

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efg064-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3: **PIN NAMES FOR 100-PIN DEVICES**

100-PIN TQFP (TOP VIEW)

Pin #

1

2

3

4

5

6

7

8

9

10

11

12

13

14 Vdd

15

Vss

MCLR

PIC32MZ0512EF(E/F/K)100 PIC32MZ1024EF(G/H/M)100 PIC32MZ1024EF(E/F/K)100 PIC32MZ2048EF(G/H/M)100

Full Pin Name Pin # Full Pin Name AN23/AERXERR/RG15 36 Vss EBIA5/AN34/PMA5/RA5 37 Vdd EBID5/AN17/RPE5/PMD5/RE5 TCK/EBIA19/AN29/RA1 38 TDI/EBIA18/AN30/RPF13/SCK5/RF13 EBID6/AN16/PMD6/RE6 39 EBID7/AN15/PMD7/RE7 40 TDO/EBIA17/AN31/RPF12/RF12 EBIA6/AN22/RPC1/PMA6/RC1 41 EBIA11/AN7/ERXD0/AECRS/PMA11/RB12 EBIA12/AN21/RPC2/PMA12/RC2 42 AN8/ERXD1/AECOL/RB13 EBIWE/AN20/RPC3/PMWR/RC3 43 EBIA1/AN9/ERXD2/AETXD3/RPB14/SCK3/PMA1/RB14 EBIOE/AN19/RPC4/PMRD/RC4 44 EBIA0/AN10/ERXD3/AETXD2/RPB15/OCFB/PMA0/RB15 AN14/C1IND/ECOL/RPG6/SCK2/RG6 45 Vss EBIA4/AN13/C1INC/ECRS/RPG7/SDA4/PMA4/RG7 Vdd 46 EBIA3/AN12/C2IND/ERXDV/ECRSDV/AERXDV/ AECRSDV/RPG8/SCL4/PMA3/RG8 47 AN32/AETXD0/RPD14/RD14 AN33/AETXD1/RPD15/SCK6/RD15 48 49 OSC1/CLKI/RC12 OSC2/CLKO/RC15 50 EBIA2/AN11/C2INC/ERXCLK/EREFCLK/AERXCLK/

100

1

16	AEREFCLK/RPG9/PMA2/RG9		51	VBUS
17	TMS/EBIA16/AN24/RA0	1	52	VUSB3V3
18	AN25/AERXD0/RPE8/RE8	1	53	Vss
19	AN26/AERXD1/RPE9/RE9	I	54	D-
20	AN45/C1INA/RPB5/RB5	[55	D+
21	AN4/C1INB/RB4		56	RPF3/USBID/RF3
22	AN3/C2INA/RPB3/RB3	I	57	EBIRDY3/RPF2/SDA3/RF2
23	AN2/C2INB/RPB2/RB2		58	EBIRDY2/RPF8/SCL3/RF8
24	PGEC1/AN1/RPB1/RB1	ľ	59	EBICS0/SCL2/RA2
25	PGED1/AN0/RPB0/RB0	ĺ	60	EBIRDY1/SDA2/RA3
26	PGEC2/AN46/RPB6/RB6	I	61	EBIA14/PMCS1/PMA14/RA4
27	PGED2/AN47/RPB7/RB7		62	Vdd
28	VREF-/CVREF-/AN27/AERXD2/RA9	I	63	Vss
29	VREF+/CVREF+/AN28/AERXD3/RA10		64	EBIA9/RPF4/SDA5/PMA9/RF4
30	AVdd		65	EBIA8/RPF5/SCL5/PMA8/RF5
31	AVss	I	66	AETXCLK/RPA14/SCL1/RA14
32	EBIA10/AN48/RPB8/PMA10/RB8		67	AETXEN/RPA15/SDA1/RA15
33	EBIA7/AN49/RPB9/PMA7/RB9		68	EBIA15/RPD9/PMCS2/PMA15/RD9
34	EBIA13/CVREFOUT/AN5/RPB10/PMA13/RB10		69	RPD10/SCK4/RD10
35	AN6/ERXERR/AETXERR/RB11	I	70	EMDC/AEMDC/RPD11/RD11
Note	1. The RPn pins can be used by remappable peripherals	s Se	e Table	1 for the available peripherals and Section 12.4 "Periphera

Note an be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin 1: Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

