

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TFBGA
Supplier Device Package	144-TFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024eff144-i-jwx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
AN36	_		B4	8	Ι	Analog	Analog Input Channels
AN37	_	_	B12	27	I	Analog	
AN38	_	_	B17	43	I	Analog	
AN39	—	—	A22	44	I	Analog	
AN40	_	_	A30	65	I	Analog	
AN41	_	_	B26	66	I	Analog	
AN42	_	_	A31	67	I	Analog	
AN45	11	20	B11	25	I	Analog	
AN46	17	26	B14	37	I	Analog	
AN47	18	27	A19	38	I	Analog	1
AN48	21	32	B18	47	I	Analog	
AN49	22	33	A23	48	Ι	Analog	

TABLE 1-1: ADC PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS-compatible input or output TTL = Transistor-transistor Logic input buffer

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input O = Output PPS = Peripheral Pin Select P = Power I = Input

© 2015-2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
31:24				CSEQ<	15:8>					
00.40	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
23:16	CSEQ<7:0>									
45.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
15:8	TSEQ<15:8>									
7.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
7:0				TSEQ<	<7:0>					

REGISTER 4-1: BFxSEQ3: BOOT FLASH 'x' SEQUENCE WORD 3 REGISTER ('x' = 1 AND 2)

Legend:		P = Programmable bit	P = Programmable bit				
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 CSEQ<15:0>: Boot Flash Complement Sequence Number bits

bit 15-0 **TSEQ<15:0>:** Boot Flash True Sequence Number bits

Note: The BFxSEQ0, BFxSEQ1, and BFxSEQ2 registers are used for Quad Word programming operation when programming the BFxSEQ3 registers, and do not contain any valid information.

TABLE 7-2: INTERRUPT IRQ, VECTOR, AND BIT LOCATION (CONTINUED)

