

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024eff144-e-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3: **PIN NAMES FOR 100-PIN DEVICES**

100-PIN TQFP (TOP VIEW)

Pin #

1

2

3

4

5

6

7

8

9

10

11

12

13

14 Vdd

15

Vss

MCLR

PIC32MZ0512EF(E/F/K)100 PIC32MZ1024EF(G/H/M)100 PIC32MZ1024EF(E/F/K)100 PIC32MZ2048EF(G/H/M)100

Full Pin Name Pin # Full Pin Name AN23/AERXERR/RG15 36 Vss EBIA5/AN34/PMA5/RA5 37 Vdd EBID5/AN17/RPE5/PMD5/RE5 TCK/EBIA19/AN29/RA1 38 TDI/EBIA18/AN30/RPF13/SCK5/RF13 EBID6/AN16/PMD6/RE6 39 EBID7/AN15/PMD7/RE7 40 TDO/EBIA17/AN31/RPF12/RF12 EBIA6/AN22/RPC1/PMA6/RC1 41 EBIA11/AN7/ERXD0/AECRS/PMA11/RB12 EBIA12/AN21/RPC2/PMA12/RC2 42 AN8/ERXD1/AECOL/RB13 EBIWE/AN20/RPC3/PMWR/RC3 43 EBIA1/AN9/ERXD2/AETXD3/RPB14/SCK3/PMA1/RB14 EBIOE/AN19/RPC4/PMRD/RC4 44 EBIA0/AN10/ERXD3/AETXD2/RPB15/OCFB/PMA0/RB15 AN14/C1IND/ECOL/RPG6/SCK2/RG6 45 Vss EBIA4/AN13/C1INC/ECRS/RPG7/SDA4/PMA4/RG7 Vdd 46 EBIA3/AN12/C2IND/ERXDV/ECRSDV/AERXDV/ AECRSDV/RPG8/SCL4/PMA3/RG8 47 AN32/AETXD0/RPD14/RD14 AN33/AETXD1/RPD15/SCK6/RD15 48 49 OSC1/CLKI/RC12 OSC2/CLKO/RC15 50 EBIA2/AN11/C2INC/ERXCLK/EREFCLK/AERXCLK/

100

1

16	AEREFCLK/RPG9/PMA2/RG9		51	VBUS
17	TMS/EBIA16/AN24/RA0	Ī	52	VUSB3V3
18	AN25/AERXD0/RPE8/RE8	1	53	Vss
19	AN26/AERXD1/RPE9/RE9	ľ	54	D-
20	AN45/C1INA/RPB5/RB5	Î.	55	D+
21	AN4/C1INB/RB4	Ī	56	RPF3/USBID/RF3
22	AN3/C2INA/RPB3/RB3	[57	EBIRDY3/RPF2/SDA3/RF2
23	AN2/C2INB/RPB2/RB2		58	EBIRDY2/RPF8/SCL3/RF8
24	PGEC1/AN1/RPB1/RB1	1	59	EBICS0/SCL2/RA2
25	PGED1/AN0/RPB0/RB0	Î.	60	EBIRDY1/SDA2/RA3
26	PGEC2/AN46/RPB6/RB6	I	61	EBIA14/PMCS1/PMA14/RA4
27	PGED2/AN47/RPB7/RB7		62	Vdd
28	VREF-/CVREF-/AN27/AERXD2/RA9	I	63	Vss
29	VREF+/CVREF+/AN28/AERXD3/RA10		64	EBIA9/RPF4/SDA5/PMA9/RF4
30	AVdd		65	EBIA8/RPF5/SCL5/PMA8/RF5
31	AVss	I	66	AETXCLK/RPA14/SCL1/RA14
32	EBIA10/AN48/RPB8/PMA10/RB8		67	AETXEN/RPA15/SDA1/RA15
33	EBIA7/AN49/RPB9/PMA7/RB9		68	EBIA15/RPD9/PMCS2/PMA15/RD9
34	EBIA13/CVREFOUT/AN5/RPB10/PMA13/RB10	Ī	69	RPD10/SCK4/RD10
35	AN6/ERXERR/AETXERR/RB11		70	EMDC/AEMDC/RPD11/RD11
1-4-	1. The DDs size and he was down and he see the second here the		- Table	4 for the sourileble manine and south and Section 40.4 "Denine and

Note an be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin 1: Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

Shaded pins are 5V tolerant. 3:

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	То	access	the	following	documents,			
	bro	wse the	docur	nentation s	ection of the			
	Mic	rochip		web	site			
	(www.microchip.com).							