Shaded pins are 5V tolerant. 3:

TABLE 5: PIN NAMES FOR 144-PIN DEVICES

144-PIN LQFP AND TQFP (TOP VIEW)

PIC32MZ0512EF(E/F/K)144 PIC32MZ1024EF(G/H/M)144 PIC32MZ1024EF(E/F/K)144 PIC32MZ2048EF(G/H/M)144

144

1

Pin Number	Full Pin Name		Pin Number	Full Pin Name
1	AN23/RG15		37	PGEC2/AN46/RPB6/RB6
2	EBIA5/AN34/PMA5/RA5	1 1	38	PGED2/AN47/RPB7/RB7
3	EBID5/AN17/RPE5/PMD5/RE5	1 1	39	VREF-/CVREF-/AN27/RA9
4	EBID6/AN16/PMD6/RE6	1 1	40	VREF+/CVREF+/AN28/RA10
5	EBID7/AN15/PMD7/RE7	1 1	41	AVdd
6	EBIA6/AN22/RPC1/PMA6/RC1	1 1	42	AVss
7	AN35/ETXD0/RJ8	1	43	AN38/ETXD2/RH0
8	AN36/ETXD1/RJ9	1 1	44	AN39/ETXD3/RH1
9	EBIBS0/RJ12	1 [45	EBIRP/RH2
10	EBIBS1/RJ10	1 1	46	RH3
11	EBIA12/AN21/RPC2/PMA12/RC2	1 1	47	EBIA10/AN48/RPB8/PMA10/RB8
12	EBIWE/AN20/RPC3/PMWR/RC3	1 1	48	EBIA7/AN49/RPB9/PMA7/RB9
13	EBIOE/AN19/RPC4/PMRD/RC4	1	49	CVREFOUT/AN5/RPB10/RB10
14	AN14/C1IND/RPG6/SCK2/RG6		50	AN6/RB11
15	AN13/C1INC/RPG7/SDA4/RG7	1 1	51	EBIA1/PMA1/RK1
16	AN12/C2IND/RPG8/SCL4/RG8		52	EBIA3/PMA3/RK2
17	Vss	1 1	53	EBIA17/RK3
18	Vdd		54	Vss
19	EBIA16/RK0	1	55	VDD
20	MCLR		56	TCK/AN29/RA1
21	EBIA2/AN11/C2INC/RPG9/PMA2/RG9	1 1	57	TDI/AN30/RPF13/SCK5/RF13
22	TMS/AN24/RA0		58	TDO/AN31/RPF12/RF12
23	AN25/RPE8/RE8		59	AN7/RB12
24	AN26/RPE9/RE9		60	AN8/RB13
25	AN45/C1INA/RPB5/RB5		61	AN9/RPB14/SCK3/RB14
26	AN4/C1INB/RB4		62	AN10/RPB15/OCFB/RB15
27	AN37/ERXCLK/EREFCLK/RJ11		63	Vss
28	EBIA13/PMA13/RJ13		64	VDD
29	EBIA11/PMA11/RJ14		65	AN40/ERXERR/RH4
30	EBIA0/PMA0/RJ15		66	AN41/ERXD1/RH5
31	AN3/C2INA/RPB3/RB3		67	AN42/ERXD2/RH6
32	Vss		68	EBIA4/PMA4/RH7
33	VDD		69	AN32/RPD14/RD14
34	AN2/C2INB/RPB2/RB2		70	AN33/RPD15/SCK6/RD15
35	PGEC1/AN1/RPB1/RB1		71	OSC1/CLKI/RC12
36	PGED1/AN0/RPB0/RB0	l l	72	OSC2/CLKO/RC15

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See Section 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

3.1.4 FLOATING POINT UNIT (FPU)

The Floating Point Unit (FPU), Coprocessor (CP1), implements the MIPS Instruction Set Architecture for floating point computation. The implementation supports the ANSI/IEEE Standard 754 (IEEE for Binary Floating Point Arithmetic) for 32-bit and 64-bit floating point data formats. The FPU can be programmed to have thirty-two 32-bit or 64-bit floating point registers used for floating point operations.

The performance is optimized for 32-bit formats. Most instructions have one FPU cycle throughput and four FPU cycle latency. The FPU implements the multiplyadd (MADD) and multiply-sub (MSUB) instructions with intermediate rounding after the multiply function. The result is guaranteed to be the same as executing a MUL and an ADD instruction separately, but the instruction latency, instruction fetch, dispatch bandwidth, and the total number of register accesses are improved.