	XO20 Ve ster News	IRQ	Maatan #		Interru	upt Bit Location	n	Persistent
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
System Bus Protection Violation	_SYSTEM_BUS_PROTECTION_VECTOR	106	OFF106<17:1>	IFS3<10>	IEC3<10>	IPC26<20:18>	IPC26<17:16>	Yes
Crypto Engine Event	_CRYPTO_VECTOR	107	OFF107<17:1>	IFS3<11>	IEC3<11>	IPC26<28:26>	IPC26<25:24>	Yes
Reserved		108	—			—		
SPI1 Fault	_SPI1_FAULT_VECTOR	109	OFF109<17:1>	IFS3<13>	IEC3<13>	IPC27<12:10>	IPC27<9:8>	Yes
SPI1 Receive Done	_SPI1_RX_VECTOR	110	OFF110<17:1>	IFS3<14>	IEC3<14>	IPC27<20:18>	IPC27<17:16>	Yes
SPI1 Transfer Done	_SPI1_TX_VECTOR	111	OFF111<17:1>	IFS3<15>	IEC3<15>	IPC27<28:26>	IPC27<25:24>	Yes
UART1 Fault	_UART1_FAULT_VECTOR	112	OFF112<17:1>	IFS3<16>	IEC3<16>	IPC28<4:2>	IPC28<1:0>	Yes
UART1 Receive Done	_UART1_RX_VECTOR	113	OFF113<17:1>	IFS3<17>	IEC3<17>	IPC28<12:10>	IPC28<9:8>	Yes
UART1 Transfer Done	_UART1_TX_VECTOR	114	OFF114<17:1>	IFS3<18>	IEC3<18>	IPC28<20:18>	IPC28<17:16>	Yes
I2C1 Bus Collision Event	_I2C1_BUS_VECTOR	115	OFF115<17:1>	IFS3<19>	IEC3<19>	IPC28<28:26>	IPC28<25:24>	Yes
I2C1 Slave Event	_I2C1_SLAVE_VECTOR	116	OFF116<17:1>	IFS3<20>	IEC3<20>	IPC29<4:2>	IPC29<1:0>	Yes
I2C1 Master Event	_I2C1_MASTER_VECTOR	117	OFF117<17:1>	IFS3<21>	IEC3<21>	IPC29<12:10>	IPC29<9:8>	Yes
PORTA Input Change Interrupt ⁽²⁾	_CHANGE_NOTICE_A_VECTOR	118	OFF118<17:1>	IFS3<22>	IEC3<22>	IPC29<20:18>	IPC29<17:16>	Yes
PORTB Input Change Interrupt	_CHANGE_NOTICE_B_VECTOR	119	OFF119<17:1>	IFS3<23>	IEC3<23>	IPC29<28:26>	IPC29<25:24>	Yes
PORTC Input Change Interrupt	_CHANGE_NOTICE_C_VECTOR	120	OFF120<17:1>	IFS3<24>	IEC3<24>	IPC30<4:2>	IPC30<1:0>	Yes
PORTD Input Change Interrupt	_CHANGE_NOTICE_D_VECTOR	121	OFF121<17:1>	IFS3<25>	IEC3<25>	IPC30<12:10>	IPC30<9:8>	Yes
PORTE Input Change Interrupt	_CHANGE_NOTICE_E_VECTOR	122	OFF122<17:1>	IFS3<26>	IEC3<26>	IPC30<20:18>	IPC30<17:16>	Yes
PORTF Input Change Interrupt	_CHANGE_NOTICE_F_VECTOR	123	OFF123<17:1>	IFS3<27>	IEC3<27>	IPC30<28:26>	IPC30<25:24>	Yes
PORTG Input Change Interrupt	_CHANGE_NOTICE_G_VECTOR	124	OFF124<17:1>	IFS3<28>	IEC3<28>	IPC31<4:2>	IPC31<1:0>	Yes
PORTH Input Change Interrupt ^(2,3)	_CHANGE_NOTICE_H_VECTOR	125	OFF125<17:1>	IFS3<29>	IEC3<29>	IPC31<12:10>	IPC31<9:8>	Yes
PORTJ Input Change Interrupt ^(2,3)	_CHANGE_NOTICE_J_VECTOR	126	OFF126<17:1>	IFS3<30>	IEC3<30>	IPC31<20:18>	IPC31<17:16>	Yes
PORTK Input Change Interrupt ^(2,3,4)	_CHANGE_NOTICE_K_VECTOR	127	OFF127<17:1>	IFS3<31>	IEC3<31>	IPC31<28:26>	IPC31<25:24>	Yes
Parallel Master Port	_PMP_VECTOR	128	OFF128<17:1>	IFS4<0>	IEC4<0>	IPC32<4:2>	IPC32<1:0>	Yes
Parallel Master Port Error	_PMP_ERROR_VECTOR	129	OFF129<17:1>	IFS4<1>	IEC4<1>	IPC32<12:10>	IPC32<9:8>	Yes
Comparator 1 Interrupt	_COMPARATOR_1_VECTOR	130	OFF130<17:1>	IFS4<2>	IEC4<2>	IPC32<20:18>	IPC32<17:16>	No
Comparator 2 Interrupt	_COMPARATOR_2_VECTOR	131	OFF131<17:1>	IFS4<3>	IEC4<3>	IPC32<28:26>	IPC32<25:24>	No
USB General Event	_USB1_VECTOR	132	OFF132<17:1>	IFS4<4>	IEC4<4>	IPC33<4:2>	IPC33<1:0>	Yes
USB DMA Event	_USB1_DMA_VECTOR	133	OFF133<17:1>	IFS4<5>	IEC4<5>	IPC33<12:10>	IPC33<9:8>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