- Section 1. "Introduction" (DS60001127)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 22. "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)" (DS60001344)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 34. "Controller Area Network (CAN)" (DS60001154)
- Section 35. "Ethernet Controller" (DS60001155)
- Section 41. "Prefetch Module for Devices with L1 CPU Cache" (DS60001183)
- Section 42. "Oscillators with Enhanced PLL" (DS60001250)
- Section 46. "Serial Quad Interface (SQI)" (DS60001244)
- Section 47. "External Bus Interface (EBI)" (DS60001245)
- Section 48. "Memory Organization and Permissions" (DS60001214)
- Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246)
- Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192)
- Section 51. "Hi-Speed USB with On-The-Go (OTG)" (DS60001326)
- Section 52. "Flash Program Memory with Support for Live Update" (DS60001193)

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress ()		e								В	its								s
Virtual Add (BF81_#	Registe Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
004.0	055400	31:16	_	—	—	—	-	_	-	—	—	—	—	—	—	_	VOFF<1	7:16>	000
0810	OFF183	15:0				•	•		•	VOFF<15:1>				•		•		_	000
0000	055494	31:16	_	_	-	_	_	_	_	_	_	_	_	_	_	_	VOFF<1	7:16>	000
0620	UFF 164	15:0								VOFF<15:1>	•							_	000
0824	OFE185(2)	31:16	_	_	—	—	—	_	—	—	_	—	—	—	—	—	VOFF<1	7:16>	000
0024	OFF 165 7	15:0								VOFF<15:1>	•							_	000
0828	0828 OFF186 ⁽²⁾	31:16		—	—	—	—	—	-	—	_	—	—	—	—	—	VOFF<1	7:16>	000
0020		15:0								VOFF<15:1>								_	0000
0820	D02C OFE107(2)	31:16	_	—	_	—	—	—	-	—	—	_	—	—	—	—	VOFF<1	7:16>	000
0020	011107**	15:0								VOFF<15:1>	-							—	000
0830		31:16		—	—	—	—	—	—	—	_	—	—	—	—	—	VOFF<1	7:16>	000
0030	011100	15:0								VOFF<15:1>	•							—	000
0834	0001	31:16	-	—	—	—	—	_	—	—	—	—	—	—	—	—	VOFF<1	7:16>	000
0034	011103	15:0					-			VOFF<15:1>				-		-		_	000
0838	OFE100	31:16	_	—	—	—	—	_	—	_	_	_	—	—	—	—	VOFF<1	7:16>	0000
0030	011130	15:0								VOFF<15:1>	•							—	000
0840	OFE102	31:16		—	-	—	—	—		—	—			—		—	VOFF<1	7:16>	000
0040	011132	15:0					-			VOFF<15:1>				-		-		_	000
0844	OFE103	31:16	_	—	—	—	—	_	—	_	_	_	—	—	—	—	VOFF<1	7:16>	000
0044	011135	15:0					-			VOFF<15:1>				-		-		_	000
0848	OFF194	31:16		—	-	—	—	—	-	—	—	-	—	—	—	—	VOFF<1	7:16>	000
0040	011134	15:0								VOFF<15:1>	•							—	000
0850	OFE106	31:16		—	-	—	—	—		—	—			—		—	VOFF<1	7:16>	000
0850	OFF 190	15:0		•		-	-	•	-	VOFF<15:1>	•		-	-		-	-	—	000
0858	OFE108	31:16	-	—	—	—	—	—	—	_	—	—	—	—	—	—	VOFF<1	7:16>	000
0000	066190	15:0								VOFF<15:1>	•							—	000
0950	OFE100	31:16	_	_	—	—	—	_	_	—	—	—	_	—	—	—	VOFF<1	7:16>	000
0650	017133	15:0								VOFF<15:1>								_	000
0960	055200	31:16			_	_	_	_	_	_	_	_	_	—	_	—	VOFF<1	7:16>	000
0000	860 OFF200	15:0								VOFF<15:1>								_	000

© 2015-2016 Microchip Technology Inc.

