

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efg064-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-6: SYSTEM BUS TARGETS AND ASSOCIATED PROTECTION REGISTERS

				SBTxREC	Gy Register				SBTxRD	y Register	SBTxWR	y Register
Target Number	Target Description ⁽⁵⁾	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1, GROUP0)	Name	Write Permissior (GROUP3, GROUP2, GROUP1, GROUP0)
<u>^</u>	System Bus	SBT0REG0	R	0x1F8F0000	R	64 KB	—	0	SBT0RD0	R/W ⁽¹⁾	SBT0WR0	R/W ⁽¹⁾
0		SBT0REG1	R	0x1F8F8000	R	32 KB	—	3	SBT0RD1	R/W ⁽¹⁾	SBT0WR1	R/W ⁽¹⁾
	Flash Memory ⁽⁶⁾ :	SBT1REG0	R	0x1D000000	R ⁽⁴⁾	R ⁽⁴⁾	—	0	SBT1RD0	R/W ⁽¹⁾	SBT1WR0	0, 0, 0, 0
	Program Flash Boot Flash	SBT1REG2	R	0x1F8E0000	R	4 KB	1	2	SBT1RD2	R/W ⁽¹⁾	SBT1WR2	R/W ⁽¹⁾
	Prefetch Module	SBT1REG3	R/W	R/W	R/W	R/W	1	2	SBT1RD3	R/W ⁽¹⁾	SBT1WR3	0, 0, 0, 0
4		SBT1REG4	R/W	R/W	R/W	R/W	1	2	SBT1RD4	R/W ⁽¹⁾	SBT1WR4	0, 0, 0, 0
1		SBT1REG5	R/W	R/W	R/W	R/W	1	2	SBT1RD5	R/W ⁽¹⁾	SBT1WR5	0, 0, 0, 0
		SBT1REG6	R/W	R/W	R/W	R/W	1	2	SBT1RD6	R/W ⁽¹⁾	SBT1WR6	0, 0, 0, 0
		SBT1REG7	R/W	R/W	R/W	R/W	0	1	SBT1RD7	R/W ⁽¹⁾	SBT1WR7	0, 0, 0, 0
		SBT1REG8	R/W	R/W	R/W	R/W	0	1	SBT1RD8	R/W ⁽¹⁾	SBT1WR8	0, 0, 0, 0
	RAM Bank 1 Memory	SBT2REG0	R	0x00000000	R ⁽⁴⁾	R ⁽⁴⁾	_	0	SBT2RD0	R/W ⁽¹⁾	SBT2WR0	R/W ⁽¹⁾
2		SBT2REG1	R/W	R/W	R/W	R/W	—	3	SBT2RD1	R/W ⁽¹⁾	SBT2WR1	R/W ⁽¹⁾
		SBT2REG2	R/W	R/W	R/W	R/W	0	1	SBT2RD2	R/W ⁽¹⁾	SBT2WR2	R/W ⁽¹⁾
	RAM Bank 2 Memory	SBT3REG0	R ⁽⁴⁾	R ⁽⁴⁾	R ⁽⁴⁾	R ⁽⁴⁾	—	0	SBT3RD0	R/W ⁽¹⁾	SBT3WR0	R/W ⁽¹⁾
3		SBT3REG1	R/W	R/W	R/W	R/W	—	3	SBT3RD1	R/W ⁽¹⁾	SBT3WR1	R/W ⁽¹⁾
		SBT3REG2	R/W	R/W	R/W	R/W	0	1	SBT3RD2	R/W ⁽¹⁾	SBT3WR2	R/W ⁽¹⁾
4	External Memory via EBI and EBI Module ⁽⁶⁾	SBT4REG0	R	0x20000000	R	64 MB	—	0	SBT4RD0	R/W ⁽¹⁾	SBT4WR0	R/W ⁽¹⁾
4	Module	SBT4REG2	R	0x1F8E1000	R	4 KB	0	1	SBT4RD2	R/W ⁽¹⁾	SBT4WR2	R/W ⁽¹⁾
	Peripheral Set 1: System Control	SBT5REG0	R	0x1F800000	R	128 KB	_	0	SBT5RD0	R/W ⁽¹⁾	SBT5WR0	R/W ⁽¹⁾
	Flash Control	SBT5REG1	R/W	R/W	R/W	R/W	—	3	SBT5RD1	R/W ⁽¹⁾	SBT5WR1	R/W ⁽¹⁾
5	DMT/WDT RTCC CVR PPS Input PPS Output Interrupts DMA	SBT5REG2	R/W	R/W	R/W	R/W	0	1	SBT5RD2	R/W ⁽¹⁾	SBT5WR2	R/W ⁽¹⁾

Note 1: Reset values for these bits are '0', '1', '1', '1', respectively.

