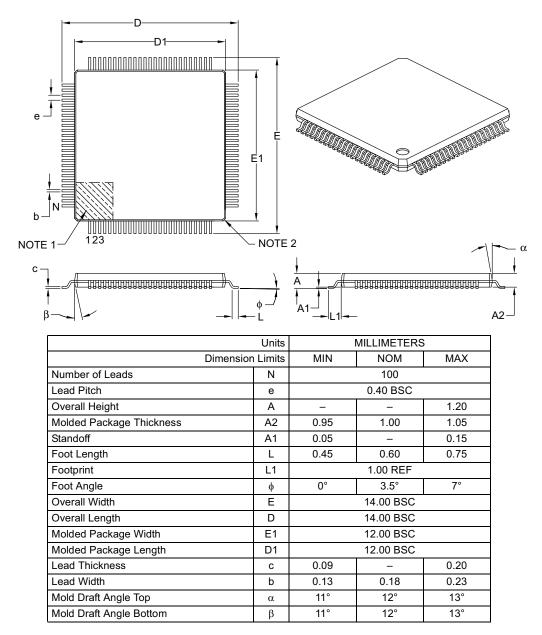
As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

DC CHARACTERISTICS				Stendard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾			
		Output High Voltage I/O Pins: 4x Source Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-RB2, RB4, RB6-RB7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11	2.4	_	_	V	IOH ≥ -10 mA, VDD = 3.3V			
DO20	Vон	Output High Voltage I/O Pins: 8x Source Driver Pins - RA0-RA2, RA4, RA5 RB3, RB5, RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7	2.4	_	_	V	IOH ≥ -15 mA, VDD = 3.3V			
		Output High Voltage I/O Pins: 12x Source Driver Pins - RA6, RA7 RE0-RE3 RF1 RG12-RG14	2.4		_	V	IOH ≥ -20 mA, VDD = 3.3V			

TABLE 37-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

Note 1: Parameters are characterized, but not tested.

AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol Characteris		tics ⁽²⁾	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DO32	TIOF	Port Output Fall Time I/O Pins: 4x Source Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-RB2, RB4, RB6-RB7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11			_	9.5	ns	CLOAD = 50 pF
				_	_	6	ns	Cload = 20 pF
		Port Output Fall Time I/O Pins: 8x Source Driver Pins - RA0-RA2, RA4, RA5 RB3, RB5, RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7			_	8	ns	CLOAD = 50 pF
				_	_	6	ns	CLOAD = 20 pF
		Port Output Fall Time I/O Pins: 12x Source Driver Pins - RA6, RA7 RE0-RE3 RF1 RG12-RG14			_	3.5	ns	CLOAD = 50 pF
				_	_	2	ns	CLOAD = 20 pF
DI35	Tinp	INTx Pin High or Low		5	—	—	ns	_
DI40	Trbp	CNx High or Low Time		5	—	—	ns	


TABLE 37-23: I/O TIMING REQUIREMENTS (CONTINUED)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B