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
51.24	—	—	—		IP3<2:0>	IS3<1:0>		
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	—		IP2<2:0>	IS2<1:0>		
15.9	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	—	—	—		IP1<2:0>		IS1<	:1:0>
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_		_	IP0<2:0>			IS0<	:1:0>

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 2	8-26	IP3<2:0>: Interrupt Priority bits
		111 = Interrupt priority is 7
		•
		•
		-
		0.01 = Interrupt priority is 1
		000 = Interrupt is disabled
bit 2	5-24	IS3<1:0>: Interrupt Subpriority bits
		11 = Interrupt subpriority is 3
		10 = Interrupt subpriority is 2
		01 = Interrupt subpriority is 1
		00 = Interrupt subpriority is 0
bit 2	3-21	Unimplemented: Read as '0'
bit 2	0-18	IP2<2:0>: Interrupt Priority bits
		111 = Interrupt priority is 7
		•
		•
		•
		010 = Interrupt priority is 1
		0.01 = Interrupt promy is 1
hit 1	7 16	
DILI	7-10	132<1.0>. Interrupt Subpriority bits
		11 = Interrupt subpriority is 3
		10 = 1000000000000000000000000000000000
		01 = Interrupt subpriority is 0
hit 1	5-13	Unimplemented: Read as '0'
DIL I	0-10	ommpionented. Neau as 0
No	ote:	This register represents a generic def

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-2 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	CHPIGN<7:0>									
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—			—		
45.0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0		
15:8	CHBUSY	—	CHIPGNEN	—	CHPATLEN	_	_	CHCHNS ⁽¹⁾		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0		
	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPF	RI<1:0>		

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 CHPIGN<7:0>: Channel Register Data bits

Pattern Terminate mode:

Any byte matching these bits during a pattern match may be ignored during the pattern match determination when the CHPIGNEN bit is set. If a byte is read that is identical to this data byte, the pattern match logic will treat it as a "don't care" when the pattern matching logic is enabled and the CHPIGEN bit is set.

bit 23-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **CHPIGNEN:** Enable Pattern Ignore Byte bit

1 = Treat any byte that matches the CHPIGN<7:0> bits as a "don't care" when pattern matching is enabled 0 = Disable this feature

- bit 12 Unimplemented: Read as '0'
- bit 11 CHPATLEN: Pattern Length bit
 - 1 = 2 byte length
 - 0 = 1 byte length

bit 10-9 Unimplemented: Read as '0'

- bit 8 **CHCHNS:** Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)
 - CHEN: Channel Enable bit⁽²⁾
- 1 = Channel is enabled

bit 7

- 0 = Channel is disabled
- bit 6 CHAED: Channel Allow Events If Disabled bit
 - 1 = Channel start/abort events will be registered, even if the channel is disabled
 - 0 = Channel start/abort events will be ignored if the channel is disabled
- bit 5 CHCHN: Channel Chain Enable bit
 - 1 = Allow channel to be chained
 - 0 = Do not allow channel to be chained
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1							
	THHSRTN<15:8>														
22.46	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0							
23.10	THHSRTN<7:0>														
15.0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
10.0	TUCH<15:8>														
7.0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1	R/W-0	R/W-0							
7:0				TUCH	TUCH<7:0>										

REGISTER 11-26: USBTMCON1: USB TIMING CONTROL REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **THHSRTN:<15:0>:** Hi-Speed Resume Signaling Delay bits These bits set the delay from the end of Hi-Speed resume signaling (acting as a Host) to enable the UTM normal operating mode.

bit 15-0 **TUCH<15:0>:** Chirp Time-out bits These bits set the chirp time-out. This number, when multiplied by 4, represents the number of USB module clock cycles before the time-out occurs.

Note: Use of this register will allow the Hi-Speed time-out to be set to values that are greater than the maximum specified in the USB 2.0 specification, making the USB module non-compliant.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	_	_	_	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	_	_	_	—			
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	—	—	—	—	_	_	_	—			
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0	—	—	—	—		THBS	Γ<3:0>				

REGISTER 11-27: USBTMCON2: USB TIMING CONTROL REGISTER 2

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-4 Unimplemented: Read as '0'

bit 3-0 THBST<3:0>: High Speed Time-out Adder bits

These bits represent the value to be added to the minimum high speed time-out period of 736 bit times. The time-out period can be increased in increments of 64 Hi-Speed bit times (133 ns).