ss					/ /////////////////////////////////////			-		Bit		,							
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
15B0	DCH7ECON	31:16	—	—	—	—	—	-	—	—				CHAIR	Q<7:0>				00FF
1300	DOINECON	15:0				CHSIR	Q<7:0>		-	-	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_			FF00
15C0	DCH7INT	31:16	—	—	—	—	—	—	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
1000		15:0	—	—	—	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
15D0	DCH7SSA	31:16		CHSSA<31:0>															
		15:0																	0000
15E0	DCH7DSA	31:16 15:0								CHDSA-	<31:0>								0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		0000
15F0	DCH7SSIZ	15:0								CHSSIZ	<15:0>								0000
		31:16						_							_		_		0000
1600	DCH7DSIZ	15:0								CHDSIZ	<15:0>								0000
1010	DCH7SPTR	31:16	—	_	—	_	—	—	—	—	—	—	—	—	_	—	—	_	0000
1010	DCHISPIR	15:0								CHSPTR	<15:0>								0000
1620	DCH7DPTR	31:16	_	-		_			_	_		_	_					_	0000
1020	DOINDEIR	15:0								CHDPTR	<15:0>								0000
1630	DCH7CSIZ	31:16	—	_		_			_	-		_	—					_	0000
1030	DOINCOIL	17/C3/2 15:0 CHCSIZ<15:0> 0							0000										
1640	DCH7CPTR	31:16	—	—	—	_	—	—	—	_	_	_	_	_	_	—	-	_	0000
1010		15:0								CHCPTR	<15:0>								0000
1650	DCH7DAT	31:16		—	—	—	—	—	—	—	—	—	_	—	—	—	—		0000
		15:0								CHPDAT	<15:0>								0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—				—	—		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—				—	—		_
15:8	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
10.0	—	—	—	—	—	DMABRS	TM<1:0>	DMAERR
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		DMAE	P<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN

REGISTER 11-21: USBDMAxC: USB DMA CHANNEL 'x' CONTROL REGISTER ('x' = 1-8)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-11 Unimplemented: Read as '0'

- bit 10-9 DMABRSTM<1:0>: DMA Burst Mode Selection bit
 - 11 = Burst Mode 3: INCR16, INCR8, INCR4 or unspecified length
 - 10 = Burst Mode 2: INCR8, INCR4 or unspecified length
 - 01 = Burst Mode 1: INCR4 or unspecified length
 - 00 = Burst Mode 0: Bursts of unspecified length

bit 8 DMAERR: Bus Error bit

- 1 = A bus error has been observed on the input
- 0 = The software writes this to clear the error
- bit 7-4 DMAEP<3:0>: DMA Endpoint Assignment bits
 - These bits hold the endpoint that the DMA channel is assigned to. Valid values are 0-7.

bit 3 DMAIE: DMA Interrupt Enable bit

- 1 = Interrupt is enabled for this channel
- 0 = Interrupt is disabled for this channel

bit 2 DMAMODE: DMA Transfer Mode bit

- 1 = DMA Mode1 Transfers
- 0 = DMA Mode0 Transfers
- bit 1 DMADIR: DMA Transfer Direction bit
 - 1 = DMA Read (TX endpoint)
 - 0 = DMA Write (RX endpoint)

bit 0 DMAEN: DMA Enable bit

- 1 = Enable the DMA transfer and start the transfer
- 0 = Disable the DMA transfer

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	_	—	_	_	-		
00.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	_	—	_				
45.0	R/W-y	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	ON ⁽¹⁾	—	—	_	—	_	_	-		
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0		_		_	_	_		_		

REGISTER 15-1: DMTCON: DEADMAN TIMER CONTROL REGISTER

Legend:	y = Value set from Configuration bits on POR					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** Deadman Timer Module Enable bit⁽¹⁾

1 = Deadman Timer module is enabled

0 = Deadman Timer module is disabled

The reset value of this bit is determined by the setting of the FDMTEN bit (DEVCFG1<3>).

bit 13-0 Unimplemented: Read as '0'

Note 1: This bit only has control when FDMTEN (DEVCFG1<3>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24		—	_	_	_		—	_		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16		-			_					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	STEP1<7:0>									
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0		_			_	_		_		