2: The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset.

3: The SIZE<4:0> bits must be set to the corresponding Region Size, based on the following formula: Region Size = 2^(SIZE-1) x 1024 bytes. For read-only bits, this value is set by hardware on Reset.

4: Refer to the Device Memory Maps (Figure 4-1 through Figure 4-4) for specific device memory sizes and start addresses.

5: See Table 4-1for information on specific target memory size and start addresses.

6: The SBTxREG1 SFRs are reserved, and therefore, are not listed in this table for this target.

TABLE 4-20: SYSTEM BUS TARGET 12 REGISTER MAP

				000															
ess		6									Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI		—			CODE	<3:0>		—	_			—	—	—		0000
B020	SBT12ELOG1	15:0				INI	ΓID<7:0>					REGIO	N<3:0>		—	C	MD<2:0>		0000
D004	SBT12ELOG2	31:16	—	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	0000
D024	3BTT2ELOG2	15:0		—	_		—		—		_				—	_	GROU	P<1:0>	0000
B028	SBT12ECON	31:16		-	—	_	—		—	ERRP	_	_			_	—	_		0000
DU20	SBITZECON	15:0		—	_		—		—		_				—	_	_		0000
P020	SBT12ECLRS	31:16		—	_		—		—		_				—	_	_		0000
B030	SBI IZECLKS	15:0		—	_		—		—		_				—	_	_	CLEAR	0000
D020	SBT12ECLRM	31:16		—	_		—		—		_				—	_	_		0000
B030	3BT 12ECLRIVI	15:0		—	_		—		—		_				—	_	_	CLEAR	0000
B040	SBT12REG0	31:16								BA	SE<21:6>								xxxx
D040	SBITZREGU	15:0			BA	SE<5:0>			PRI				SIZE<4:0:	>		—	_		xxxx
B050	SBT12RD0	31:16		—	_		—		—		_				—	_	_		xxxx
6050	3BT12RD0	15:0			—		_		_		_				GROUP3	GROUP2	GROUP1	GROUP0	xxxx
B058	SBT12WR0	31:16			—		_		_		_				—	-	_		xxxx
6056	36TT2WR0	15:0			-		_	-	—		_		_	-	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MZ EF devices contain an internal Flash program memory for executing user code, which includes the following features:

- Two Flash banks for live update support
- Dual boot support
- Write protection for program and boot Flash
- ECC support

There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 52. "Flash Program Memory with Support for Live Update"** (DS60001193) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which is available for download from the Microchip web site (www.microchip.com).

Note: In PIC32MZ EF devices, the Flash page size is 16 KB (4K IW) and the row size is 2 KB (512 IW).

