

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

\	
Petails	
roduct Status	Active
ore Processor	MIPS32® M-Class
ore Size	32-Bit Single-Core
peed	200MHz
connectivity	Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
eripherals	Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT
lumber of I/O	46
rogram Memory Size	1MB (1M x 8)
rogram Memory Type	FLASH
EPROM Size	-
AM Size	512K x 8
oltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
ata Converters	A/D 24x12b
scillator Type	Internal
perating Temperature	-40°C ~ 85°C (TA)
lounting Type	Surface Mount
ackage / Case	64-VFQFN Exposed Pad
upplier Device Package	64-QFN (9x9)
urchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efg064-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: OSCILLATOR PINOUT I/O DESCRIPTIONS

		Pin Nu	mber								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
CLKI	31	49	B28	71		ST/CMOS	External clock source input. Always associated with OSC1 pin function.				
CLKO	32	50	A33	72	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.				
OSC1	31	49	B28	71	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.				
OSC2	32	50	A33	72	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally function as CLKO in RC and EC modes.				
SOSCI	47	72	B41	105	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.				
SOSCO	48	73	A49	106	0	_	32.768 low-power oscillator crystal output.				
REFCLKI1	PPS	PPS	PPS	PPS	I	_	Reference Clock Generator Inputs 1-4				
REFCLKI3	PPS	PPS	PPS	PPS	I	_					
REFCLKI4	PPS	PPS	PPS	PPS	I	_					
REFCLKO1	PPS	PPS	PPS	PPS	0	_	Reference Clock Generator Outputs 1-4				
REFCLKO3	PPS	PPS	PPS	PPS	0	_					
REFCLKO4	PPS	PPS	PPS	PPS	0	_					

Legend: CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input

O = Output

P = Power I = Input

PPS = Peripheral Pin Select

TABLE 1-3: IC1 THROUGH IC9 PINOUT I/O DESCRIPTIONS

		Pin Nu	mber								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
					Input	Capture					
IC1	PPS	PPS	PPS	PPS	I	ST	Input Capture Inputs 1-9				
IC2	PPS	PPS	PPS	PPS	I	ST	1				
IC3	PPS	PPS	PPS	PPS	I	ST	1				
IC4	PPS	PPS	PPS	PPS	I	ST	1				
IC5	PPS	PPS	PPS	PPS	I	ST	1				
IC6	PPS	PPS	PPS	PPS	I	ST	1				
IC7	PPS	PPS	PPS	PPS	I	ST	1				
IC8	PPS	PPS	PPS	PPS	I	ST	1				
IC9	PPS	PPS	PPS	PPS	I	ST	1				