REGISTER 15-2: DMTPRECLR: DEADMAN TIMER PRECLEAR REGISTER

Legend:					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

bit 15-8	STEP1<7:0>: Preclear Enable bits
	01000000 = Enables the Deadman Timer Preclear (Step 1)
	All other write patterns = Set BAD1 flag.
	These bits are cleared when a DMT reset event occurs. STEP1<7:0> is also cleared if the
	STEP2<7:0> bits are loaded with the correct value in the correct sequence.
bit 7-0	Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	_	—	—	_	—	—	
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	—	—	—	_	—	
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	CS2 ⁽¹⁾	CS1 ⁽³⁾				.4.2.0			
	ADDR15 ⁽²⁾	ADDR14 ⁽⁴⁾		ADDR<13:8>					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				ADDR	<7:0>				

REGISTER 23-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

bit 15

3				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15 CS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
 - ADDR<15>: Target Address bit 15⁽²⁾
- bit 14 CS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active 0 = Chip Select 1 is inactive
- bit 14 ADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 ADDR<13:0>: Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - 3: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: If the DUALBUF bit (PMCON<17>) = 0, the bits in this register control both read and write target addressing. If the DUALBUF bit = 1, the bits in this register are not used. In this instance, use the PMRADDR register for Read operations and the PMWADDR register for Write operations.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	—	—	—	—
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—				—	—		_
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	—	_	_	_	—	REGSEL<2:0>		
7.0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	MEMTYPE<2:0>			MEMSIZE<4:0> ⁽¹⁾				

REGISTER 24-2: EBIMSKx: EXTERNAL BUS INTERFACE ADDRESS MASK REGISTER ('x' = 0-3)

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

	Ommplemented. Read as 0
bit 10-8	REGSEL<2:0>: Timing Register Set for Chip Select 'x' bits
	111 = Reserved
	•
	•
	011 = Reserved
	010 = Use EBISMT2
	001 = Use EBISMT1
	000 = Use EBISMT0
bit 7-5	MEMTYPE<2:0>: Select Memory Type for Chip Select 'x' bits
	111 = Reserved
	•
	•
	011 = Reserved
	010 = NOR-Flash
	001 = SRAM
	000 = Reserved
bit 4-0	MEMSIZE<4:0>: Select Memory Size for Chip Select 'x' bits ⁽¹⁾
	11111 = Reserved
	•
	•
	01010 = Reserved
	01001 = 16 MB
	01000 = 8 MB
	00111 = 4 MB
	00110 = 2 MB
	00101 = 1 MB 00100 = 512 KB
	00100 = 312 KB 00011 = 256 KB
	00010 = 128 KB
	00001 = 64 KB (smaller memories alias within this range)
	00000 = Chip Select is not used

Note 1: The specified value for these bits depends on the number of available address lines. Refer to the specific device pin table (Table 2 through Table 5) for the available address lines.

NOTES:

REGISTER 28-6:	ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2 (CONTINUED)
----------------	--

bit 6	SIGN19: AN19 Signed Data Mode bit ⁽¹⁾
	1 = AN19 is using Signed Data mode
	0 = AN19 is using Unsigned Data mode
bit 5	DIFF18: AN18 Mode bit
	1 = AN18 is using Differential mode
	0 = AN18 is using Single-ended mode
bit 4	SIGN18: AN18 Signed Data Mode bit
	1 = AN18 is using Signed Data mode
	0 = AN18 is using Unsigned Data mode
bit 3	DIFF17: AN17 Mode bit
	1 = AN17 is using Differential mode
	0 = AN17 is using Single-ended mode
bit 2	SIGN17: AN17 Signed Data Mode bit
	1 = AN17 is using Signed Data mode
	0 = AN17 is using Unsigned Data mode
bit 1	DIFF16: AN16 Mode bit
	1 = AN16 is using Differential mode
	0 = AN16 is using Single-ended mode
bit 0	SIGN16: AN16 Signed Data Mode bit
	1 = AN16 is using Signed Data mode
	0 = AN16 is using Unsigned Data mode

Note 1: This bit is not available on 64-pin devices.