IEEE denormalized input operands and results are supported by hardware for some instructions. IEEE denormalized results are not supported by hardware in general, but a fast flush-to-zero mode is provided to optimize performance. The fast flush-to-zero mode is enabled through the FCCR register, and use of this mode is recommended for best performance when denormalized results are generated.

The FPU has a separate pipeline for floating point instruction execution. This pipeline operates in parallel with the integer core pipeline and does not stall when the integer pipeline stalls. This allows long-running FPU operations, such as divide or square root, to be partially masked by system stalls and/or other integer unit instructions. Arithmetic instructions are always dispatched and completed in order, but loads and stores can complete out of order. The exception model is "precise" at all times.

Table 3-4 contains the floating point instruction latencies and repeat rates for the processor core. In this table, 'Latency' refers to the number of FPU cycles necessary for the first instruction to produce the result needed by the second instruction. The "Repeat Rate" refers to the maximum rate at which an instruction can be executed per FPU cycle.

TABLE 3-4: FPU INSTRUCTION LATENCIES AND REPEAT RATES

Op code	Latency (FPU Cycles)	Repeat Rate (FPU Cycles)
ABS.[S,D], NEG.[S,D], ADD.[S,D], SUB.[S,D], C.cond.[S,D], MUL.S	4	1
MADD.S, MSUB.S, NMADD.S, NMSUB.S, CABS.cond.[S,D]	4	1
CVT.D.S, CVT.PS.PW, CVT.[S,D].[W,L]	4	1
CVT.S.D, CVT.[W,L].[S,D], CEIL.[W,L].[S,D], FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D], TRUNC.[W,L].[S,D]	4	1
MOV.[S,D], MOVF.[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[S,D]	4	1
MUL.D	5	2
MADD.D, MSUB.D, NMADD.D, NMSUB.D	5	2
RECIP.S	13	10
RECIP.D	26	21
RSQRT.S	17	14
RSQRT.D	36	31
DIV.S, SQRT.S	17	14
DIV.D, SQRT.D	32	29
MTC1, DMTC1, LWC1, LDC1, LDXC1, LUXC1, LWXC1	4	1
MFC1, DMFC1, SWC1, SDC1, SDXC1, SUXC1, SWXC1	1	1

Legend: S = Single (32-bit) D = Double (64-bit)W = Word (32-bit) L = Long word (64-bit)

	-		••••••	-				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	_		_	_	_	-	-
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16								
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	_	_		_	_	_	_	
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
7.0		_			_			VREGS

REGISTER 6-4: PWRCON: POWER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-1 Unimplemented: Read as '0'