Note: Use of this register will allow the Hi-Speed time-out to be set to values that are greater than the maximum specified in the USB 2.0 specification, making the USB module non-compliant.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	—	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E

REGISTER 23-7: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HS = Hardware Set	SC = Software Cleared					
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

- bit 15 **IBF:** Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer is occurred (must be cleared in software)
 - 0 = No overflow is occurred

bit 13-12 Unimplemented: Read as '0'

- bit 11-8 **IBxF:** Input Buffer x Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data

bit 7 **OBE:** Output Buffer Empty Status bit

- 1 = All readable output buffer registers are empty
- 0 = Some or all of the readable output buffer registers are full

bit 6 **OBUF:** Output Buffer Underflow Status bit

- 1 = A read occurred from an empty output byte buffer (must be cleared in software)
- 0 = No underflow is occurred
- bit 5-4 Unimplemented: Read as '0'

bit 3-0 **OBxE:** Output Buffer x Status Empty bits

- 1 = Output buffer is empty (writing data to the buffer will clear this bit)
- 0 = Output buffer contains data that has not been transmitted

25.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Calendar Clock and (RTCC)" (DS60001125) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Lowpower optimization provides extended battery lifetime while keeping track of time. The following are key features of the RTCC module:

- · Time: hours, minutes, and seconds
- 24-hour format (military time)
- · Visibility of one-half second period
- Provides calendar: Weekday, date, month and year
- Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month, and one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- Leap year correction
- · BCD format for smaller firmware overhead
- Optimized for long-term battery operation
- Fractional second synchronization
- User calibration of the clock crystal frequency with auto-adjust
- Calibration range: ±0.66 seconds error per month
- Calibrates up to 260 ppm of crystal error
- Uses external 32.768 kHz crystal or 32 kHz internal oscillator
- Alarm pulse, seconds clock, or internal clock output on RTCC pin

© 2015-2016 Microchip Technology Inc.

26.1 Crypto Engine Control Registers

TABLE 26-2: CRYPTO ENGINE REGISTER MAP

ess		Bits																	
Virtual Addr (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
5000		31:16				REVISIO	ON<7:0>							VERSI	ON<7:0>				0000
5000	CEVER	15:0								IC	<15:0>								0000
5004	CECON	31:16		—	—	—	—	—	_	—	_		-		—	_	_	—	0000
3004	CECCIN	15:0		—	—	—	—	—	—	—	SWAPOEN	SWRST	SWAPEN		—	BDPCHST	BDPPLEN	DMAEN	0000
5008	CEBDADDR	31:16								BDPA									0000
0000	OLDBRODER	15:0								BBIT	DDI((01.0)								0000
500C	CEBDPADDR	31:16								BASEA	DDR<31:0>								0000
		15:0																	0000
5010	CESTAT	31:16	ER	RMODE<2	2:0>	E	RROP<2:0	0>	> ERRPHASE<1:0> — — BDSTATE<3:0> START							START ACTIVE			
		15:0		i				i		BDCTRL<15:0>					i		0000		
5014	CEINTSRC	31:16	_		—	-	—	-		—	_				—	—	—		0000
		15:0	_	_	-	-	—	-		—		_	—	_	AREIF	PKTIF	CBDIF	PENDIF	0000
5018	CEINTEN	31:16	_									_			-	-	-	-	0000
		15:0					_			_			_		AREIE	PKTE	CBDIE	PENDIE	0000
501C	CEPOLLCON	31:16		—	—	_		_			-		—		—	_		—	0000
		15:0								BDPPL	.CON<15:0>								0000
5020	CEHDLEN	31:16		_	_		_			_	_	_	_			_	_	_	0000
		15:0					_			_				HDRLE	=N<7:0>				0000
5024	CETRLLEN	31:16	_	_	_		_	_		_	_	_	_			_	_	-	0000
		15:0	_	_					—	_				IKLKL	EIN<7:U>				0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7.0	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	SWAPOEN	SWRST	SWAPEN	—	—	BDPCHST	BDPPLEN	DMAEN

REGISTER 26-2: CECON: CRYPTO ENGINE CONTROL REGISTER

Legend:		HC = Hardware Cleared						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-8 Unimplemented: Read as '0'

- bit 7 SWAPOEN: Swap Output Data Enable bit
 - 1 = Output data is byte swapped when written by dedicated DMA
 - 0 = Output data is not byte swapped when written by dedicated DMA
- bit 6 SWRST: Software Reset bit
 - 1 = Initiate a software reset of the Crypto Engine
 - 0 = Normal operation
- bit 5 SWAPEN: Input Data Swap Enable bit
 - 1 = Input data is byte swapped when read by dedicated DMA
 - 0 = Input data is not byte swapped when read by dedicated DMA
- bit 4-3 Unimplemented: Read as '0'

bit 2 BDPCHST: Buffer Descriptor Processor (BDP) Fetch Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