NOTES:

	RE	GISTER							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	_	_	_	_	_	_	—	
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6		PMCS<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0				PMCS	S<7:0>				

REGISTER 30-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits

bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 30-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
51.24	—	—	_			_		_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	_	—	—	—	—	
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	PMO<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				PMO	<7:0>				

Le	gend:	
	Deside to the test	

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **PMO<15:0>:** Pattern Match Offset 1 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 30-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER (CONTINUED)

- bit 6 **TXBUSY:** Transmit Busy bit^(2,6)
- 1 = TX logic is receiving data

0 = TX logic is idle

This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.

bit 5 **RXBUSY:** Receive Busy bit^(3,6)

1 = RX logic is receiving data 0 = RX logic is idle

This bit indicates that a packet is currently being received. A change in this status bit is not necessarily reflected by the RXDONE interrupt, as RX packets may be aborted or rejected by the RX filter.

- bit 4-0 Unimplemented: Read as '0'
- Note 1: This bit is only used for RX operations.
 - **2:** This bit is only affected by TX operations.
 - **3:** This bit is only affected by RX operations.
 - 4: This bit is affected by TX and RX operations.
 - 5: This bit will be set when the ON bit (ETHCON1 < 15 >) = 1.
 - 6: This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

34.3 On-Chip Voltage Regulator

The core and digital logic for all PIC32MZ EF devices is designed to operate at a nominal 1.8V. To simplify system designs, devices in the PIC32MZ EF family incorporate an on-chip regulator providing the required core logic voltage from VDD.

34.3.1 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

34.3.2 ON-CHIP REGULATOR AND BOR

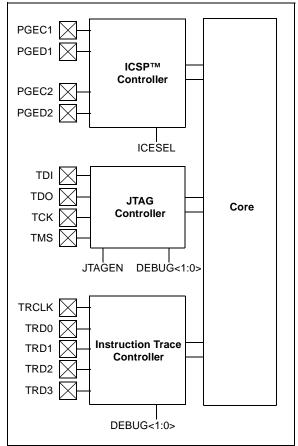
PIC32MZ EF devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 37.1** "**DC Characteristics**".

34.4 On-chip Temperature Sensor

PIC32MZ EF devices include a temperature sensor that provides accurate measurement of a device's junction temperature (see Section 37.2 "AC Characteristics and Timing Parameters" for more information).

The temperature sensor is connected to the ADC module and can be measured using the shared S&H circuit (see Section 28.0 "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)" for more information).

34.5 Programming and Diagnostics


PIC32MZ EF devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 34-1:

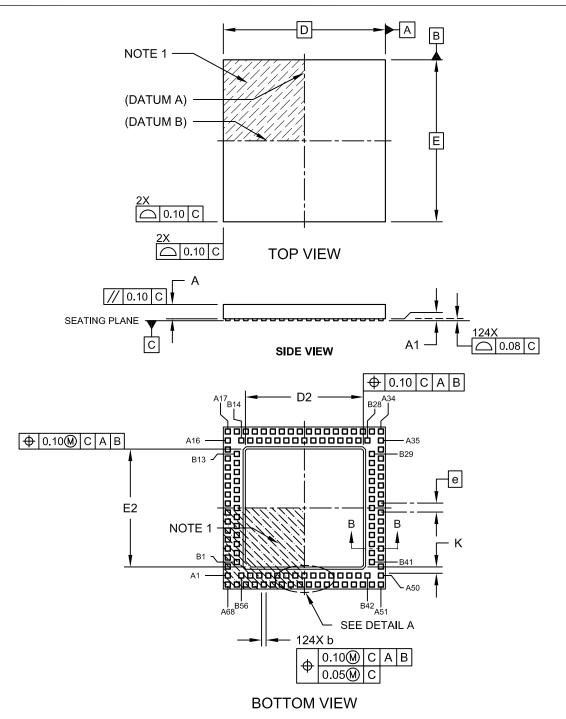
BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS

DC CHARACTERISTICS		Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Sym.	n. Characteristic Min. Typ. Max. Units Cond					Conditions ⁽¹⁾
DO20a Voh1		Output High Voltage I/O Pins:	1.5 2.0		_	V V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ $IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		4x Source Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-RB2, RB4, RB6-RB7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11				v	$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{ VD}$
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA0-RA2, RA4, RA5 RB3, RB5, RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7 Output High Voltage I/O Pins: 12x Source Driver Pins -	1.5	_	—	V	Ioh \geq -22 mA, Vdd = 3.3V
			2.0	_	_	V	$\text{IOH} \geq \text{-18 mA}, \text{VDD} = 3.3 \text{V}$
	Voh1		3.0			V	IOH ≥ -10 mA, VDD = 3.3V
			1.5	_	—	V	$\text{IOH} \geq \text{-32 mA}, \text{VDD} = 3.3 \text{V}$
			2.0	_	—	V	$\text{IOH} \geq \text{-25 mA}, \text{VDD} = 3.3 \text{V}$
	Dor	RA6, RA7 RE0-RE3 RF1 RG12-RG14		_	_	V	IOH \ge -14 mA, VDD = 3.3V

TABLE 37-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

Note 1: Parameters are characterized, but not tested.

			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DO31 TIOR Port Output Rise Tim I/O Pins: 4x Source Driver Pins RA3, RA9, RA10, RA1 RB0-RB2, RB4, RB6-F RB13		- 14, RA15	_	_	9.5	ns	Cload = 50 pF	
		RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11		_	_	6	ns	Cload = 20 pF
		Port Output Rise Tin I/O Pins: 8x Source Driver Pins RA0-RA2, RA4, RA5 RB3, RB5, RB8-RB10 RB15 RC1-RC4	-	_		8	ns	Cload = 50 pF
		RD1-RD5, RD9, RD10 RD15 RE4-RE7 RF0, RF4, RF5, RF12 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH1 RJ3-RJ7, RJ10, RJ12 RK0-RK7	2, RF13 4, RH15	_	_	6	ns	Cload = 20 pF
Port Output Rise Time I/O Pins: 12x Source Driver Pins - RA6, RA7 RE0-RE3 RF1 RG12-RG14		I/O Pins: 12x Source Driver Pins		_	_	3.5	ns	CLOAD = 50 pF
		_	_	2	ns	CLOAD = 20 pF		


TABLE 37-23: I/O TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-193A Sheet 1 of 2

APPENDIX A: MIGRATING FROM PIC32MX5XX/6XX/7XX TO PIC32MZ EF

This appendix provides an overview of considerations for migrating from PIC32MX5XX/6XX/7XX devices to the PIC32MZ EF family of devices. The code developed for PIC32MX5XX/6XX/7XX devices can be ported to PIC32MZ EF devices after making the appropriate changes outlined in the following sections.

The PIC32MZ EF devices are based on a new architecture, and feature many improvements and new capabilities over PIC32MX5XX/6XX/7XX devices.

A.1 Oscillator and PLL Configuration

Because the maximum speed of the PIC32MZ EF family is greater, the configuration of the oscillator is different from prior PIC32MX5XX/6XX/7XX devices.

Table A-1 summarizes the differences (indicated by **Bold** type) between the family devices for the oscillator.