TABLE 7-3: **INTERRUPT REGISTER MAP (CONTINUED)**

ress f)	b -a	e								Bi	ts								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	u= c. c.(6)	31:16	CNKIE	CNJIE	CNHIE	CNGIE	CNFIE	CNEIE	CNDIE	CNCIE	CNBIE	CNAIE	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	0000
00F0	IEC3 ⁽⁶⁾	15:0	SPI1TXIE	SPI1RXIE	SPI1EIE	-	CRPTIE ⁽⁷⁾	SBIE	CFDCIE	CPCIE	ADCD44IE	ADCD43IE	ADCD42IE	ADCD41IE	ADCD40IE	ADCD39IE	ADCD38IE	ADCD37IE	0000
04.00	1504	31:16	U3TXIE	U3RXIE	U3EIE	SPI3TXIE	SPI3RXIE	SPI3EIE	ETHIE	CAN2IE ⁽³⁾	CAN1IE ⁽³⁾	12C2MIE ⁽²⁾	12C2SIE(2)	I2C2BIE ⁽²⁾	U2TXIE	U2RXIE	U2EIE	SPI2TXIE	0000
0100	IEC4	15:0	SPI2RXIE	SPI2EIE	DMA7IE	DMA6IE	DMA5IE	DMA4IE	DMA3IE	DMA2IE	DMA1IE	DMA0IE	USBDMAIE	USBIE	CMP2IE	CMP1IE	PMPEIE	PMPIE	0000
0110		31:16	_	U6TXIE	U6RXIE	U6EIE	SPI6TXIE ⁽²⁾	SPI6RXIE ⁽²⁾	SPI6IE ⁽²⁾	I2C5MIE	I2C5SIE	I2C5BIE	U5TXIE	U5RXIE	U5EIE	SPI5TXIE ⁽²⁾	SPI5RXIE ⁽²⁾	SPI5EIE ⁽²⁾	0000
0110	IECS	15:0	I2C4MIE	I2C4SIE	I2C4BIE	U4TXIE	U4RXIE	U4EIE	SQI1IE	PREIE	FCEIE	RTCCIE	SPI4TXIE	SPI4RXIE	SPI4EIE	I2C3MIE	I2C3SIE	I2C3BIE	0000
04.00	1500	31:16	_	_	_	_	_	_	_	—	_	_	ADC7WIE	_	_	ADC4WIE	ADC3WIE	ADC2WIE	0000
0120	IEC6	15:0	ADC1WIE	ADC0WIE	ADC7EIE	_	—	ADC4EIE	ADC3EIF	ADC2EIE	ADC1EIE	ADC0EIE	—	ADCGRPIE	_	ADCURDYIE	ADCARDYIE	ADCEOSIE	0000
04.40		31:16	_	_	_		INT0IP<2:0>		INTOIS	6<1:0>	_	_	_		CS1IP<2:0:	>	CS1IS	i<1:0>	0000
0140	IPC0	15:0	_	_	_		CS0IP<2:0>		CS0IS	<1:0>	_	_	_		CTIP<2:0>		CTIS	<1:0>	0000
0150		31:16	_	_	_		OC1IP<2:0>		OC1IS	5<1:0>	_	_	_		IC1IP<2:0>	•	IC1IS	<1:0>	0000
0150	IPC1	15:0	_	_	_		IC1EIP<2:0>		IC1EIS	S<1:0>	_	_	_	T1IP<2:0>		T1IS<1:0>		0000	
04.00	1000	31:16	_	_	_		IC2IP<2:0>		IC2IS	<1:0>	_	_	_	IC2EIP<2:0>		IC2EIS	S<1:0>	0000	
0160	IPC2	15:0	_	_	_		T2IP<2:0>		T2IS<	<1:0>	_	_	_	INT1IP<2:0>		INT1IS	INT1IS<1:0>		
0470	IPC3	31:16	-	_	_		IC3EIP<2:0>		IC3EIS	S<1:0>	_	-	-		T3IP<2:0>		T3IS<	<1:0>	0000
0170	IPCS	15:0	-	_	_		INT2IP<2:0>		INT2IS	S<1:0>	_	-	_		OC2IP<2:0	>	OC2IS	S<1:0>	0000
0180		31:16	-	_	_		T4IP<2:0>		T4IS<	<1:0>	_	-	_		INT3IP<2:0	>	INT3IS	S<1:0>	0000
0180	IPC4	15:0	-	_	_		OC3IP<2:0>		OC3IS	i<1:0>	_	-	-		IC3IP<2:0>	•	IC3IS	<1:0>	0000
0400	IDOC	31:16	-	_	_		INT4IP<2:0>		INT4IS	6<1:0>	_	-	-		OC4IP<2:0	>	OC4IS	S<1:0>	0000
0190	IPC5	15:0	_	_	_		IC4IP<2:0>		IC4IS	<1:0>	_	_	_		IC4EIP<2:0	>	IC4EIS	S<1:0>	0000
0140	IDCC	31:16	-	_	_		OC5IP<2:0>		OC5IS	i<1:0>	_	_	_		IC5IP<2:0>	•	IC5IS	<1:0>	0000
01A0	IPCO	15:0	-	_	_		IC5EIP<2:0>		IC5EIS	S<1:0>	_	-	-		T5IP<2:0>		T5IS<	<1:0>	0000
0400	1007	31:16	-	_	_		OC6IP<2:0>		OC6IS	<1:0>	_	_	_		IC6IP<2:0>	•	IC6IS	<1:0>	0000
01B0	IPC7	15:0	-	_	_		IC6EIP<2:0>		IC6EIS	S<1:0>	_	-	_		T6IP<2:0>		T6IS<	<1:0>	0000
04.00		31:16	_	_	_		OC7IP<2:0>		OC7IS	5<1:0>	_	_	—		IC7IP<2:0>	•	IC7IS	<1:0>	0000
0100	IPC8	15:0	_	_	_		IC7EIP<2:0>		IC7EIS	S<1:0>	_	_	—		T7IP<2:0>		T7IS∢	<1:0>	0000
04 D 0		31:16	_	_	_		OC8IP<2:0>		OC8IS	i<1:0>		—	—		IC8IP<2:0>	•	IC8IS	<1:0>	0000
01D0	IPC9	15:0	_	_	—		IC8EIP<2:0>		IC8EIS	S<1:0>	_	—	—		T8IP<2:0>		T8IS<	<1:0>	0000
0450	10040	31:16	_	_	_		OC9IP<2:0>		OC9IS	i<1:0>	_	_	—		IC9IP<2:0>	•	IC9IS	<1:0>	0000
01E0	IPC10	15:0	_	_	_		IC9EIP<2:0>		IC9EIS	S<1:0>	_	_	—		T9IP<2:0>		T9IS<	<1:0>	0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS9	IFS8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IFS7	IFS6	IFS5	IFS4	IFS3	IFS2	IFS1	IFS0

REGISTER 7-5: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IFS31-IFS0: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-2 for the exact bit definitions.