bit 0 VREGS: Voltage Regulator Stand-by Enable bit

1 = Voltage regulator will remain active during Sleep

0 = Voltage regulator will go to Stand-by mode during Sleep

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress ;)		Ð								Bi	ts								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0594		31:16	_		-	—	_	-	—	_	_	—	-	—	—	—	VOFF<	17:16>	0000
0584	OFF017	15:0								VOFF<15:1>								_	0000
0500	OFF018	31:16	_		_	_			—	_	_	_	_	_	_	—	VOFF<	17:16>	0000
0566	OFFUIO	15:0								VOFF<15:1>								—	0000
0580	OFF019	31:16	_		-	_			_	—	—	—	-	-	_	_	VOFF<	17:16>	0000
0580	OFFUI9	15:0								VOFF<15:1>								—	0000
0500	OFF020	31:16	_		-	—			_	—	—	—	-	—	—	—	VOFF<	17:16>	0000
0590	OFF020	15:0								VOFF<15:1>								—	0000
0504	OFF021	31:16	_	-	_	—	_	_	—			_	_	—	—	—	VOFF<	17:16>	0000
0594	OFFUZI	15:0								VOFF<15:1>								—	0000
0508	OFF022	31:16	_		-	_			_	—	—	—	-	-	_	_	VOFF<	17:16>	0000
0598	OFFUZZ	15:0	15:0 VOFF<15:1>							—	0000								
0500	OFF023	31:16			-	—	-	-	—	_	—	—	-	—	—	—	VOFF<	17:16>	0000
0090	OFF023	15:0								VOFF<15:1>								—	0000
0540	OFF024	31:16	_		_	_			—	—	_	_	_	_	—	—	VOFF<	17:16>	0000
0540	OFF024	15:0								VOFF<15:1>								—	0000
05 \ 4	OFF025	31:16	_		-	_			_	—	—	—	-	-	_	_	VOFF<	17:16>	0000
05A4	OFF025	15:0								VOFF<15:1>								—	0000
0549	OFF026	31:16	_		_	_			—	_	_	_	_	_	—	—	VOFF<	17:16>	0000
UJAO	OFF020	15:0								VOFF<15:1>								—	0000
0540	OFF027	31:16	_	-	_	—	_	_	—			_	_	—	—	—	VOFF<	17:16>	0000
USAC	OFF027	15:0								VOFF<15:1>								—	0000
0500	OFF028	31:16	_		_	_			—	_	_	_	_	_	—	—	VOFF<	17:16>	0000
0560	OFFU20	15:0				-			-	VOFF<15:1>							-	—	0000
0504	OFF029	31:16	—	—	_	—	_	_	_	—	_	—	_		—	_	VOFF<	17:16>	0000
0564	OFFUZ9	15:0								VOFF<15:1>								—	0000
0500	OFF030	31:16	_	_	—	—	_		—	_	_	—	_	—	—	_	VOFF<	17:16>	0000
0588	064030	15:0								VOFF<15:1>								—	0000
0500	055004	31:16	_	_	—	_	—	_	—	_	_	—	—	—	—		VOFF<	17:16>	0000
U2RC	OFF031	15:0								VOFF<15:1>								_	0000

DS60001320D-page 132

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—						
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	_	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		—						
7:0	R/W-0, HS	R/W-0, HS	R/W-0, HS					
7.0	DMA8IF	DMA7IF	DMA6IF	DMA5IF	DMA4IF	DMA3IF	DMA2IF	DMA1IF

REGISTER 11-20: USBDMAINT: USB DMA INTERRUPT REGISTER

Legend:

3								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **DMAxIF:** DMA Channel 'x' Interrupt bit

1 = The DMA channel has an interrupt event

0 = No interrupt event

All bits are cleared on a read of the register.

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD1	RPD1R	RPD1R<3:0>	0000 = <u>No Connect</u>
RPG9	RPG9R	RPG9R<3:0>	
RPB14	RPB14R	RPB14R<3:0>	0010 = <u>U2TX</u> 0011 = <u>U5RTS</u>
RPD0	RPD0R	RPD0R<3:0>	0100 = U6TX
RPB6	RPB6R	RPB6R<3:0>	0101 = Reserved
RPD5	RPD5R	RPD5R<3:0>	0110 = SS2 0111 = Reserved
RPB2	RPB2R	RPB2R<3:0>	1000 = SDO4
RPF3	RPF3R	RPF3R<3:0>	1001 = Reserved
RPF13 ⁽¹⁾	RPF13R ⁽¹⁾	RPF13R<3:0> ⁽¹⁾	1010 = SDO6 ⁽¹⁾ 1011 = OC2
RPC2 ⁽¹⁾	RPC2R ⁽¹⁾	RPC2R<3:0> ⁽¹⁾	1011 = 002 1100 = 001
RPE8 ⁽¹⁾	RPE8R ⁽¹⁾	RPE8R<3:0> ⁽¹⁾	1101 = OC 9
RPF2 ⁽¹⁾	RPF2R ⁽¹⁾	RPF2R<3:0> ⁽¹⁾	1110 = Reserved 1111 = C2TX ⁽³⁾

TABLE 12-3: OUTPUT PIN SELECTION (CONTINUED)

Note 1: This selection is not available on 64-pin devices.

2: This selection is not available on 64-pin or 100-pin devices.