Legend: CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input

O = Output

PPS = Peripheral Pin Select

P = Power I = Input

TABLE 1-12: PMP PINOUT I/O DESCRIPTIONS

PMA3 6 12 B7 52 O — modes) PMA4 5 11 A8 68 O — PMA5 4 2 B1 2 O — PMA6 16 6 B3 6 O — PMA7 22 33 A23 48 O — PMA9 41 64 B36 90 O — PMA9 41 64 B36 90 O — PMA11 27 41 A27 29 O — PMA12 24 7 A6 11 O — PMA13 23 34 B19 28 O — Parallel Master Port Chip Select 1 Strobe PMA14 45 61 A42 87 O — Parallel Master Port Chip Select 1 Strobe PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 1 Strobe PMD6 58 91 B52 135 I/O			Pin Nu	mber								
PMA1	Pin Name	QFN/		•	TQFP/			Description				
PMA2	PMA0	30	44	B24	30	I/O	TTL/ST					
PMA3 6 12 B7 52 O — modes) PMA4 5 11 A8 68 O — PMA6 4 2 B1 2 O — PMA6 16 6 B3 6 O — PMA7 22 33 A23 48 O — PMA8 42 65 A44 91 O — PMA9 41 64 B36 90 O — PMA10 21 32 B18 47 O — PMA11 27 41 A27 29 O — PMA11 27 41 A22 87 O — PMA13 23 34 B19 28 O — PMA14 45 61 A42 87 O — Parallel Master Port Chip Select 1 Strobe PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 2 Strobe Parallel Master Port Chip Select 2	PMA1	29	43	A28	51	I/O	TTL/ST					
PMA4	PMA2	10	16	В9	21	0	_	Parallel Master Port Address (Demultiplexed Master				
PMA5 4 2 B1 2 0 — PMA6 16 6 B3 6 0 — PMA7 22 33 A23 48 0 — PMA9 41 64 B36 90 0 — PMA10 21 32 B18 47 0 — PMA11 27 41 A27 29 0 — PMA13 23 34 B19 28 0 — PMA13 23 34 B19 28 0 — PMA14 45 61 A42 87 0 — PMCS1 45 61 A42 87 0 — PMCS2 43 68 B38 97 0 — Parallel Master Port Chip Select 1 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Chip Select 1 Strobe <td>PMA3</td> <td>6</td> <td>12</td> <td>В7</td> <td>52</td> <td>0</td> <td>_</td> <td>modes)</td>	PMA3	6	12	В7	52	0	_	modes)				
PMA6 16 6 B3 6 O — PMA7 22 33 A23 48 O — PMA8 42 65 A44 91 O — PMA9 41 64 B36 90 O — PMA10 21 32 B18 47 O — PMA11 27 41 A27 29 O — PMA12 24 7 A6 11 O — PMA13 23 34 B19 28 O — PMA14 45 61 A42 87 O — PMCS1 45 61 A42 87 O — Parallel Master Port Chip Select 1 Strobe PMD5 45 61 A42 87 O — Parallel Master Port Chip Select 2 Strobe PMD6 5 91 B52 135 I/O TTL/ST <td>PMA4</td> <td>5</td> <td>11</td> <td>A8</td> <td>68</td> <td>0</td> <td>_</td> <td></td>	PMA4	5	11	A8	68	0	_					
PMA7 22 33 A23 48 O — PMA8 42 65 A44 91 O — PMA9 41 64 B36 90 O — PMA10 21 32 B18 47 O — PMA11 27 41 A27 29 O — PMA12 24 7 A6 11 O — PMA13 23 34 B19 28 O — PMA14 45 61 A42 87 O — PMCS1 45 61 A42 87 O — Parallel Master Port Chip Select 1 Strobe PMDS 43 68 B38 97 O — Parallel Master Port Chip Select 2 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Chip Select 2 Strobe PMD1 61 94 A64	PMA5	4	2	B1	2	0	_					
PMA8 42 65 A44 91 O — PMA9 41 64 B36 90 O — PMA10 21 32 B18 47 O — PMA11 27 41 A27 29 O — PMA13 23 34 B19 28 O — PMA14 45 61 A42 87 O — PMCS1 45 61 A42 87 O — Parallel Master Port Chip Select 1 Strobe PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 2 Strobe PMCS1 45 61 A42 87 O — Parallel Master Port Chip Select 2 Strobe PMDS 43 68 B38 97 O — Parallel Master Port Data (Demultiplexed Master Port Data (Demulti	PMA6	16	6	В3	6	0	_					
PMA9 41 64 B36 90 O — PMA10 21 32 B18 47 O — PMA11 27 41 A27 29 O — PMA12 24 7 A6 11 O — PMA13 23 34 B19 28 O — PMA14 45 61 A42 87 O — PMCS1 45 61 A42 87 O — PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 2 Strobe PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 2 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Chip Select 2 Strobe PMD1 61 94 A64 138 I/O TTL/ST PMD2 62 98 A6	PMA7	22	33	A23	48	0	_					
PMA10 21 32 B18 47 O — PMA11 27 41 A27 29 O — PMA12 24 7 A6 11 O — PMA13 23 34 B19 28 O — PMA14 45 61 A42 87 O — PMCS1 45 61 A42 87 O — PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 1 Strobe PMDS 45 61 A42 87 O — Parallel Master Port Chip Select 2 Strobe PMD0 58 91 B52 135 I/O TTL/ST PMD1 61 94 A64 138 I/O TTL/ST PMD2 62 98 A66 142 I/O TTL/ST PMD3 63 99 B56 143 I/O	PMA8	42	65	A44	91	0	_					
PMA11 27 41 A27 29 O — PMA12 24 7 A6 11 O — PMA13 23 34 B19 28 O — PMA15 43 68 B38 97 O — PMCS1 45 61 A42 87 O — PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 1 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Chip Select 2 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Chip Select 2 Strobe PMD0 68 98 A66 142 I/O TTL/ST Parallel Master Port Chip Select 1 Strobe PMD1 61 94 A64 138 I/O TTL/ST Pmode or Address/Data (Multiplexed Master mode) PMD2 62 98 A66 142	PMA9	41	64	B36	90	0	_	1				
PMA11 27 41 A27 29 O — PMA12 24 7 A6 11 O — PMA13 23 34 B19 28 O — PMA14 45 61 A42 87 O — PMCS1 45 61 A42 87 O — PMCS1 45 61 A42 87 O — PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 1 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Chip Select 2 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Chip Select 2 Strobe PMD0 68 98 A66 142 I/O TTL/ST Parallel Master Port Chip Select 2 Strobe PMD13 63 99 B56 143 I/O TTL/ST PMD15 <td>PMA10</td> <td>21</td> <td>32</td> <td>B18</td> <td>47</td> <td>0</td> <td>_</td> <td></td>	PMA10	21	32	B18	47	0	_					
PMA12 24 7 A6 11 O — PMA13 23 34 B19 28 O — PMA14 45 61 A42 87 O — PMCS1 45 61 A42 87 O — PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 1 Strobe PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 2 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Chip Select 2 Strobe PMD1 61 94 A64 138 I/O TTL/ST Parallel Master Port Data (Demultiplexed Master mode) PMD2 62 98 A66 142 I/O TTL/ST PMD3 63 99 B56 143 I/O TTL/ST PMD4 64 100 A67 144 I/O TTL/ST	PMA11	27	41	A27	29		_					
PMA13 23 34 B19 28 O — PMA14 45 61 A42 87 O — PMCS1 43 68 B38 97 O — Parallel Master Port Chip Select 1 Strobe PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 2 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Chip Select 2 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Data (Demultiplexed Master mode) PMD1 61 94 A64 138 I/O TTL/ST mode) or Address/Data (Multiplexed Master mode) PMD2 62 98 A66 142 I/O TTL/ST mode) or Address/Data (Multiplexed Master mode) PMD4 64 100 A67 144 I/O TTL/ST PMD5 1 3 A3 3 I/O TTL/ST <		24	7	A6	11		_					
PMA14 45 61 A42 87 O — PMA15 43 68 B38 97 O — PMCS1 45 61 A42 87 O — Parallel Master Port Chip Select 1 Strobe PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 2 Strobe PMD0 58 91 B52 135 I/O TTL/ST PMD1 61 94 A64 138 I/O TTL/ST Parallel Master Port Data (Demultiplexed Master mode) or Address/Data (Multiplexed Master mode) or Addre								-				
PMA15 43 68 B38 97 O — PMCS1 45 61 A42 87 O — Parallel Master Port Chip Select 1 Strobe PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 2 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Data (Demultiplexed Master mode) PMD1 61 94 A64 138 I/O TTL/ST Parallel Master Port Data (Demultiplexed Master mode) PMD2 62 98 A66 142 I/O TTL/ST Parallel Master Port Data (Demultiplexed Master mode) PMD3 63 99 B56 143 I/O TTL/ST Parallel Master Port Address/Data (Multiplexed Master mode) PMD4 64 100 A67 144 I/O TTL/ST TTL/ST PMD6 2 4 B2 4 I/O TTL/ST TTL/ST PMD9 — 87 A60 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>								-				
PMCS1 45 61 A42 87 O — Parallel Master Port Chip Select 1 Strobe PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 2 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Data (Demultiplexed Master mode) PMD1 61 94 A64 138 I/O TTL/ST Parallel Master Port Data (Demultiplexed Master mode) PMD2 62 98 A66 142 I/O TTL/ST Parallel Master Port Data (Demultiplexed Master mode) PMD2 62 98 A66 142 I/O TTL/ST Parallel Master Port Data (Demultiplexed Master mode) PMD3 63 99 B56 143 I/O TTL/ST Parallel Master Port Address Latch Enable Low By (Multiplexed Master mode) PMD6 1 3 A3 3 I/O TTL/ST PMD7 3 5 A4 5 I/O TTL/ST PMD9 —								-				