REGISTER 7-6: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC9	IEC8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IEC7	IEC6	IEC5	IEC4	IEC3	IEC2	IEC1	IEC0

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IEC31-IEC0: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-2 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	—		—	—	_	—				
22.16	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
23:16	—	— — — — — VOFF<						17:16>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				VOFF	<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
7:0	VOFF<7:1>											

REGISTER 7-8: OFFx: INTERRUPT VECTOR ADDRESS OFFSET REGISTER (x = 0-190)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 17-1 VOFF<17:1>: Interrupt Vector 'x' Address Offset bits

bit 0 Unimplemented: Read as '0'

REGISTE	R 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER (CONTINUED)
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit
	 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ) 0 = No interrupt is pending
bit 4	CHDHIF: Channel Destination Half Full Interrupt Flag bit
	 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2) 0 = No interrupt is pending
bit 3	CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
	1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
1.11.0	0 = No interrupt is pending
bit 2	CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
	 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred) 0 = No interrupt is pending
bit 1	CHTAIF: Channel Transfer Abort Interrupt Flag bit
	 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted 0 = No interrupt is pending
bit 0	CHERIF: Channel Address Error Interrupt Flag bit
	1 = A channel address error has been detected
	Either the source or the destination address is invalid. 0 = No interrupt is pending

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0
31:24	VBUSERRIE	SESSRQIE	DISCONIE	CONNIE	SOFIE	RESETIE	RESUMEIE	SUSPIE
22.16	R-0, HS	R-0, HS	R-0, HS					
23:16	VBUSERRIF	SESSRQIF	DISCONIF	CONNIF	SOFIF	RESETIF	RESUMEIF	SUSPIF
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—		—	—	—	—	—
7.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0
7:0	EP7RXIE	EP6RXIE	EP5RXIE	EP4RXIE	EP3RXIE	EP2RXIE	EP1RXIE	

REGISTER 11-3: USBCSR2: USB CONTROL STATUS REGISTER 2

Legend:	HS = Hardware Set		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 30 SESSRQIE: Session Request Interrupt Enable bit 1 = Session request interrupt is enabled 0 = Session request interrupt is disabled bit 29 DISCONIE: Device Disconnect Interrupt Enable bit 1 = Device disconnect interrupt is enabled 0 = Device connection Interrupt is disabled bit 28 CONNIE: Device Connection Interrupt Enable bit 1 = Device connection Interrupt is enabled 0 = Device connection interrupt is disabled bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is disabled
 1 = Device disconnect interrupt is enabled 0 = Device disconnect interrupt is disabled bit 28 CONNIE: Device Connection Interrupt Enable bit 1 = Device connection interrupt is enabled 0 = Device connection interrupt is disabled bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (<i>Device mode</i>) or Babble (<i>Host mode</i>) is enabled 0 = Reset/Babble interrupt Enable bit 1 = Interrupt when reset (<i>Device mode</i>) or Babble (<i>Host mode</i>) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session
 1 = Device connection interrupt is enabled 0 = Device connection interrupt is disabled bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (<i>Device mode</i>) or Babble (<i>Host mode</i>) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session
 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (<i>Device mode</i>) or Babble (<i>Host mode</i>) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session
 1 = Interrupt when reset (<i>Device mode</i>) or Babble (<i>Host mode</i>) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session
1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session
 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session
1 = VBUS has dropped below the VBUS valid threshold during a session
bit 22 SESSRQIF: Session Request Interrupt bit 1 = Session request signaling has been detected 0 = No session request detected
 bit 21 DISCONIF: Device Disconnect Interrupt bit 1 = In Host mode, indicates when a device disconnect is detected. In Device mode, indicates when session ends. 0 = No device disconnect detected
bit 20 CONNIF: Device Connection Interrupt bit 1 = In <i>Host mode</i> , indicates when a device connection is detected 0 = No device connection detected

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24 DATA<31:24>												
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	DATA<23:16>											
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				DATA	<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	DATA<7:0>											

REGISTER 11-12: USBFIFOX: USB FIFO DATA REGISTER 'x' ('x' = 0-7)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DATA<31:0>: USB Transmit/Receive FIFO Data bits

Writes to this register loads data into the TxFIFO for the corresponding endpoint. Reading from this register unloads data from the RxFIFO for the corresponding endpoint.