- 1 = BDP descriptor fetch is enabled
- 0 = BDP descriptor fetch is disabled

bit 1 BDPPLEN: Buffer Descriptor Processor Poll Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

- 1 = Poll for descriptor until valid bit is set
- 0 = Do not poll

bit 0 DMAEN: DMA Enable bit

- 1 = Crypto Engine DMA is enabled
- 0 = Crypto Engine DMA is disabled

FIGURE 28-2: S&H BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit Bit 31/23/15/7 30/22/14/6		Bit Bit 29/21/13/5 28/20/12/4		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0				
31.24	FLTEN27	MSEL2	27<1:0>		FSEL27<4:0>							
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	FLTEN26	MSEL2	26<1:0>		FSEL26<4:0>							
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15.6	FLTEN25	MSEL2	25<1:0>			FSEL25<4:0>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	FLTEN24	FLTEN24 MSEL24<1:0>			FSEL24<4:0>							

REGISTER 29-16: CIFLTCON6: CAN FILTER CONTROL REGISTER 6

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN27: Filter 27 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL27<1:0>: Filter 27 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL27<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 •
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN26: Filter 26 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL26<1:0>: Filter 26 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL26<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • • • • • • • • • • •

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—			—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—			—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—			—	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
		_			_	_	SCAN	READ

REGISTER 30-32: EMAC1MCMD: ETHERNET CONTROLLER MAC MII MANAGEMENT COMMAND REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-2 Unimplemented: Read as '0'

- bit 1 SCAN: MII Management Scan Mode bit
 - 1 = The MII Management module will perform read cycles continuously (for example, useful for monitoring the Link Fail)
 - 0 = Normal Operation

bit 0 READ: MII Management Read Command bit

- 1 = The MII Management module will perform a single read cycle. The read data is returned in the EMAC1MRDD register
- 0 = The MII Management module will perform a write cycle. The write data is taken from the EMAC1MWTD register

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

31.1 Comparator Control Registers

TABLE 31-1: COMPARATOR REGISTER MAP

ess	Register Name ⁽¹⁾									В	its								6
Virtual Addi (BF84_#		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000		31:16	_	—	—	_	—	—	_	—	—	—	—	_	-	—	—	—	0000
C000	CIVITCON	15:0	ON	COE	CPOL	_	_	—	_	COUT	EVPO	L<1:0>	—	CREF	—	—	CCH	<1:0>	00C3
C010	CM2CON	31:16	—	—	—	_	_	—	_	—	—	_	—	_	—	—	—	—	0000
C010	CIVIZCON	15:0	ON	COE	CPOL	_	_	—	_	COUT	EVPO	L<1:0>	—	CREF	—	—	CCH	<1:0>	00C3
C060	CMOTAT	31:16	_	—	—	_	_	_	_	_	_	-	—	_	—	_	_	_	0000
	CIVISTAT	15:0	_	_	—		_	—		—	—	_	_	—	—	—	C2OUT	C10UT	0000
-	-							-											