PMCS2 43 68 B38 97 O — Parallel Master Port Chip Select 2 Strobe PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Data (Demultiplexed Master mode) PMD1 61 94 A64 138 I/O TTL/ST mode) or Address/Data (Multiplexed Master mode) PMD2 62 98 A66 142 I/O TTL/ST mode) or Address/Data (Multiplexed Master mode) PMD3 63 99 B56 143 I/O TTL/ST TTL/ST PMD4 64 100 A67 144 I/O TTL/ST PMD5 1 3 A3 3 I/O TTL/ST PMD6 2 4 B2 4 I/O TTL/ST PMD7 3 5 A4 5 I/O TTL/ST PMD8 — 88 B50 128 I/O TTL/ST PMD10 — 86 B49 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Parallel Master Port Chip Select 1 Strobe</td></t<>								Parallel Master Port Chip Select 1 Strobe				
PMD0 58 91 B52 135 I/O TTL/ST Parallel Master Port Data (Demultiplexed Master mode) PMD1 61 94 A64 138 I/O TTL/ST PMD2 62 98 A66 142 I/O TTL/ST PMD3 63 99 B56 143 I/O TTL/ST PMD4 64 100 A67 144 I/O TTL/ST PMD5 1 3 A3 3 I/O TTL/ST PMD6 2 4 B2 4 I/O TTL/ST PMD7 3 5 A4 5 I/O TTL/ST PMD8 — 88 B50 128 I/O TTL/ST PMD9 — 87 A60 127 I/O TTL/ST PMD10 — 86 B49 125 I/O TTL/ST PMD11 — 85 A59 124 I/O								•				
PMD1 61 94 A64 138 I/O TTL/ST mode) or Address/Data (Multiplexed Master modes PMD2 62 98 A66 142 I/O TTL/ST PMD3 63 99 B56 143 I/O TTL/ST PMD4 64 100 A67 144 I/O TTL/ST PMD5 1 3 A3 3 I/O TTL/ST PMD6 2 4 B2 4 I/O TTL/ST PMD7 3 5 A4 5 I/O TTL/ST PMD8 — 88 B50 128 I/O TTL/ST PMD9 — 87 A60 127 I/O TTL/ST PMD10 — 86 B49 125 I/O TTL/ST PMD11 — 85 A59 124 I/O TTL/ST PMD13 — 80 A54 113 I/O T							TTL/ST	-				
PMD2 62 98 A66 142 I/O TTL/ST PMD3 63 99 B56 143 I/O TTL/ST PMD4 64 100 A67 144 I/O TTL/ST PMD5 1 3 A3 3 I/O TTL/ST PMD6 2 4 B2 4 I/O TTL/ST PMD7 3 5 A4 5 I/O TTL/ST PMD8 — 88 B50 128 I/O TTL/ST PMD9 — 87 A60 127 I/O TTL/ST PMD10 — 86 B49 125 I/O TTL/ST PMD11 — 85 A59 124 I/O TTL/ST PMD13 — 80 A54 113 I/O TTL/ST PMD14 — 77 B42 110 I/O TTL/ST PMALH								mode) or Address/Data (Multiplexed Master modes)				
PMD3 63 99 B56 143 I/O TTL/ST PMD4 64 100 A67 144 I/O TTL/ST PMD5 1 3 A3 3 I/O TTL/ST PMD6 2 4 B2 4 I/O TTL/ST PMD7 3 5 A4 5 I/O TTL/ST PMD8 — 88 B50 128 I/O TTL/ST PMD9 — 87 A60 127 I/O TTL/ST PMD10 — 86 B49 125 I/O TTL/ST PMD11 — 85 A59 124 I/O TTL/ST PMD12 — 79 B43 112 I/O TTL/ST PMD13 — 80 A54 113 I/O TTL/ST PMD15 — 78 A53 111 I/O TTL/ST PMALL								1				
PMD4 64 100 A67 144 I/O TTL/ST PMD5 1 3 A3 3 I/O TTL/ST PMD6 2 4 B2 4 I/O TTL/ST PMD7 3 5 A4 5 I/O TTL/ST PMD8 — 88 B50 128 I/O TTL/ST PMD9 — 87 A60 127 I/O TTL/ST PMD10 — 86 B49 125 I/O TTL/ST PMD11 — 85 A59 124 I/O TTL/ST PMD12 — 79 B43 112 I/O TTL/ST PMD13 — 80 A54 113 I/O TTL/ST PMD14 — 77 B42 110 I/O TTL/ST PMD15 — 78 A53 111 I/O TTL/ST PMALL												
PMD5 1 3 A3 3 I/O TTL/ST PMD6 2 4 B2 4 I/O TTL/ST PMD7 3 5 A4 5 I/O TTL/ST PMD8 — 88 B50 128 I/O TTL/ST PMD9 — 87 A60 127 I/O TTL/ST PMD10 — 86 B49 125 I/O TTL/ST PMD11 — 85 A59 124 I/O TTL/ST PMD12 — 79 B43 112 I/O TTL/ST PMD13 — 80 A54 113 I/O TTL/ST PMD14 — 77 B42 110 I/O TTL/ST PMD15 — 78 A53 111 I/O TTL/ST PMALL 30 44 B24 30 O — Parallel Master Port Address Latch Enable High By												
PMD6 2 4 B2 4 I/O TTL/ST PMD7 3 5 A4 5 I/O TTL/ST PMD8 — 88 B50 128 I/O TTL/ST PMD9 — 87 A60 127 I/O TTL/ST PMD10 — 86 B49 125 I/O TTL/ST PMD11 — 85 A59 124 I/O TTL/ST PMD12 — 79 B43 112 I/O TTL/ST PMD13 — 80 A54 113 I/O TTL/ST PMD14 — 77 B42 110 I/O TTL/ST PMD15 — 78 A53 111 I/O TTL/ST PMALL 30 44 B24 30 O — Parallel Master Port Address Latch Enable Low By (Multiplexed Master modes) PMALH 29 43 A28 51 <												
PMD7 3 5 A4 5 I/O TTL/ST PMD8 — 88 B50 128 I/O TTL/ST PMD9 — 87 A60 127 I/O TTL/ST PMD10 — 86 B49 125 I/O TTL/ST PMD11 — 85 A59 124 I/O TTL/ST PMD12 — 79 B43 112 I/O TTL/ST PMD13 — 80 A54 113 I/O TTL/ST PMD14 — 77 B42 110 I/O TTL/ST PMD15 — 78 A53 111 I/O TTL/ST PMALL 30 44 B24 30 O — Parallel Master Port Address Latch Enable Low By (Multiplexed Master modes) PMALH 29 43 A28 51 O — Parallel Master Port Address Latch Enable High By (Multiplexed Master modes)								-				
PMD8 — 88 B50 128 I/O TTL/ST PMD9 — 87 A60 127 I/O TTL/ST PMD10 — 86 B49 125 I/O TTL/ST PMD11 — 85 A59 124 I/O TTL/ST PMD12 — 79 B43 112 I/O TTL/ST PMD13 — 80 A54 113 I/O TTL/ST PMD14 — 77 B42 110 I/O TTL/ST PMD15 — 78 A53 111 I/O TTL/ST PMALL 30 44 B24 30 O — Parallel Master Port Address Latch Enable Low By (Multiplexed Master modes) PMALH 29 43 A28 51 O — Parallel Master Port Address Latch Enable High By (Multiplexed Master modes)								-				
PMD9 — 87 A60 127 I/O TTL/ST PMD10 — 86 B49 125 I/O TTL/ST PMD11 — 85 A59 124 I/O TTL/ST PMD12 — 79 B43 112 I/O TTL/ST PMD13 — 80 A54 113 I/O TTL/ST PMD14 — 77 B42 110 I/O TTL/ST PMD15 — 78 A53 111 I/O TTL/ST PMALL 30 44 B24 30 O — Parallel Master Port Address Latch Enable Low By (Multiplexed Master modes) PMALH 29 43 A28 51 O — Parallel Master Port Address Latch Enable High By (Multiplexed Master modes)								-				
PMD10 — 86 B49 125 I/O TTL/ST PMD11 — 85 A59 124 I/O TTL/ST PMD12 — 79 B43 112 I/O TTL/ST PMD13 — 80 A54 113 I/O TTL/ST PMD14 — 77 B42 110 I/O TTL/ST PMD15 — 78 A53 111 I/O TTL/ST PMALL 30 44 B24 30 O — Parallel Master Port Address Latch Enable Low By (Multiplexed Master modes) PMALH 29 43 A28 51 O — Parallel Master Port Address Latch Enable High By (Multiplexed Master modes)								-				
PMD11 — 85 A59 124 I/O TTL/ST PMD12 — 79 B43 112 I/O TTL/ST PMD13 — 80 A54 113 I/O TTL/ST PMD14 — 77 B42 110 I/O TTL/ST PMD15 — 78 A53 111 I/O TTL/ST PMALL 30 44 B24 30 O — Parallel Master Port Address Latch Enable Low By (Multiplexed Master modes) PMALH 29 43 A28 51 O — Parallel Master Port Address Latch Enable High By (Multiplexed Master modes)	-							-				
PMD12 — 79 B43 112 I/O TTL/ST PMD13 — 80 A54 113 I/O TTL/ST PMD14 — 77 B42 110 I/O TTL/ST PMD15 — 78 A53 111 I/O TTL/ST PMALL 30 44 B24 30 O — Parallel Master Port Address Latch Enable Low By (Multiplexed Master modes) PMALH 29 43 A28 51 O — Parallel Master Port Address Latch Enable High By (Multiplexed Master modes)	-							-				
PMD13 — 80 A54 113 I/O TTL/ST PMD14 — 77 B42 110 I/O TTL/ST PMD15 — 78 A53 111 I/O TTL/ST PMALL 30 44 B24 30 O — Parallel Master Port Address Latch Enable Low By (Multiplexed Master modes) PMALH 29 43 A28 51 O — Parallel Master Port Address Latch Enable High By (Multiplexed Master modes)								-				
PMD14 — 77 B42 110 I/O TTL/ST PMD15 — 78 A53 111 I/O TTL/ST PMALL 30 44 B24 30 O — Parallel Master Port Address Latch Enable Low By (Multiplexed Master modes) PMALH 29 43 A28 51 O — Parallel Master Port Address Latch Enable High By (Multiplexed Master modes)								-				
PMD15 — 78 A53 111 I/O TTL/ST PMALL 30 44 B24 30 O — Parallel Master Port Address Latch Enable Low By (Multiplexed Master modes) PMALH 29 43 A28 51 O — Parallel Master Port Address Latch Enable High By (Multiplexed Master modes)								-				
PMALL 30 44 B24 30 O — Parallel Master Port Address Latch Enable Low By (Multiplexed Master modes) PMALH 29 43 A28 51 O — Parallel Master Port Address Latch Enable High By (Multiplexed Master modes)												
PMALH 29 43 A28 51 O — Parallel Master modes) (Multiplexed Master modes) (Multiplexed Master modes)							111/31					
(Multiplexed Master modes)							_	(Multiplexed Master modes)				
PMRD 53 9 A7 13 O — Parallel Master Port Read Strobe	PMALH	29	43	A28	51	0	_	Parallel Master Port Address Latch Enable High Byte (Multiplexed Master modes)				
	PMRD	53	9	A7	13	0		Parallel Master Port Read Strobe				
PMWR 52 8 B5 12 O — Parallel Master Port Write Strobe	PMWR	52	8	B5	12	0	_	Parallel Master Port Write Strobe				

CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input O = Output

P = Power I = Input

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

TABLE 1-18: ALTERNATE ETHERNET MII PINOUT I/O DESCRIPTIONS

	mber									
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description			
AERXD0		18	_	_	I	ST	Alternate Ethernet Receive Data 0			
AERXD1	_	19	_	_	ı	ST	Alternate Ethernet Receive Data 1			
AERXD2	_	28	_	_	I	ST	Alternate Ethernet Receive Data 2			
AERXD3	_	29	_	_	I	ST	Alternate Ethernet Receive Data 3			
AERXERR	_	1	_	_	I	ST	Alternate Ethernet Receive Error Input			
AERXDV	_	12	_	_	I	ST	Alternate Ethernet Receive Data Valid			
AERXCLK	_	16	_	_	I	ST	Alternate Ethernet Receive Clock			
AETXD0	_	47	_	_	0	_	Alternate Ethernet Transmit Data 0			
AETXD1	_	48	_	_	0	_	Alternate Ethernet Transmit Data 1			
AETXD2	_	44	_	_	0	_	Alternate Ethernet Transmit Data 2			
AETXD3	_	43	_	_	0	_	Alternate Ethernet Transmit Data 3			
AETXERR	_	35	_	_	0	_	Alternate Ethernet Transmit Error			
AECOL	_	42	_	_	I	ST	Alternate Ethernet Collision Detect			
AECRS	_	41	_	_	I	ST	Alternate Ethernet Carrier Sense			
AETXCLK	_	66	_	_	I	ST	Alternate Ethernet Transmit Clock			
AEMDC	_	70	_	_	0	_	Alternate Ethernet Management Data Clock			
AEMDIO	_	71	_	_	I/O	_	Alternate Ethernet Management Data			
AETXEN	_	67	_	_	0	_	Alternate Ethernet Transmit Enable			

Legend: CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input
O = Output

P = Power I = Input

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

TABLE 1-19: ALTERNATE ETHERNET RMII PINOUT I/O DESCRIPTIONS

		Pin Nu	mber								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
AERXD0	43	18	_	_	I	ST	Alternate Ethernet Receive Data 0				
AERXD1	46	19	_	_	I	ST	Alternate Ethernet Receive Data 1				
AERXERR	51	1	_	_	I	ST	Alternate Ethernet Receive Error Input				
AETXD0	57	47	_	_	0	_	Alternate Ethernet Transmit Data 0				
AETXD1	56	48	_	_	0	_	Alternate Ethernet Transmit Data 1				
AEMDC	30	70	_	_	0	_	Alternate Ethernet Management Data Clock				
AEMDIO	49	71	_	_	I/O	_	Alternate Ethernet Management Data				
AETXEN	50	67	_	_	0	_	Alternate Ethernet Transmit Enable				
AEREFCLK	45	16	_	_	I	ST	Alternate Ethernet Reference Clock				
AECRSDV	62	12	_	_	I	ST	Alternate Ethernet Carrier Sense Data Valid				

Legend: CN

CMOS = CMOS-compatible input or output

Analog = Analog input

P = Power I = Input

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer O = Output

PPS = Peripheral Pin Select

3.4 EJTAG Debug Support

The processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the processor core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification specify which registers are selected and how they are used.

3.5 MIPS DSP ASE Extension

The MIPS DSP Application-Specific Extension Revision 2 is an extension to the MIPS32 architecture. This extension comprises new integer instructions and states that include new HI/LO accumulator register pairs and a DSP control register. This extension is crucial in a wide range of DSP, multimedia, and DSP-like algorithms covering Audio and Video processing applications. The extension supports native fractional format data type operations, register Single Instruction Multiple Data (SIMD) operations, such as add, subtract, multiply, and shift. In addition, the extension includes the following features that are essential in making DSP algorithms computationally efficient:

- · Support for multiplication of complex operands
- · Variable bit insertion and extraction
- · Implementation and use of virtual circular buffers
- Arithmetic saturation and overflow handling support
- Zero cycle overhead saturation and rounding operations

3.6 microMIPS ISA

The processor core supports the microMIPS ISA, which contains all MIPS32 ISA instructions (except for branch-likely instructions) in a new 32-bit encoding scheme, with some of the commonly used instructions also available in 16-bit encoded format. This ISA improves code density through the additional 16-bit instructions while maintaining a performance similar to MIPS32 mode. In microMIPS mode, 16-bit or 32-bit instructions will be fetched and recoded to legacy MIPS32 instruction opcodes in the pipeline's I stage, so that the processor core can have the same microAptiv UP microarchitecture. Because the microMIPS instruction stream can be intermixed with 16-bit halfword or 32-bit word size instructions on halfword or word boundaries, additional logic is in place to address the misalignment word issues, thus minimizing performance loss.

REGISTER 6-3: RNMICON: NON-MASKABLE INTERRUPT (NMI) CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0 U-0		U-0	U-0	R/W-0	R/W-0				
31.24	_	_	_	_		_	DMTO	WDTO				
23:16	R/W-0	U-0	U-0 U-0		R/W-0	U-0	R/W-0	R/W-0				
23.10	SWNMI	_	_	_	GNMI	_	CF	WDTS				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				NMICN	IT<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	NMICNT<7:0>											

Legend:

bit 18

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25 DMTO: Deadman Timer Time-out Flag bit

1 = DMT time-out has occurred and caused a NMI

0 = DMT time-out has not occurred

Setting this bit will cause a DMT NMI event, and NMICNT will begin counting.

bit 24 WDTO: Watchdog Timer Time-Out Flag bit

1 = WDT time-out has occurred and caused a NMI

0 = WDT time-out has not occurred

Setting this bit will cause a WDT NMI event, and MNICNT will begin counting.

bit 23 **SWNMI:** Software NMI Trigger.