3: This selection is not available on devices without a CAN module.

ess (æ								В	its								s
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2044		31:16	_	-	—	_	—	BDSTATE<3:0> DMA							DMAACTV	0000			
	STAT	15:0							•	BDCON	N<15:0>								0000
2048	SQI1BD	31:16	_	—	—	—	—	_	—	—	—	_	—	—	—	—	—	_	0000
2048	POLLCON	15:0							•	POLLCC)N<15:0>								0000
204C	OGIIDD	31:16		—	_		TXSTA	FE<3:0>		—	—	_	—		TX	BUFCNT<4	:0>		0000
2040	TXDSTAT	15:0	_	—	—	—	—	_	—	—				TXCURBU	FLEN<7:0>				0000
2050		31:16	_		_		RXSTA	ΓE<3:0>		_	_	_	—		RX	BUFCNT<4	:0>		0000
2050 RXDSTAT 15:0 -					_	_	_	_	_	_	RXCURBUFLEN<7:0>						0000		
2054	SQI1THR	31:16	-	—	—	_	—	_	—		_			—	-		—	—	0000
2004	SQITTIK	15:0		—	—	—	—	_	-		—				-	THRES<4:0>			
	SQI1INT	31:16	_	—	—	—	—	—	—	_	—	—	_	—	—	_	—		0000
2058	SIGEN	15:0	—	-	-	-	DMAEISE	PKT DONEISE	BD DONEISE	CON THRISE	CON EMPTYISE	CON FULLISE	RX THRISE	RX FULLISE	RX EMPTYISE	TX THRISE	TX FULLISE	TX EMPTYISE	0000
205C		31:16	_	—	_	_	_	_	-	-	—			_	—	-	_	—	0000
2030	TAPCON	15:0		—			CLKIND	LY<5:0>				DATAOUT	DLY<3:0>			CLKOUT	DLY<3:0>		0000
2060	SQI1	31:16		—	—							AT<1:0>	STATBY	TES<1:0>	0000				
2000	SQI1 MEMSTAT	15:0								STATDA	TA<15:0>								0000
2064	SQI1 XCON3	31:16	_	_	—	INIT1 SCHECK										0000			
	XCON5	15:0				INIT1CM	1D2<7:0>							INIT1CM	ID1<7:0>				0000
2068	SQI1 XCON4	31:16	—	-	—	INIT2 SCHECK	INIT2CO	NIT2COUNT<1:0> INIT2TYPE<1:0>					INIT2CMD3<7:0>						0000
	700114	15:0		INIT2CMD2<7:0> INIT2CMD1<7:0>								0000							

TABLE 20-1: SERIAL QUADRATURE INTERFACE (SQI) REGISTER MAP (CONTINUED)

REGISTER 22-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved
	 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Data is being received
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit.
	This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state.
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed
bit 0	 URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04-04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
31:24				BDPADDR	<31:24>				
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
23:16	BDPADDR<23:16>								
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8	BDPADDR<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0				BDPADD	R<7:0>				

REGISTER 26-3: CEBDADDR: CRYPTO ENGINE BUFFER DESCRIPTOR REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BDPADDR<31:0>:** Current Buffer Descriptor Process Address Status bits These bits contain the current descriptor address that is being processed by the Buffer Descriptor Processor (BDP).

REGISTER 26-4: CEBDPADDR: CRYPTO ENGINE BUFFER DESCRIPTOR PROCESSOR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24				BASEADD	R<31:24>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	BASEADDR<23:16>								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	BASEADDR<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				BASEADE)R<7:0>				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BASEADDR<31:0>: Buffer Descriptor Base Address bits

These bits contain the physical address of the first Buffer Descriptor in the Buffer Descriptor chain. When enabled, the Crypto DMA begins fetching Buffer Descriptors from this address.

Bit								
31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
			POLY<3	31:24>				
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
POLY<23:16>								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
POLY<15:8>								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			POLY<	:7:0>				
	R/W-1 R/W-1 R/W-0	R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0	R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0	R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 POLY<3	R/W-1 R/W-1 R/W-1 R/W-1 POLY<31:24> R/W-1 R/W-1 R/W-1 POLY<31:24> R/W-1 R/W-1 R/W-1 POLY<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 POLY<15:8> R/W-0 R/W-0	R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	R/W-1 R/W-1 <th< td=""></th<>	

REGISTER 27-3: RNGPOLYX: RANDOM NUMBER GENERATOR POLYNOMIAL REGISTER 'x'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 POLY<31:0>: PRNG LFSR Polynomial MSb/LSb bits (RNGPOLY1 = LSb, RNGPOLY2 = MSb)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
31:24				RNG<3	1:24>			
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
23:16				RNG<2	3:16>			
45.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
15:8				RNG<	5:8>			
7.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
7:0			•	RNG<	7:0>			•