Transfers may be 8-bit, 16-bit or 32-bit as required, and any combination of access is allowed provided the data accessed is contiguous. However, all transfers associated with one packet must be of the same width so that data is consistently byte-, word- or double-word aligned. The last transfer may contain fewer bytes than the previous transfers in order to complete an odd-byte or odd-word transfer.

12.1 Parallel I/O (PIO) Ports

All port pins have up to 14 registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

12.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to the pin name tables (Table 2 through Table 5) for the available pins and their functionality.

12.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

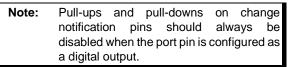
If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

12.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP.


12.1.4 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports allows the PIC32MZ EF devices to generate interrupt requests to the processor in response to a change-ofstate on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Seven control registers are associated with the CN functionality of each I/O port. The CNENx/CNNEx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins. CNENx enables a mismatch CN interrupt condition when the EDGEDETECT bit (CNCONx<11>) is not set. When the EDGEDETECT bit is set, CNNEx controls the negative edge while CNENx controls the positive.

The CNSTATx/CNFx registers indicate the status of change notice based on the setting of the EDGEDETECT bit. If the EDGEDETECT bit is set to '0', the CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. If the EDGEDETECT bit is set to '1', the CNFx register indicates whether a change has occurred and through the CNNEx/CNENx registers the edge type of the change that occurred is also indicated.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

An additional control register (CNCONx) is shown in Register 12-3.

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD1	RPD1R	RPD1R<3:0>	0000 = <u>No Connect</u>
RPG9	RPG9R	RPG9R<3:0>	
RPB14	RPB14R	RPB14R<3:0>	0010 = <u>U2TX</u> 0011 = <u>U5RTS</u>
RPD0	RPD0R	RPD0R<3:0>	0100 = U6TX
RPB6	RPB6R	RPB6R<3:0>	0101 = Reserved
RPD5	RPD5R	RPD5R<3:0>	0110 = SS2 0111 = Reserved
RPB2	RPB2R	RPB2R<3:0>	1000 = SDO4
RPF3	RPF3R	RPF3R<3:0>	1001 = Reserved
RPF13 ⁽¹⁾	RPF13R ⁽¹⁾	RPF13R<3:0> ⁽¹⁾	1010 = SDO6 ⁽¹⁾ 1011 = OC2
RPC2 ⁽¹⁾	RPC2R ⁽¹⁾	RPC2R<3:0> ⁽¹⁾	1011 = 002 1100 = 001
RPE8 ⁽¹⁾	RPE8R ⁽¹⁾	RPE8R<3:0> ⁽¹⁾	1101 = OC 9
RPF2 ⁽¹⁾	RPF2R ⁽¹⁾	RPF2R<3:0> ⁽¹⁾	1110 = Reserved 1111 = C2TX ⁽³⁾

TABLE 12-3: OUTPUT PIN SELECTION (CONTINUED)

Note 1: This selection is not available on 64-pin devices.

2: This selection is not available on 64-pin or 100-pin devices.

3: This selection is not available on devices without a CAN module.