1 = An NMI will be generated

0 = An NMI will not be generated

bit 22-20 Unimplemented: Read as '0'

bit 19 GNMI: General NMI bit

1 = A general NMI event has been detected or a user-initiated NMI event has occurred

0 = A general NMI event has not been detected

Setting GNMI to a '1' causes a user-initiated NMI event. This bit is also set by writing 0x4E to the NMIKEY<7:0> (INTCON<31:24>) bits.

Unimplemented: Read as '0'

1 = FSCM has detected clock failure and caused an NMI

0 = FSCM has not detected clock failure

Setting this bit will cause a a CF NMI event, but will not cause a clock switch to the BFRC.

bit 16 WDTS: Watchdog Timer Time-out in Sleep Mode Flag bit

1 = WDT time-out has occurred during Sleep mode and caused a wake-up from sleep

0 = WDT time-out has not occurred during Sleep mode

Setting this bit will cause a WDT NMI.

bit 15-0 NMICNT<15:0>: NMI Reset Counter Value bits

1111111111111111-0000000000000000 = Number of SYSCLK cycles before a device Reset occurs (1) 0000000000000 = No delay between NMI assertion and device Reset event

Note 1: When a Watchdog Timer NMI event (when not in Sleep mode) or a Deadman Timer NMI event is triggered the NMICNT will start decrementing. When NMICNT reaches zero, the device is Reset. This NMI reset counter is only applicable to these two specific NMI events.

Note: The system unlock sequence must be performed before the SWRST bit can be written. Refer to **Section 42. "Oscillators with Enhanced PLL"** in the *"PIC32 Family Reference Manual"* for details.

TABLE 7-2: INTERRUPT IRQ, VECTOR, AND BIT LOCATION (CONTINUED)

Interrupt Source ⁽¹⁾	VC22 Vester News	IRQ	Veeter#		Interru	upt Bit Location	1	Persistent
interrupt Source	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
ADC Data 19 ⁽²⁾	_ADC_DATA19_VECTOR	78	OFF078<17:1>	IFS2<14>	IEC2<14>	IPC19<20:18>	IPC19<17:16>	Yes
ADC Data 20 ⁽²⁾	_ADC_DATA20_VECTOR	79	OFF079<17:1>	IFS2<15>	IEC2<15>	IPC19<28:26>	IPC19<25:24>	Yes
ADC Data 21 ⁽²⁾	_ADC_DATA21_VECTOR	80	OFF080<17:1>	IFS2<16>	IEC2<16>	IPC20<4:2>	IPC20<1:0>	Yes
ADC Data 22 ⁽²⁾	_ADC_DATA22_VECTOR	81	OFF081<17:1>	IFS2<17>	IEC2<17>	IPC20<12:10>	IPC20<9:8>	Yes
ADC Data 23 ⁽²⁾	_ADC_DATA23_VECTOR	82	OFF082<17:1>	IFS2<18>	IEC2<18>	IPC20<20:18>	IPC20<17:16>	Yes
ADC Data 24 ⁽²⁾	_ADC_DATA24_VECTOR	83	OFF083<17:1>	IFS2<19>	IEC2<19>	IPC20<28:26>	IPC20<25:24>	Yes
ADC Data 25 ⁽²⁾	_ADC_DATA25_VECTOR	84	OFF084<17:1>	IFS2<20>	IEC2<20>	IPC21<4:2>	IPC21<1:0>	Yes
ADC Data 26 ⁽²⁾	_ADC_DATA26_VECTOR	85	OFF085<17:1>	IFS2<21>	IEC2<21>	IPC21<12:10>	IPC21<9:8>	Yes
ADC Data 27 ⁽²⁾	_ADC_DATA27_VECTOR	86	OFF086<17:1>	IFS2<22>	IEC2<22>	IPC21<20:18>	IPC21<17:16>	Yes
ADC Data 28 ⁽²⁾	_ADC_DATA28_VECTOR	87	OFF087<17:1>	IFS2<23>	IEC2<23>	IPC21<28:26>	IPC21<25:24>	Yes
ADC Data 29 ⁽²⁾	_ADC_DATA29_VECTOR	88	OFF088<17:1>	IFS2<24>	IEC2<24>	IPC22<4:2>	IPC22<1:0>	Yes
ADC Data 30 ⁽²⁾	_ADC_DATA30_VECTOR	89	OFF089<17:1>	IFS2<25>	IEC2<25>	IPC22<12:10>	IPC22<9:8>	Yes
ADC Data 31 ⁽²⁾	_ADC_DATA31_VECTOR	90	OFF090<17:1>	IFS2<26>	IEC2<26>	IPC22<20:18>	IPC22<17:16>	Yes
ADC Data 32 ⁽²⁾	_ADC_DATA32_VECTOR	91	OFF091<17:1>	IFS2<27>	IEC2<27>	IPC22<28:26>	IPC22<25:24>	Yes
ADC Data 33 ⁽²⁾	_ADC_DATA33_VECTOR	92	OFF092<17:1>	IFS2<28>	IEC2<28>	IPC23<4:2>	IPC23<1:0>	Yes
ADC Data 34 ⁽²⁾	_ADC_DATA34_VECTOR	93	OFF093<17:1>	IFS2<29>	IEC2<29>	IPC23<12:10>	IPC23<9:8>	Yes
ADC Data 35 ^(2,3)	_ADC_DATA35_VECTOR	94	OFF094<17:1>	IFS2<30>	IEC2<30>	IPC23<20:18>	IPC23<17:16>	Yes
ADC Data 36 ^(2,3)	_ADC_DATA36_VECTOR	95	OFF095<17:1>	IFS2<31>	IEC2<31>	IPC23<28:26>	IPC23<25:24>	Yes
ADC Data 37 ^(2,3)	_ADC_DATA37_VECTOR	96	OFF096<17:1>	IFS3<0>	IEC3<0>	IPC24<4:2>	IPC24<1:0>	Yes
ADC Data 38 ^(2,3)	_ADC_DATA38_VECTOR	97	OFF097<17:1>	IFS3<1>	IEC3<1>	IPC24<12:10>	IPC24<9:8>	Yes
ADC Data 39 ^(2,3)	_ADC_DATA39_VECTOR	98	OFF098<17:1>	IFS3<2>	IEC3<2>	IPC24<20:18>	IPC24<17:16>	Yes
ADC Data 40 ^(2,3)	_ADC_DATA40_VECTOR	99	OFF099<17:1>	IFS3<3>	IEC3<3>	IPC24<28:26>	IPC24<25:24>	Yes
ADC Data 41 ^(2,3)	_ADC_DATA41_VECTOR	100	OFF100<17:1>	IFS3<4>	IEC3<4>	IPC25<4:2>	IPC25<1:0>	Yes
ADC Data 42 ^(2,3)	_ADC_DATA42_VECTOR	101	OFF101<17:1>	IFS3<5>	IEC3<5>	IPC25<12:10>	IPC25<9:8>	Yes
ADC Data 43	_ADC_DATA43_VECTOR	102	OFF102<17:1>	IFS3<6>	IEC3<6>	IPC25<20:18>	IPC25<17:16>	Yes
ADC Data 44	_ADC_DATA44_VECTOR	103	OFF103<17:1>	IFS3<7>	IEC3<7>	IPC25<28:26>	IPC25<25:24>	Yes
Core Performance Counter Interrupt	_CORE_PERF_COUNT_VECTOR	104	OFF104<17:1>	IFS3<8>	IEC3<8>	IPC26<4:2>	IPC26<1:0>	No
Core Fast Debug Channel Interrupt	_CORE_FAST_DEBUG_CHAN_VECTOR	105	OFF105<17:1>	IFS3<9>	IEC3<9>	IPC26<12:10>	IPC26<9:8>	Yes

Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals. Note 1:

^{2:} This interrupt source is not available on 64-pin devices.