REGISTER 27-4:	RNGNUMGENX: RANDOM NUMBER GENERATOR REGISTER 'x' ('x' = 1 OR 2)
-----------------------	---

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RNG<31:0>: Current PRNG MSb/LSb Value bits (RNGNUMGEN1 = LSb, RNGNUMGEN2 = MSb)

REGISTER 28-15: ADCCMPx: ADC DIGITAL COMPARATOR 'x' LIMIT VALUE REGISTER ('x' = 1 THROUGH 6)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
31:24				DCMPHI<	15:8> ^(1,2,3)										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
23:16	DCMPHI<7:0> ^(1,2,3)														
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
15:8	DCMPLO<15:8> ^(1,2,3)														
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7:0				DCMPLO<	:7:0> ^(1,2,3)		DCMPLO<7:0> ^(1,2,3)								

Legend:

Legena:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 **DCMPHI<15:0>:** Digital Comparator 'x' High Limit Value bits^(1,2,3) These bits store the high limit value, which is used by digital comparator for comparisons with ADC converted data.

- bit 15-0 **DCMPLO<15:0>:** Digital Comparator 'x' Low Limit Value bits^(1,2,3) These bits store the low limit value, which is used by digital comparator for comparisons with ADC converted data.
- **Note 1:** Changing theses bits while the Digital Comparator is enabled (ENDCMP = 1) can result in unpredictable behavior.
 - **2:** The format of the limit values should match the format of the ADC converted value in terms of sign and fractional settings.
 - **3:** For Digital Comparator 0 used in CVD mode, the DCMPHI<15:0> and DCMPLO<15:0> bits must always be specified in signed format, as the CVD output data is differential and is always signed.

REGIST	ER 29-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('n' = 0-31) (CONTINUED)
bit 9	TXHALFIF: FIFO Transmit FIFO Half Empty Interrupt Flag bit ⁽¹⁾ $\underline{TXEN = 1}$: (FIFO configured as a Transmit Buffer) $1 = FIFO$ is \leq half full 0 = FIFO is $>$ half full
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) Unused, reads '0'
bit 8	TXEMPTYIF: Transmit FIFO Empty Interrupt Flag bit ⁽¹⁾ TXEN = 1:(FIFO configured as a Transmit Buffer)1 = FIFO is empty0 = FIFO is not empty, at least 1 message queued to be transmitted
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) Unused, reads '0'
bit 7-4	Unimplemented: Read as '0'
bit 3	RXOVFLIF: Receive FIFO Overflow Interrupt Flag bit <u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) 1 = Overflow event has occurred 0 = No overflow event occurred
bit 2	RXFULLIF: Receive FIFO Full Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) 1 = FIFO is full 0 = FIFO is not full
bit 1	RXHALFIF: Receive FIFO Half Full Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) $1 = FIFO$ is \geq half full 0 = FIFO is < half full
bit 0	RXNEMPTYIF: Receive Buffer Not Empty Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) 1 = FIFO is not empty, has at least 1 message 0 = FIFO is empty

Note 1: This bit is read-only and reflects the status of the FIFO.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	—	—	—	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—		_	—	—		_
	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SOFT RESET	SIM RESET	—		RESET RMCS	RESET RFUN	RESET TMCS	RESET TFUN
	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
7:0	_	_	—	LOOPBACK	TX PAUSE	RX PAUSE	PASSALL	RX ENABLE

REGISTER 30-23: EMAC1CFG1: ETHERNET CONTROLLER MAC CONFIGURATION 1 REGISTER

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15	SOFTRESET: Soft Reset bit
	Setting this bit will put the MACMII in reset. Its default value is '1'.
bit 14	SIMRESET: Simulation Reset bit
	Setting this bit will cause a reset to the random number generator within the Transmit Function.
bit 13-12	Unimplemented: Read as '0'
bit 11	RESETRMCS: Reset MCS/RX bit
	Setting this bit will put the MAC Control Sub-layer/Receive domain logic in reset.
bit 10	RESETRFUN: Reset RX Function bit
	Setting this bit will put the MAC Receive function logic in reset.
bit 9	RESETTMCS: Reset MCS/TX bit
	Setting this bit will put the MAC Control Sub-layer/TX domain logic in reset.
bit 8	RESETTFUN: Reset TX Function bit
	Setting this bit will put the MAC Transmit function logic in reset.
bit 7-5	Unimplemented: Read as '0'
bit 4	LOOPBACK: MAC Loopback mode bit
	 1 = MAC Transmit interface is loop backed to the MAC Receive interface 0 = MAC normal operation
bit 3	TXPAUSE: MAC TX Flow Control bit
	1 = PAUSE Flow Control frames are allowed to be transmitted
	0 = PAUSE Flow Control frames are blocked
bit 2	RXPAUSE: MAC RX Flow Control bit
	1 = The MAC acts upon received PAUSE Flow Control frames
	0 = Received PAUSE Flow Control frames are ignored
bit 1	PASSALL: MAC Pass all Receive Frames bit
	 1 = The MAC will accept all frames regardless of type (Normal vs. Control) 0 = The received Control frames are ignored
bit 0	RXENABLE: MAC Receive Enable bit
	1 = Enable the MAC receiving of frames
	0 = Disable the MAC receiving of frames