TABLE 12-6: PORTC REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess										Bits									
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	ANSELC	31:16	—	—	—	_	—	_	_	_	_	_	—	_	—	—	—	_	0000
0200	ANGLEO	15:0	_	_		_	—			_	—	—		ANSC4	ANSC3	ANSC2	ANSC1		001E
0210	TRISC	31:16	_				_		_	_	—	—		—	_	—	_	_	0000
0210	TRIBO	15:0	TRISC15	TRISC14	TRISC13	TRISC12	—			_	—	—		TRISC4	TRISC3	TRISC2	TRISC1		F01E
0220	PORTC	31:16	—	_	—		_		_	_	—	—		_	_		—	_	0000
0220	TOKIC	15:0	RC15	RC14	RC13	RC12	—	_	_	_	—	—	—	RC4	RC3	RC2	RC1	-	xxxx
0230	LATC	31:16	_	_	—	-	—	_	_	_	—	—	—	—	—	—	—	-	0000
0230	LAIO	15:0	LATC15	LATC14	LATC13	LATC12	—	_	_	_	—	—	—	LATC4	LATC3	LATC2	LATC1	-	xxxx
0240	ODCC	31:16	_	_	—	-	—	_	_	_	—	—	—	—	—	—	—	-	0000
0240	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	_	_	_	—	—	—	ODCC4	ODCC3	ODCC2	ODCC1	-	0000
0250	CNPUC	31:16	_	_	—	-	—	_	_	_	—	—	—	—	—	—	—	-	0000
0230	CINFUC	15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	-					_	_	CNPUC4	CNPUC3	CNPUC2	CNPUC1	١	0000
0260	CNPDC	31:16	_	_	—	-	—	_	_	_	—	—	—	—	—	—	—	-	0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	_	_	_	—	—	—	CNPDC4	CNPDC3	CNPDC2	CNPDC1	-	0000
	1	31:16	_	_		_				_	—	—		—	_		—		0000
0270	CNCONC	15:0	ON	—	—	—	EDGE DETECT	—	—	—	—	—	—	—	—	—	—	—	0000
0280	CNENC	31:16	_	—		—	—	—	—	—		_	—	_	—	—	—	—	0000
0200	CNENC	15:0	CNENC15	CNENC14	CNENC13	CNENC12								CNENC4	CNENC3	CNENC2	CNENC1	_	0000
0200	CNSTATC	31:16	_	—	—	—	—	—	—	—		_	—	_	—	—	—	—	0000
0290	CINSTATC	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_	_	_	_		_	—	CNSTATC4	CNSTATC3	CNSTATC2	CNSTATC1	_	0000
02A0	CNNEC	31:16	_	—			-					_	_	_	_	_		١	0000
02A0	CININEC	15:0	CNNEC15	CNNEC14	CNNEC13	CNNEC12	—				_	—	—	CNNEC4	CNNEC3	CNNEC2	CNNEC1		0000
02B0	CNFC	31:16	_	-	—		-				_	_	—	_	-	-	-		0000
0200	CINEC	15:0	CNFC15	CNFC14	CNFC13	CNFC12	_		_		_	_	—	CNFC4	CNFC3	CNFC2	CNFC1		0000

x = Unknown value on Reset; --- = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31:24	EF	RRMODE<2:0	>		ERROP<2:0>	ERRPHA	ERRPHASE<1:0>					
23:16	U-0 U-0		R-0	R-0	R-0	R-0	R-0	R-0				
23.10	—	—		BDSTAT	START	ACTIVE						
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8				BDCTRL	<15:8>							
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0	BDCTRL<7:0>											

REGISTER 26-5: CESTAT: CRYPTO ENGINE STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 ERRMODE<2:0>: Internal Error Mode Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CEK operation
- 010 = KEK operation
- 001 = Preboot authentication
- 000 = Normal operation

bit 28-26 ERROP<2:0>: Internal Error Operation Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Authentication
- 011 = Reserved
- 010 = Decryption
- 001 = Encryption
- 000 = Reserved

bit 25-24 ERRPHASE<1:0>: Internal Error Phase of DMA Status bits

- 11 = Destination data
- 10 = Source data
- 01 = Security Association (SA) access
- 00 = Buffer Descriptor (BD) access

bit 23-22 Unimplemented: Read as '0'

bit 21-18 BDSTATE<3:0>: Buffer Descriptor Processor State Status bits

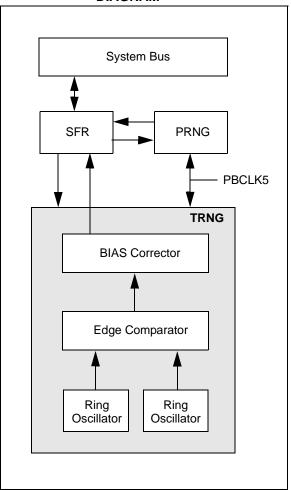
The current state of the BDP:

- 1111 = Reserved
- •
- 0111 = Reserved
- 0110 = SA fetch
- 0101 = Fetch BDP is disabled
- 0100 = Descriptor is done
- 0011 = Data phase
- 0010 = BDP is loading
- 0001 = Descriptor fetch request is pending
- 0000 = BDP is idle
- bit 17 START: DMA Start Status bit
 - 1 = DMA start has occurred
 - 0 = DMA start has not occurred

27.0 RANDOM NUMBER GENERATOR (RNG)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246) in the "PIC32 Family Reference Manual", which is available the Microchip site from web (www.microchip.com/PIC32).

The Random Number Generator (RNG) core implements a thermal noise-based, True Random Number Generator (TRNG) and a cryptographically secure Pseudo-Random Number Generator (PRNG).


The TRNG uses multiple ring oscillators and the inherent thermal noise of integrated circuits to generate true random numbers that can initialize the PRNG.

The PRNG is a flexible LSFR, which is capable of manifesting a maximal length LFSR of up to 64-bits.