This interrupt source is not available on 100-pin devices. 3:

This interrupt source is not available on 124-pin devices.

TABLE 7-3:	INTERRUPT	REGISTER	MAP	(CONTINUED)

ress t)	L _	ø								Bi	ts								s,
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0010	OFF183	31:16	_	_	_	_	-	_	ı	_	_	_	_		_		VOFF<	17:16>	0000
0610	OFF 103	15:0								VOFF<15:1>								_	0000
0830	OFF184	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
0020	011104	15:0								VOFF<15:1>								_	0000
0824	OFF185 ⁽²⁾	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
0024	011100	15:0								VOFF<15:1>								_	0000
0828	OFF186 ⁽²⁾	31:16	_		_	_		_	_	_		_	_	_	_	_	VOFF<	17:16>	0000
0020	OI 1 100·	15:0								VOFF<15:1>								_	0000
0820	OFF187 ⁽²⁾	31:16	_		_	_	_	_	_	_		_	_	_	_	_	VOFF<	17:16>	0000
0020	011107	15:0								VOFF<15:1>								_	0000
0830	OFF188	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
0030	011100	15:0								VOFF<15:1>								_	0000
0834	OFF189	31:16	_		_	_		_	_	_		_	_	_	_	_	VOFF<	17:16>	0000
0004	011103	15:0								VOFF<15:1>								_	0000
0838	OFF190	31:16	_		_	_	_	_	_	_		_	_	_	_	_	VOFF<	17:16>	0000
0030	011130	15:0								VOFF<15:1>								_	0000
0840	OFF192	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
0040	011132	15:0								VOFF<15:1>								_	0000
0844	OFF193	31:16	_		_	_	_	_	_	_		_	_	_	_	_	VOFF<	17:16>	0000
0044	011133	15:0								VOFF<15:1>								_	0000
0848	OFF194	31:16	_		_	_	_	_	_	_		_	_	_	_	_	VOFF<	17:16>	0000
0040	011134	15:0								VOFF<15:1>								_	0000
0850	OFF196	31:16	_		_	_	_	_	_	_		_	_	_	_	_	VOFF<	17:16>	0000
0030	011130	15:0								VOFF<15:1>								_	0000
0858	OFF198	31:16	_		_	_		_	_	_		_	_	_	_	_	VOFF<	17:16>	0000
0000	011130	15:0								VOFF<15:1>									0000
0850	OFF199	31:16	_		_	_	_	_	_	_		_	_	_	_	_	VOFF<	17:16>	0000
3030	017 100	15:0								VOFF<15:1>								_	0000
0860	OFF200	31:16	_		_	_	_	_	-	_			_	-	_	_	VOFF<	17:16>	0000
0000	O1 F200	15:0				· · · · ·				VOFF<15:1>								_	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

- Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV
 - Registers" for more information.

 This bit or register is not available on 64-pin devices.
 - This bit or register is not available on devices without a CAN module.
 - 4:
 - This bit or register is not available on 100-pin devices.

 Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.
 - 6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.
 - This bit or register is not available on devices without a Crypto module. This bit or register is not available on 124-pin devices. 7:

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

W = Writable bit

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	_	_			IP3<2:0>		IS3<	1:0>
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	_	_	_		IP2<2:0>		IS2<	1:0>
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.6	_	_	_		IP1<2:0>		IS1<	1:0>
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	_	_		IP0<2:0>		IS0<	1:0>

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

-n = Value at POR '1' = Bit is set

bit 31-29 **Unimplemented:** Read as '0' bit 28-26 **IP3<2:0>:** Interrupt Priority bits

111 = Interrupt priority is 7

•

Legend:

R = Readable bit

010 = Interrupt priority is 2

001 = Interrupt priority is 1

000 = Interrupt is disabled

bit 25-24 IS3<1:0>: Interrupt Subpriority bits

11 = Interrupt subpriority is 3

10 = Interrupt subpriority is 2

01 = Interrupt subpriority is 1

00 = Interrupt subpriority is 0

bit 23-21 Unimplemented: Read as '0'

bit 20-18 IP2<2:0>: Interrupt Priority bits

111 = Interrupt priority is 7

•

010 = Interrupt priority is 2

001 = Interrupt priority is 1

000 = Interrupt is disabled

bit 17-16 IS2<1:0>: Interrupt Subpriority bits

11 = Interrupt subpriority is 3

10 = Interrupt subpriority is 2

01 = Interrupt subpriority is 1

00 = Interrupt subpriority is 0

bit 15-13 Unimplemented: Read as '0'

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-2 for the exact bit definitions.

10.1 DMA Control Registers

TABLE 10-1: DMA GLOBAL REGISTER MAP

ess		m								Ві	ts								6
Virtual Addres (BF81_#)		~	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	DMACON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1000	DIVIACON	15:0	ON	_	_	SUSPEND	DMABUSY	_	_	_	_	_	_	_	_	_	_	_	0000
1010	DMASTAT	31:16	RDWR	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1010	DIVIASTAT	15:0	1	_	_	_	_	_	_	_	_	_	_	_	_		MACH<2:0	>	0000
1020	DMAADDR	31:16		•				•	•	DMAADE	D -21:05		•	•			•	•	0000
1020	DIVIAADDK	15:0								DIVIAADL	11.02								0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

TABLE 10-2: DMA CRC REGISTER MAP

ess										В	its								
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1020	DCRCCON	31:16	_	_	BYTO	<1:0>	WBO	_	_	BITO	_	_	_	_	_	_	_	_	0000
1030	DCKCCON	15:0		_	_			PLEN<4:0>	•		CRCEN	CRCAPP	CRCTYP		_	C	RCCH<2:0	>	0000
1040	DCRCDATA	31:16								DCDCDA	TA<31:0>								0000
1040	DCRCDATA	15:0								DURUDA	1A<31:0>								0000
1050	DCRCXOR	31:16				•	•	•		DCBCVC	OR<31:0>	•	•		•				0000
1050	DCKCXOK	15:0								DCRCXC	VK<31:0>								0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

REGISTER 11-18: USBEXTXA: USB ENDPOINT 'x' TRANSMIT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	_			T	(HUBPRT<6:	0>		
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	MULTTRAN			TΣ	(HUBADD<6:	0>		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	_	_	_	_	_	_	_	_
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_			Т	XFADDR<6:0	 		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30-24 **TXHUBPRT<6:0>:** TX Hub Port bits (*Host mode*)

When a Low-Speed or Full-Speed device is connected to this endpoint through a Hi-Speed USB 2.0 hub, this field records the port number of that USB 2.0 hub.

bit 23 MULTTRAN: TX Hub Multiple Translators bit (Host mode)

1 = The USB 2.0 hub has multiple transaction translators

0 = The USB 2.0 hub has a single transaction translator

bit 22-16 **TXHUBADD<6:0>:** TX Hub Address bits (*Host mode*)

When a Low-Speed or Full-Speed device is connected to this endpoint through a Hi-Speed USB 2.0 hub, these bits record the address of the USB 2.0 hub.

bit 15-7 Unimplemented: Read as '0'

bit 6-0 **TXFADDR<6:0>:** TX Functional Address bits (*Host mode*)

Specifies the address for the target function that is be accessed through the associated endpoint. It needs to be defined for each TX endpoint that is used.