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

34.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet. refer to Section 32. "Configuration" (DS60001124) and "Programming Section 33. and Diagnostics" (DS60001129) in the "PIC32 Family Reference Manual", which are available from the Microchip web site (www.microchip.com/PIC32).

PIC32MZ EF devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:

- Flexible device configuration
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])
- Internal temperature sensor

34.1 Configuration Bits

PIC32MZ EF devices contain two Boot Flash memories (Boot Flash 1 and Boot Flash 2), each with an associated configuration space. These configuration spaces can be programmed to contain various device configurations. Configuration space that is aliased by the Lower Boot Alias memory region is used to provide values for the following Configuration registers. See **4.1.1 "Boot Flash Sequence and Configuration Spaces"** for more information.

- DEVSIGN0/ADEVSIGN0: Device Signature Word
 0 Register
- DEVCP0/ADEVCP0: Device Code-Protect 0
 Register
- DEVCFG0/ADEVCFG0: Device Configuration
 Word 0
- DEVCFG1/ADEVCFG1: Device Configuration Word 1
- DEVCFG2/ADEVCFG2: Device Configuration Word 2
- DEVCFG3/ADEVCFG3: Device Configuration Word 3
- DEVADCx: Device ADC Calibration Word 'x' ('x' = 0-4, 7)

The following run-time programmable Configuration registers provide additional configuration control:

- CFGCON: Configuration Control Register
- CFGEBIA: External Bus Interface Address Pin Configuration Register
- CFGEBIC: External Bus Interface Control Pin Configuration Register
- CFGPG: Permission Group Configuration Register

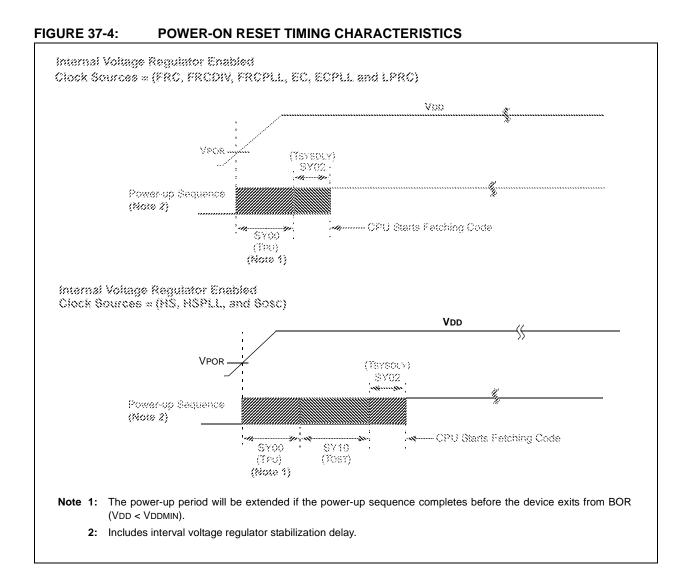
In addition, the DEVID register provides device and revision information, the DEVADC0-DEVADC4 and DEVADC7 registers provide ADC module calibration/ configuration data, and the DEVSN0 and DEVSN1 registers contain a unique serial number of the device.

Note: Do not use Word program operation (NVMOP<3:0> = 0001) when programming the device Words that are described in this section.