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature				
Primary Oscillator Configuration					
On PIC32MX devices, XT mode had to be selected if the input fre- quency was in the 3 MHz to 10 MHz range (4-10 for PLL), and HS mode had to be selected if the input frequency was in the 10 MHz to 20 MHz range.	On PIC32MZ EF devices, HS mode has a wider input frequency range (4 MHz to 12 MHz). The bit setting of '01' is Reserved.				
POSCMOD<1:0> (DEVCFG1<9:8>) 11 = Primary Oscillator disabled	POSCMOD<1:0> (DEVCFG1<9:8>) 11 = Primary Oscillator disabled				
10 = HS Oscillator mode selected 01 = XT Oscillator mode selected	10 = HS Oscillator mode selected 01 = Reserved				
00 = External Clock mode selected	00 = External Clock mode selected				
On PIC32MX devices, crystal mode could be selected with the HS or XT POSC setting, but an external oscillator could be fed into the OSC1/CLKI pin and the part would operate normally.	On PIC32MZ devices, this option is not available. External oscil- lator signals should only be fed into the OSC1/CLKI pin with the POSC set to EC mode.				
Oscillator	Selection				
On PIC32MX devices, clock selection choices are as follows:	On PIC32MZ EF devices, clock selection choices are as follows:				
FNOSC<2:0> (DEVCFG1<2:0>) NOSC<2:0> (OSCCON<10:8>)	FNOSC<2:0> (DEVCFG1<2:0>) NOSC<2:0> (OSCCON<10:8>)				
111 = FRCDIV	111 = FRCDIV				
110 = FRCDIV16	110 = Reserved				
101 = LPRC	101 = LPRC				
100 = SOSC 011 = POSC with PLL module	100 = SOSC 011 = Reserved				
010 = POSC (XT, HS, EC)	011 = POSC (HS or EC)				
0.01 = FRCDIV+PLL	001 = System PLL (SPLL)				
000 = FRC	000 = FRCDIV				
COSC<2:0> (OSCCON<14:12>) 111 = FRC divided by FRCDIV	COSC<2:0> (OSCCON<14:12>) 111 = FRC divided by FRCDIV				
110 = FRC divided by FRCDIV	$110 = \mathbf{BFRC}$				
101 = LPRC	101 = LPRC				
100 = SOSC	100 = SOSC				
011 = POSC + PLL module	011 = Reserved				
010 = POSC	010 = POSC				
001 = FRCPLL	001 = System PLL				
000 = FRC	000 = FRC divided by FRCDIV				

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature				
Scan Trigg	ger Source				
On PIC32MX devices, there are four sources that can trigger a scan conversion in the ADC module: Auto, Timer3, INT0, and clearing the SAMP bit. SSRC<2:0> (AD1CON1<7:5>) 111 = Auto convert 110 = Reserved 101 = Reserved 100 = Reserved 011 = Reserved	On PIC32MZ EF devices, the list of sources for triggering a scan conversion has been expanded to include the comparators, Output Compare, and two additional Timers. In addition, trigger sources can be simulated by setting the RQCNVRT (ADCCON3<8>) bit. STRGSRC<4:0> (ADCCON1<20:16>) 11111 = Reserved • • • • • • • • • • •				
010 = Timer3 period match 001 = Active transition on INT0 pin 000 = Clearing SAMP bit	01011 = Comparator 1 COUT 01010 = OCMP5 01001 = OCMP3 01000 = OCMP1 00111 = TMR5 match 00101 = TMR3 match 00101 = TMR1 match 00100 = INT0 00011 = Reserved 00010 = Global level software trigger (GLSWTRG) 00001 = Global software trigger (GSWTRG) 00000 = No trigger				
Output	Format				
On PIC32MX devices, the output format was decided for all ADC channels based on the setting of the FORM<2:0> bits.	On PIC32MZ EF devices, the FRACT bit determines whether fractional or integer format is used. Then, each input can have its own setting for input (differential or single-ended) and sign (signed or unsigned) using the DIFFx and SIGNx bits in the ADCIMODx registers.				
FORM<2:0> (AD1CON1<10:8>) 011 = Signed Fractional 16-bit 010 = Fractional 16-bit 001 = Signed Integer 16-bit 000 = Integer 16-bit 111 = Signed Fractional 32-bit 110 = Fractional 32-bit	FRACT (ADCCON1<23>) 1 = Fractional 0 = Integer DIFFx (ADCIMODy) 1 = Channel x is using Differential mode 0 = Channel x is using Single-ended mode				
101 = Signed Integer 32-bit 100 = Integer 32-bit	SIGNx (ADCMODy) 1 = Channel x is using Signed Data mode 0 = Channel x is using Unsigned Data mode				
Inter	rupts				
On PIC32MX devices, an interrupt is triggered from the ADC module when a certain number of conversions have taken place, irrespective of which channel was converted.	On PIC32MZ EF devices, the ADC module can trigger an inter- rupt for each channel when it is converted. Use the Interrupt Con- troller bits, IEC1<31:27>, IEC2<31:0>, and IEC3<7:0>, to enable/ disable them. In addition, the ADC support one global interrupt to indicate conversion on any number of channels.				
SMPI<3:0> (AD1CON2<5:2>) 1111 = Interrupt for each 16th sample/convert sequence 1110 = Interrupt for each 15th sample/convert sequence	AGIENxx (ADCGIRQENx <y>) 1 = Data ready event will generate a Global ADC interrupt 0 = No global interrupt In addition, interrupts can be generated for filter and comparator</y>				
• 0001 = Interrupt for each 2nd sample/convert sequence 0000 = Interrupt for each sample/convert sequence	events.				