TABLE 12-12: PORTE REGISTER MAP FOR 64-PIN DEVICES ONLY

sse										Е	Bits								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400	ANSELE	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0.00	/ 110222	15:0		_	_		_				ANSE7	ANSE6	ANSE5	ANSE4				_	00F0
0410	TRISE	31:16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0000
		15:0	_		_		_	_			TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
0420	PORTE	31:16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0000
		15:0	_	_	_	_	_	_	_		RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
0430	LATE	31:16		_	_		_	_			_	_	_	_		_	_	_	0000
		15:0		_	_		_	_			LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
0440	ODCE	31:16	_	_	_	_	_	_	_		_								0000
		15:0	_	_	_	_	_	_	_		ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
0450	CNPUE	31:16	_		_	_	_	_	_										0000
		15:0	_		_	_	_	_	_		CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000
0460	CNPDE	31:16	_		_	_	_	_	_										0000
		15:0	_		_	_	_	_	_		CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
0.470	ONIOONE	31:16	_		_	_		_	_		_	_	_	_	_	_	_	_	0000
0470	CNCONE	15:0	ON	-	_	_	EDGE DETECT	_	_	_	_	_	_	_	_	_	_	_	0000
0480	CNENE	31:16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0000
0.00	ONLINE	15:0	_	_	_	_	_	_	_	_	CNENE7	CNENE6	CNENE5	CNENE4	CNENE3	CNENE2	CNENE1	CNENE0	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0490	CNSTATE	15:0	_	_	_	_	_	_	_	_	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000
0440	CNINIEE	31:16	-	_	_	_	_	-	_		_	_	_	_	_	_	_	_	0000
04A0	CNNEE	15:0	_		_	_	_	_	_	_	CNNEE7	CNNEE6	CNNEE5	CNNEE4	CNNEE3	CNNEE2	CNNEE1	CNNEE0	0000
0.400	ONEE	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
04B0	CNFE	15:0	_		_	_	_	_	_	_	CNFE7	CNFE6	CNFE5	CNFE4	CNFE3	CNFE2	CNFE1	CNFE0	0000
0400	SBCONOT	31:16	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	0000
0400	SRCON0E	15:0	_	I	_	I	_	_	_	_	_	I	_	1	SR0E3	SR0E2	SR0E1	SR0E0	0000
0400	CDCONAT	31:16	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	0000
0400	SRCON1E	15:0	_	I	_	_	_	_	_	_	_		_	I	SR1E3	SR1E2	SR1E1	SR1E0	0000

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

TABLE 14-1: TIMER2 THROUGH TIMER9 REGISTER MAP (CONTINUED)

ess									•	В	its								"
Virtual Address (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0C10	TMR7	31:16		_	_	_	_		_	_	_	_	_	_	_	_	_	_	0000
0010	TIVITY	15:0								TMR7	<15:0>								0000
0C20	PR7	31:16	_	_	_	_	_	_	_		_		_	_	_	_	_		0000
0020	1 107	15:0								PR7<	15:0>								FFFF
0E00	T8CON	31:16	_	_	_	_	_		_		_		_	_	_	_	_		0000
OLOO	TOCON	15:0	ON	_	SIDL	_	_	1	_	_	TGATE		TCKPS<2:0:	>	T32	_	TCS	_	0000
0E10	TMR8	31:16	1	_	_	_	_	1	_	_	_	1	_	_	_	_	_	_	0000
0210	TIVITO	15:0								TMR8	<15:0>								0000
0E20	PR8	31:16	1	1	-	1		I	1	_	_	I	_	I	1	1	1	1	0000
ULZU	FIXO	15:0								PR8<	15:0>								FFFF
1000	T9CON	31:16	1	1	-	1		I	1	_	_	I	_	I	1	1	1	1	0000
1000	190011	15:0	ON	1	SIDL	1		I	1	_	TGATE		TCKPS<2:0:	>	1	1	TCS	1	0000
1010	TMR9	31:16	1	_		1	_	1	_	_	_	1	_	-	1	_	1	_	0000
1010	TIVING	15:0	•		•	•		•		TMR9	<15:0>			•	•		•	•	0000
1020	PR9	31:16	1	_		1	_	1	_	_	_	1	_	-	1	_	1	_	0000
1020	FK9	15:0	•		•	•		•		PR9<	15:0>			•	•		•	•	FFFF

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

REGISTER 15-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_		_		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_		_		_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_		-	-	-
7.0	R-0, HC, HS	R-0, HC, HS	R-0, HC, HS	U-0	U-0	U-0	U-0	R-0, HC, HS
7:0	BAD1	BAD2	DMTEVENT	_	_	_	_	WINOPN

Legend: HC = Hardware Cleared HS = Hardware Set

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 BAD1: Bad STEP1<7:0> Value Detect bit

1 = Incorrect STEP1<7:0> value was detected 0 = Incorrect STEP1<7:0> value was not detected

bit 6 BAD2: Bad STEP2<7:0> Value Detect bit

1 = Incorrect STEP2<7:0> value was detected

0 = Incorrect STEP2<7:0> value was not detected

bit 5 DMTEVENT: Deadman Timer Event bit

1 = Deadman timer event was detected (counter expired or bad STEP1<7:0> or STEP2<7:0> value was entered prior to counter increment)

0 = Deadman timer even was not detected

bit 4-1 **Unimplemented:** Read as '0'

bit 0 WINOPN: Deadman Timer Clear Window bit

1 = Deadman timer clear window is open

0 = Deadman timer clear window is not open

REGISTER 17-1: ICXCON: INPUT CAPTURE x CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	ON	_	SIDL	_	_	_	FEDGE	C32
7.0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
7:0	ICTMR ⁽¹⁾	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	

Legend:

bit 7

R = Readable bit W = Writable bit U = Unimplemented bit

-n = Bit Value at POR: ('0', '1', x = unknown) P = Programmable bit r = Reserved bit

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** Input Capture Module Enable bit

1 = Module is enabled

0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications

bit 14 **Unimplemented:** Read as '0' bit 13 **SIDL:** Stop in Idle Control bit

1 = Halt in CPU Idle mode

0 = Continue to operate in CPU Idle mode

bit 12-10 Unimplemented: Read as '0'

bit 9 **FEDGE**: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)

1 = Capture rising edge first0 = Capture falling edge firstC32: 32-bit Capture Select bit

bit 8 **C32:** 32-bit Capture Select bit 1 = 32-bit timer resource capture 0 = 16-bit timer resource capture

ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is '1')(1)

0 = Timery is the counter source for capture 1 = Timerx is the counter source for capture

bit 6-5 ICI<1:0>: Interrupt Control bits

11 = Interrupt on every fourth capture event
 10 = Interrupt on every third capture event
 01 = Interrupt on every second capture event

00 = Interrupt on every capture event

bit 4 ICOV: Input Capture Overflow Status Flag bit (read-only)

1 = Input capture overflow is occurred0 = No input capture overflow is occurred

bit 3 ICBNE: Input Capture Buffer Not Empty Status bit (read-only)

1 = Input capture buffer is not empty; at least one more capture value can be read

0 = Input capture buffer is empty

bit 2-0 ICM<2:0>: Input Capture Mode Select bits

111 = Interrupt-Only mode (only supported while in Sleep mode or Idle mode)

110 = Simple Capture Event mode – every edge, specified edge first and every edge thereafter

101 = Prescaled Capture Event mode – every sixteenth rising edge 100 = Prescaled Capture Event mode – every fourth rising edge

011 = Simple Capture Event mode – every rising edge 010 = Simple Capture Event mode – every falling edge

001 = Edge Detect mode – every edge (rising and falling)

000 = Input Capture module is disabled

Note 1: Refer to Table 17-1 for Timerx and Timery selections.