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

TADLE 34-2.				O. ALIL								•							
ess		Bit Range		Bits															
Virtual Addre (BFC0_#)	Register Name		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FF 40		31:16	-	FUSBIDIO	IOL1WAY	PMDL1WAY	PGL1WAY	—	FETHIO	FMIIEN	—	_	—	—	—	_	_	_	xxxx
FF40	ADEVCFG3	15:0								USERID	0<15:0>								xxxx
EE11		31:16		UPLLFSEL	_	—	_	_			—	_	_	_	—	FPLI	_ODIV<2:0:	>	xxxx
FF44	ADE VOI 02	15:0				FPL	LMULT<6:0	>			FPLLICLK	F	PLLRNG<2:0>	-	—	FPL	LIDIV<2:0>		xxxx
FF48		31:16	FDMTEN			DMTCNT<4:0	>		FWDTWI	NSZ<1:0>	FWDTEN	WINDIS	WDTSPGM			WDTPS<4:0>			xxxx
1140	ADEVOIO	15:0	FCKS	SM<1:0>	—	_	—	OSCIOFNC	POSCM	OD<1:0>	IESO	FSOSCEN	DMT	INTV<2:0:	>	FN	OSC<2:0>		xxxx
FF4C	ADEVCEGO	31:16	_	EJTAGBEN	—	—	_	_	_	—	—	—	POSCBOOST	POSCG	AIN<1:0>	SOSCBOOST	SOSCG	AIN<1:0>	xxxx
		15:0	SMCLR		DBGPER<2:	0>		FSLEEP	FECCC	ON<1:0>	_	BOOTISA	TRCEN	ICESE	L<1:0>	JTAGEN	DEBUG	G<1:0>	XXXX
FF50	ADEVCP3	31:16	—	_	—	-	—	_	—	—	-	—	_	—	—		—	_	XXXX
		15:0	—	_	—	-	—	_	—	—	-	—	_	—	—		—	_	XXXX
FF54	ADEVCP2	31:16			-		_	_				_	—	_	_		_	_	XXXX
		15:0			_			_	_			_	—	_					XXXX
FF58	ADEVCP1 ADEVCP0	31:16	_	_	-		—	_	_	_		—	_		—	_	—	_	XXXX
		15:0			_							_							XXXX
FF5C		31.10				CP													XXXX
		31.16																	~~~~
FF60	ADEVSIGN3	15.0													_	_			~~~~
		31.16						_			<u> </u>			_	_	_			~~~~
FF64	ADEVSIGN2	15:0	_	_	_	_	_	_	_	_	_	_			_		_	_	XXXX
FF68	ADEVSIGN1	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
		15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
		31:16	0	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	xxxx
FF6C	ADEVSIGN0	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
L																			-

TABLE 34-2: ADEVCFG: ALTERNATE DEVICE CONFIGURATION WORD SUMMARY

Legend: x = unknown value on Reset; - = Reserved, read as '1'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	r-1	R/P	R/P	R/P	R/P	r-1	R/P	R/P			
31:24	_	FUSBIDIO	IOL1WAY	PMDL1WAY	PGL1WAY	_	FETHIO	FMIIEN			
22.16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1			
23.10	-	—	_	—	—	_	—				
15.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
15.0	USERID<15:8>										
7:0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
7.0	USERID<7:0>										

REGISTER 34-6: DEVCFG3/ADEVCFG3: DEVICE CONFIGURATION WORD 3

Legend:	r = Reserved bit	P = Programmable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

- bit 31 Reserved: Write as '1'
- bit 30 FUSBIDIO: USB USBID Selection bit
 - 1 = USBID pin is controlled by the USB module
 - 0 = USBID pin is controlled by the port function
 - If USBMD is '1', USBID reverts to port control.
- bit 29 IOL1WAY: Peripheral Pin Select Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 28 **PMDL1WAY:** Peripheral Module Disable Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 27 PGL1WAY: Permission Group Lock One Way Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 26 Reserved: Write as '1'
- bit 25 FETHIO: Ethernet I/O Pin Selection Configuration bit
 - 1 = Default Ethernet I/O pins
 - 0 = Alternate Ethernet I/O pins

This bit is ignored for devices that do not have an alternate Ethernet pin selection.

- bit 24 FMIIEN: Ethernet MII Enable Configuration bit
 - 1 = MII is enabled
 - 0 = RMII is enabled
- bit 23-16 Reserved: Write as '1'
- bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG

34.3 On-Chip Voltage Regulator

The core and digital logic for all PIC32MZ EF devices is designed to operate at a nominal 1.8V. To simplify system designs, devices in the PIC32MZ EF family incorporate an on-chip regulator providing the required core logic voltage from VDD.

34.3.1 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

34.3.2 ON-CHIP REGULATOR AND BOR

PIC32MZ EF devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 37.1** "**DC Characteristics**".

34.4 On-chip Temperature Sensor

PIC32MZ EF devices include a temperature sensor that provides accurate measurement of a device's junction temperature (see Section 37.2 "AC Characteristics and Timing Parameters" for more information).

The temperature sensor is connected to the ADC module and can be measured using the shared S&H circuit (see Section 28.0 "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)" for more information).

34.5 Programming and Diagnostics

PIC32MZ EF devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 34-1:

BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS

41.0 PACKAGING INFORMATION

41.1 Package Marking Information

Legend	Customer-specific information						
	Y Year code (last digit of calendar year)						
	ΥY	Year code (last 2 digits of calendar year)					
	WW Week code (week of January 1 is week '01')						
	NNN Alphanumeric traceability code						
	Pb-free JEDEC designator for Matte Tin (Sn)						
	 * This package is Pb-free. The Pb-free JEDEC designator (e3) 						
		can be found on the outer packaging for this package. \smile					
Note:	In the event the full Microchip part number cannot be marked on one line, it will						
	be carried over to the next line, thus limiting the number of available						
	characters for customer-specific information.						