The following are some of the key features of the Random Number Generator:

- TRNG:
 - Up to 25 Mbps of random bits
 - Multi-Ring Oscillator based design
 - Built-in Bias Corrector
- PRNG:
 - LSFR-based
 - Up to 64-bit polynomial length
 - Programmable polynomial
 - TRNG can be seed value

TABLE 27-1: RANDOM NUMBER GENERATOR BLOCK DIAGRAM

27.1 RNG Control Registers

TABLE 27-2: RANDOM NUMBER GENERATOR (RNG) REGISTER MAP

ess										Bits	;								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	RNGVER	31:16		ID<15:0> xxx												xxxx			
0000	RNOVER	15:0		VERSION<7:0> REVISION<7:0> x2												xxxx			
6004	RNGCON	31:16	_												0000				
0004	KNOCON	15:0	_	LOAD TRNGMODE CONT PRNGEN TRNGEN PLEN<7:0> 006										0064					
6008	RNGPOLY1	31:16									1.0								FFFF
0000	RINGFOLTT	15:0		POLY<31:0>															
600C	RNGPOLY2	31:16								POLY<3	1.0								FFFF
0000	KNGFOLI Z	15:0								FULIKS	01.02								0000
6010	RNGNUMGEN1	31:16								RNG<3	1.0>								FFFF
0010	RINGINOWIGEINT	15:0								KNOC3	1.0>								FFFF
6014	RNGNUMGEN2	31:16								RNG<3	1.0.								FFFF
0014	RINGINUWIGEINZ	15:0								RNG<3	1.0>								FFFF
6018	RNGSEED1	31:16		0000															
6018	RINGSEEDT	15:0		SEED<31:0> 0000															
6010	RNGSEED2	31:16		0000															
601C	RINGSEED2	15:0		SEED<31:0>										0000					
6020	RNGCNT	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
6020	RINGCINI	15:0	_	—	—	_	—	_	—	—	_				RCNT<6:0	>			0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 28-5: ADCIMCON1: ADC INPUT MODE CONTROL REGISTER 1 (CONTINUED)

bit 4 SIGN2: AN2 Signed Data Mode bit 1 = AN2 is using Signed Data mode 0 = AN2 is using Unsigned Data mode bit 3 DIFF1: AN1 Mode bit 1 = AN1 is using Differential mode 0 = AN1 is using Single-ended mode bit 2 SIGN1: AN1 Signed Data Mode bit 1 = AN1 is using Signed Data mode 0 = AN1 is using Unsigned Data mode bit 1 DIFF0: AN0 Mode bit 1 = AN0 is using Differential mode 0 = AN0 is using Single-ended mode SIGNO: ANO Signed Data Mode bit bit 0 1 = AN0 is using Signed Data mode 0 = AN0 is using Unsigned Data mode

REGISTE	R 29-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5 (CONTINUED)
bit 15	FLTEN21: Filter 21 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL21<1:0>: Filter 21 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	FSEL21<4:0>: FIFO Selection bits
DIL 12-0	
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN20: Filter 20 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL20<1:0>: Filter 20 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 4-0	FSEL20<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Net	
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