REGISTER 20-10: SQI1TXDATA: SQI TRANSMIT DATA BUFFER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				TXDATA<	:31:24>			
22.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				TXDATA<	:23:16>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				TXDATA	<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				TXDATA	·<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 TXDATA<31:0>: Transmit Command Data bits

Data is loaded into this register before being transmitted. Prior to the data transfer, the data in TXDATA is loaded into the shift register (SFDR).

Multiple writes to TXDATA can occur while a transfer is in progress. There can be a maximum of eight commands that can be queued.

REGISTER 20-11: SQI1RXDATA: SQI RECEIVE DATA BUFFER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31:24				RXDATA<	<31:24>			
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23:16				RXDATA<	<23:16>			
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8				RXDATA	<15:8>			
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				RXDATA	N<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 RXDATA<31:0>: Receive Data Buffer bits

At the end of a data transfer, the data in the shift register is loaded into the RXDATA register. This register works like a FIFO. The depth of the receive buffer is eight words.

REGISTER 20-13: SQI1STAT2: SQI STATUS REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
23:16	_	_	_	_	_	_	CMDST	AT<1:0>
45.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
15:8	_	_	_	_		CONAVA	\IL<4:1>	
7.0	R-0	R-0	R-0	R-0	R-0	U-0	R-0	R-0
7:0	CONAVAIL<0>	SQID3	SQID2	SQID1	SQID0	_	RXUN	TXOV

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-18 Unimplemented: Read as '0'

bit 17-16 CMDSTAT<1:0>: Current Command Status bits

These bits indicate the current command status.

11 = Reserved

10 = Receive

01 = Transmit

00 = Idle

bit 15-12 Unimplemented: Read as '0'

bit 11-7 CONAVAIL<4:0>: Control FIFO Space Available bits

These bits indicate the available control Word space.

11111 = 32 bytes are available

11110 = 31 bytes are available

•

00001 = 1 byte is available

00000 = No bytes are available

bit 6 SQID3: SQID3 Status bit

1 = Data is present on SQID3

0 = Data is not present on SQID3

bit 5 SQID2: SQID2 Status bit

1 = Data is present on SQID2

0 = Data is not present on SQID2

bit 4 SQID1: SQID1 Status bit

1 = Data is present on SQID1

0 = Data is not present on SQID1

bit 3 SQID0: SQID0 Status bit

1 = Data is present on SQID0

0 = Data is not present on SQID0

bit 2 Unimplemented: Read as '0'

bit 1 RXUN: Receive FIFO Underflow Status bit

1 = Receive FIFO Underflow has occurred

0 = Receive FIFO underflow has not occurred

bit 0 TXOV: Transmit FIFO Overflow Status bit

1 = Transmit FIFO overflow has occurred

0 = Transmit FIFO overflow has not occurred

REGISTER 29-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	-	1		_	_
23:16	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23.10	_	WAKFIL	_	_	-	SEG	S2PH<2:0> ⁽¹	,4)
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	(SEG1PH<2:0:	>	Р	RSEG<2:0>	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	SJW<1:	0>(3)			BRP<	5:0>		

Legend: HC = Hardware Clear S = Settable bit

R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit

U = Unimplemented bit -n = Bit Value at POR: ('0', '1', x = Unknown)

bit 31-23 Unimplemented: Read as '0'

bit 22 WAKFIL: CAN Bus Line Filter Enable bit

1 = Use CAN bus line filter for wake-up

0 = CAN bus line filter is not used for wake-up

bit 21-19 Unimplemented: Read as '0'

bit 18-16 **SEG2PH<2:0>:** Phase Buffer Segment 2 bits^(1,4)

111 = Length is 8 x TQ

•

•

•

000 = Length is 1 x TQ

bit 15 **SEG2PHTS:** Phase Segment 2 Time Select bit⁽¹⁾

1 = Freely programmable

0 = Maximum of SEG1PH or Information Processing Time, whichever is greater

bit 14 SAM: Sample of the CAN Bus Line bit (2)

1 = Bus line is sampled three times at the sample point

0 = Bus line is sampled once at the sample point

bit 13-11 SEG1PH<2:0>: Phase Buffer Segment 1 bits(4)

111 = Length is 8 x TQ

•

•

•

 $000 = \text{Length is } 1 \times \text{TQ}$

Note 1: SEG2PH ≤ SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.

2: 3 Time bit sampling is not allowed for BRP < 2.

3: SJW \leq SEG2PH.

4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

REGISTER 29-10: CIFLTCON0: CAN FILTER CONTROL REGISTER 0 (CONTINUED)

```
bit 15
            FLTEN1: Filter 1 Enable bit
            1 = Filter is enabled
            0 = Filter is disabled
bit 14-13
            MSEL1<1:0>: Filter 1 Mask Select bits
            11 = Acceptance Mask 3 selected
            10 = Acceptance Mask 2 selected
            01 = Acceptance Mask 1 selected
            00 = Acceptance Mask 0 selected
bit 12-8
            FSEL1<4:0>: FIFO Selection bits
            11111 = Message matching filter is stored in FIFO buffer 31
            11110 = Message matching filter is stored in FIFO buffer 30
            00001 = Message matching filter is stored in FIFO buffer 1
            00000 = Message matching filter is stored in FIFO buffer 0
bit 7
            FLTEN0: Filter 0 Enable bit
            1 = Filter is enabled
            0 = Filter is disabled
bit 6-5
            MSEL0<1:0>: Filter 0 Mask Select bits
            11 = Acceptance Mask 3 selected
            10 = Acceptance Mask 2 selected
            01 = Acceptance Mask 1 selected
            00 = Acceptance Mask 0 selected
bit 4-0
            FSEL0<4:0>: FIFO Selection bits
            11111 = Message matching filter is stored in FIFO buffer 31
            11110 = Message matching filter is stored in FIFO buffer 30
            00001 = Message matching filter is stored in FIFO buffer 1
            00000 = Message matching filter is stored in FIFO buffer 0
```

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 2-0 FNOSC<2:0>: Oscillator Selection bits

111 = FRC divided by FRCDIV<2:0> bits (FRCDIV)

110 = Reserved

101 = LPRC

100 = Sosc

011 = Reserved

010 = Posc (HS, EC)

001 = SPLL

000 = FRC divided by FRCDIV<2:0> bits (FRCDIV)

PIC32MZ Embedo	ded Connectivity	with Floating F	Point Unit (EF) Fa	amily
NOTES:				