B.10 Serial Quad Interface (SQI)

On PIC32MZ EF devices, the SQI module has been updated with the following features:

- FIFOs can be reset through the CONFIFORST (SQI1CFG<19>), RXFIFORST (SQI1CFG<18>), and TXFIFORST (SQI1CFG<17>) bits in Register 20-3
- A new Flash Status check is available, which will allow the SQI to automatically query the status of the external device during write/erase operations without software intervention. See the SCHECK bit (SQI1CON<24>) and the SQI1MEMSTAT register (Register 20-4 and Register 20-24, respectively).
- The SQI clock divider bits have been expanded, and can use an undivided clock. See the CLKDIV<10:0> bits (SQI1CLKCON<18:8>) in Register 20-5.
- A new DMA Bus Error Interrupt is available through the DMAEIE (SQI1INTEN<11>), DMAEIF (SQI1INTSTAT<11>), and DMAEISE (SQI1INTSIGEN<11>) bits in Register 20-8, Register 20-9, and Register 20-22, respectively
- The SQI1STAT2 register (see Register 20-13) has two new fields:
 - CMDSTAT<1:0> (SQI1STAT2<17:16>) indicates the current command status
 - CONAVAIL<4:0> (SQI1STAT<11:8>) indicates how many spaces are available in the Control FIFO.
- The TAP Controller within the SQI can be configured for various timing requirements via the SQI1TAPCON register (Register 20-23)
- Two new XIP mode registers (SQI1XCON3 and SQI1XCON4) have been added for additional command sequencing (see Register 20-25 and Register 20-26, respectively)

Refer to 20.0 "Serial Quad Interface (SQI)" and Section 46. "Serial Quad Interface (SQI)" (DS60001128) for more information.

B.11 PMP

On PIC32MZ EF devices, the PMP features the ability to buffer reads and writes in both directions, and can read and write from different addresses. Refer to **23.0 "Parallel Master Port (PMP)"** and **Section 43. "Parallel Master Port"** (DS60001346) for information.

Revision C (March 2016)

In this revision, the Preliminary status was removed from the document footer.

The revision also includes the following major changes, which are referenced by their respective chapter in Table C-2. In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE C-2:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description						
2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	2.9.1.3 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" and Figure 2-5 were updated.						
4.0 "Memory Organization"	The names of the Boot Flash Words were updated from BFxSEQ0 to BFxSEQ3 (see 4.1.1 "Boot Flash Sequence and Configuration Spaces").						
	The ABFxSEQx registers were removed from the Boot Flash Sequence and Configuration tables (see Table 4-2 and Table 4-3).						
7.0 "CPU Exceptions and Interrupt Controller"	The Cache Error exception type was removed from the MIPS32 M-Class Microprocessor Core Exception Types (see Table 7-1).						
8.0 "Oscillator Configuration"	The PLLODIV<2:0> bit value settings were updated in the SPLLCON register (see Register 8-3).						
12.0 "I/O Ports"	The SIDL bit was removed from the CNCONx registers (see Table 12-4 through Table 12-21 and Register 12-3).						
20.0 "Serial Quad Interface (SQI)"	The following bits were removed from the SQI1XCON1 register (see Table 20-1 and Register 20-1): DDRDATA, DDRDUMMY, DDRMODE, DDRADDR, and DDRCMD.						
	The DDRMODE bit was removed from the SQI1CON register (see Table 20-1 and Register 20-4).						
28.0 "12-bit High-Speed Successive Approximation	A note was added to the SELRES<1:0> bits in the ADCCON1 and ADCxTIME registers (see Register 28-1 and Register 28-27).						
Register (SAR) Analog-to-Digital Converter (ADC)"	The ADCID<2:0 bit values were updated in the ADCFSTAT register (see Register 28-22).						
34.0 "Special Features"	The bit value definitions for the POSCGAIN<1:0> and SOSCGAIN<1:0> bits were updated (see Register 34-3).						
	The Device ADC Calibration Word (DEVADCx) register was added (see Table 34-5 and Register 34-13).						