30.1 **Ethernet Control Registers**

TABLE 30-5: ETHERNET CONTROLLER REGISTER SUMMARY

ess										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	ETHCON1	31:16								PTV<	:15:0>								0000
2000	LINCONT	15:0	ON	—	SIDL	_	_	_	TXRTS	RXEN	AUTOFC	_	_	MANFC	—	—	—	BUFCDEC	0000
2010	ETHCON2	31:16	_		_		_	—	_	_	—	—	—	—	_				0000
		15:0		_		_	_				XBUFSZ<6:0	>				-	_	_	0000
2020	ETHTXST	31:16 15:0															0000		
		31:16															0000		
2030	ETHRXST	15:0		RXSTADDR<15:2> 000															
		31:16							10101712										0000
2040	ETHHT0	15:0								HT<	31:0>								0000
2050		31:16								UT (2.22								0000
2050	ETHHT1	15:0								HI<0	3:32>								0000
2060	ETHPMM0	31:16														0000			
2000		15:0								1 1011014	\$01.02								0000
2070	ETHPMM1	31:16								PMM<	63:32>								0000
		15:0												1		1	1	1	0000
2080	ETHPMCS	31:16 15:0	_	_		_	—	_		PMCS	— <15:0>	—	—	—	—	—	_	—	0000
		31:16	_	_	_	_	_	_	_	- FINICO		_	_	_	_	_	_	_	0000
2090	ETHPMO	15:0								PMO.									0000
		31:16	_	_	_	_	_	_	_	_		_	_	_		_	_	_	0000
20A0	ETHRXFC	15:0	HTEN	MPEN	_	NOTPM		PMMO	DE<3:0>		CRC ERREN	CRC OKEN	RUNT ERREN	RUNTEN	UCEN	NOT MEEN	MCEN	BCEN	0000
2080	ETHRXWM	31:16	_	_	_	_	_	_	_					RXFW	M<7:0>				0000
2080		15:0	_	-	—	_	-	-	—	—				RXEW	M<7:0>				0000
		31:16	—	—	—	_	_	_	—	—	—	—	—	_	—	—	—	—	0000
20C0	ETHIEN	15:0	—	TX BUSEIE	RX BUSEIE	—	—	—	EW MARKIE	FW MARKIE	RX DONEIE	PK TPENDIE	RX ACTIE	_	TX DONEIE	TX ABORTIE	RX BUFNAIE	RX OVFLWIE	0000
20D0	ETHIRQ	31:16	—	—	—	_	_	_	—	—	—	—	—	_	—	—	-	—	0000
		15:0	_	TXBUSE	RXBUSE		_	_	EWMARK	FWMARK	RXDONE	PKTPEND	RXACT	—	TXDONE	TXABORT	RXBUFNA	RXOVFLW	0000
20E0	ETHSTAT	31:16	—													0000			
<u> </u>		15:0	_	—	_	_	—	—		_	BUSY	TXBUSY	RXBUSY	-	-	_	_		0000
2100	ETH RXOVFLOW	31:16	_	-	—	_	-	—	_		— —	—	—	-	_	-	-	_	0000
	NAUVELOW	15:0	ualua an Da						overle einerel	RXOVFLW	CNT<15:0>								0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

Reset values default to the factory programmed value. 2:

DC CHARA	CTERISTICS		(unles	s otherwise s	g Conditions: 2.1V to 3.6V stated) ire $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Typical ⁽²⁾	Maximum ⁽⁵⁾	Units	Units Conditions						
Power-Dov	vn Current (IPI	o) (Note 1)								
EDC40m	20	46	mA +125°C Base Power-Down Current							
Module Dif	ferential Curre	ent								
EDC41e	15	50	μA	3.6V	Watchdog Timer Current: ΔIWDT (Note 3)					
EDC42e	25	50	μA	3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)					
EDC43d	3	3.8	mA	3.6V ADC: ΔΙΑDC (Notes 3, 4)						
EDC44	15	50	μA	3.6V Deadman Timer Current: AIDMT (Note 3)						

TABLE 38-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
- CPU is in Sleep mode
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- Voltage regulator is in Stand-by mode (VREGS = 0)
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- **4:** Voltage regulator is operational (VREGS = 1).
- 5: Data in the "Maximum" column is at 3.3V, +125°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

Revision C (March 2016)

In this revision, the Preliminary status was removed from the document footer.

The revision also includes the following major changes, which are referenced by their respective chapter in Table C-2. In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE C-2: MAJOR SECTION UPDATES

Section Name	Update Description
2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	2.9.1.3 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" and Figure 2-5 were updated.
4.0 "Memory Organization"	The names of the Boot Flash Words were updated from BFxSEQ0 to BFxSEQ3 (see 4.1.1 "Boot Flash Sequence and Configuration Spaces").
	The ABFxSEQx registers were removed from the Boot Flash Sequence and Configuration tables (see Table 4-2 and Table 4-3).
7.0 "CPU Exceptions and Interrupt Controller"	The Cache Error exception type was removed from the MIPS32 M-Class Microprocessor Core Exception Types (see Table 7-1).
8.0 "Oscillator Configuration"	The PLLODIV<2:0> bit value settings were updated in the SPLLCON register (see Register 8-3).
12.0 "I/O Ports"	The SIDL bit was removed from the CNCONx registers (see Table 12-4 through Table 12-21 and Register 12-3).
20.0 "Serial Quad Interface (SQI)"	The following bits were removed from the SQI1XCON1 register (see Table 20-1 and Register 20-1): DDRDATA, DDRDUMMY, DDRMODE, DDRADDR, and DDRCMD.
	The DDRMODE bit was removed from the SQI1CON register (see Table 20-1 and Register 20-4).
28.0 "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)"	A note was added to the SELRES<1:0> bits in the ADCCON1 and ADCxTIME registers (see Register 28-1 and Register 28-27).
	The ADCID<2:0 bit values were updated in the ADCFSTAT register (see Register 28-22).
34.0 "Special Features"	The bit value definitions for the POSCGAIN<1:0> and SOSCGAIN<1:0> bits were updated (see Register 34-3).
	The Device ADC Calibration Word (DEVADCx) register was added (see Table 34-5 and Register 34-13).