TABLE A-3: ADC DIFFERENCES (CONTINUED)

A.7 Interrupts and Exceptions

The key difference between Interrupt Controllers in PIC32MX5XX/6XX/7XX devices and PIC32MZ EF devices concerns vector spacing. Previous PIC32MX devices had fixed vector spacing, which is adjustable in set increments, and every interrupt had the same amount of space. PIC32MZ EF devices replace this with a variable offset spacing, where each interrupt has an offset register to determine where to begin execution.

In addition, the IFSx, IECx, and IPCx registers for old peripherals have shifted to different registers due to new peripherals. Please refer to **7.0** "CPU Exceptions and Interrupt Controller" to determine where the interrupts are now located.

Table A-8 lists differences (indicated by **Bold** type) in the registers that will affect software migration.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature				
Vector Spacing					
On PIC32MX devices, the vector spacing was determined by the VS field in the CPU core.	On PIC32MZ EF devices, the vector spacing is variable and determined by the Interrupt controller. The VOFFx<17:1> bits in the OFFx register are set to the offset from EBASE where the interrupt service routine is located.				
VS<4:0> (IntCtl<9:5>: CP0 Register 12, Select 1) 10000 = 512-byte vector spacing 01000 = 256-byte vector spacing 00100 = 128-byte vector spacing 00010 = 64-byte vector spacing 00001 = 32-byte vector spacing 00000 = 0-byte vector spacing	VOFFx<17:1> (OFFx<17:1>) Interrupt Vector 'x' Address Offset bits				
Shadow Register Sets					
On PIC32MX devices, there was one shadow register set which could be used during interrupt processing. Which interrupt priority could use the shadow register set was determined by the FSRS- SEL field in DEVCFG3 and SS0 on INTCON.	On PIC32MZ EF devices, there are seven shadow register sets, and each priority level can be assigned a shadow register set to use via the PRIxSS<3:0> bits in the PRISS register. The SS0 bit is also moved to PRISS<0>.				
FSRSSEL<2:0> (DEVCFG3<18:16>) 111 = Assign Interrupt Priority 7 to a shadow register set 110 = Assign Interrupt Priority 6 to a shadow register set 001 = Assign Interrupt Priority 1 to a shadow register set 000 = All interrupt priorities are assigned to a shadow register set	PRIxSS<3:0> PRISS <y:z> 1xxx = Reserved (by default, an interrupt with a priority level of x uses Shadow Set 0) 0111 = Interrupt with a priority level of x uses Shadow Set 7 0110 = Interrupt with a priority level of x uses Shadow Set 6 • • 0001 = Interrupt with a priority level of x uses Shadow Set 1 0000 = Interrupt with a priority level of x uses Shadow Set 0</y:z>				
SS0 (INTCON<16>) 1 = Single vector is presented with a shadow register set 0 = Single vector is not presented with a shadow register set	SS0 (PRISS<0>) 1 = Single vector is presented with a shadow register set 0 = Single vector is not presented with a shadow register set				
Status					
PIC32MX devices, the VEC<5:0> bits show which interrupt is being serviced.	On PIC32MZ EF devices, the SIRQ<7:0> bits show the IRQ number of the interrupt last serviced.				
VEC<5:0> (INTSTAT<5:0>) 11111-00000 = The interrupt vector that is presented to the CPU	SIRQ<7:0> (INTSTAT<7:0>) 11111111-00000000 = The last interrupt request number serviced by the CPU				