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

- 10100 = 1:1048576
- 10011 = 1:524288 10010 = 1:262144 10001 = 1:13107210000 = 1:65536 01111 = 1:3276801110 = 1:16384 01101 = 1:8192 01100 = 1:4096 01011 = 1:2048 01010 = 1:102401001 = 1:512 01000 = 1:25600111 = 1:128 00110 **= 1:64** 00101 = 1:3200100 = 1:1600011 = 1:8 00010 = 1:4
- 00010 = 1.400001 = 1.2
- 000001 = 1.2000000 = 1.1


All other combinations not shown result in operation = 10100

- bit 15-14 FCKSM<1:0>: Clock Switching and Monitoring Selection Configuration bits
 - 11 = Clock switching is enabled and clock monitoring is enabled
 - 10 = Clock switching is disabled and clock monitoring is enabled
 - 01 = Clock switching is enabled and clock monitoring is disabled
 - 00 = Clock switching is disabled and clock monitoring is disabled
- bit 13-11 Reserved: Write as '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output disabled
 - 0 = CLKO output signal active on the OSC2 pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)
- bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Posc disabled
 - 10 = HS Oscillator mode selected
 - 01 = Reserved
 - 00 = EC mode selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)

bit 6 FSOSCEN: Secondary Oscillator Enable bit

- 1 = Enable Sosc
- 0 = Disable Sosc
- bit 5-3 **DMTINTV<2:0>:** Deadman Timer Count Window Interval bits
 - 111 = Window/Interval value is 127/128 counter value
 - 110 = Window/Interval value is 63/64 counter value
 - 101 = Window/Interval value is 31/32 counter value
 - 100 = Window/Interval value is 15/16 counter value
 - 011 = Window/Interval value is 7/8 counter value
 - 010 = Window/Interval value is 3/4 counter value
 - 001 = Window/Interval value is 1/2 counter value
 - 000 = Window/Interval value is zero

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

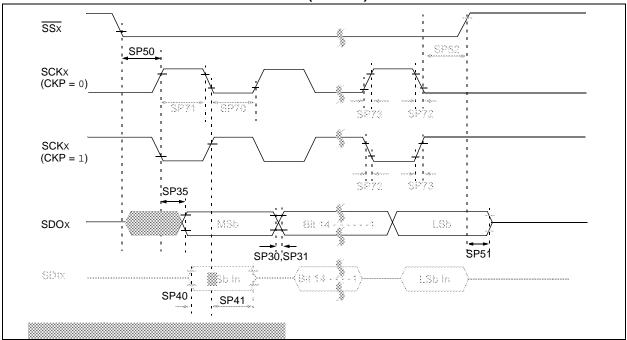
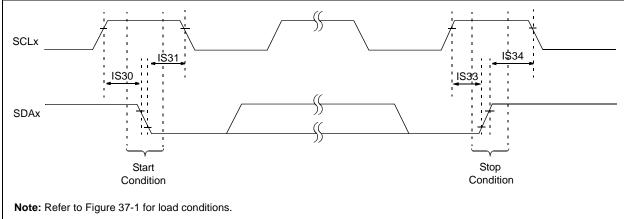


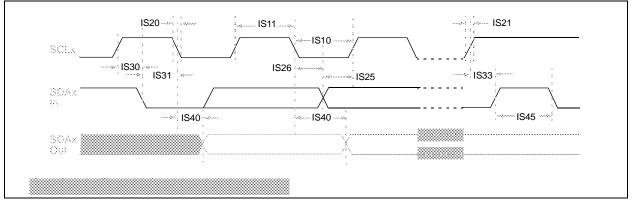
FIGURE 37-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 37-32: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

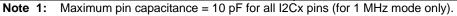
AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 3)	Тѕск/2	—		ns	—
SP71	TscH	SCKx Input High Time (Note 3)	Тѕск/2	—		ns	—
SP72	TscF	SCKx Input Fall Time		—	_	ns	See parameter DO32
SP73	TscR	SCKx Input Rise Time			_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time (Note 4)		—	_	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)		—	_	ns	See parameter DO31
SP35	TSCH2DOV,	SDOx Data Output Valid after			7	ns	VDD > 2.7V
	TSCL2DOV	SCKx Edge		—	10	ns	VDD < 2.7V
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	5	—	_	ns	—
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	5	—	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \uparrow or SCKx Input	88	_	_	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	2.5	_	12	ns	—
SP52	TscL2ssH	SSx after SCKx Edge	10	_	_	ns	—


Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.


3: The minimum clock period for SCKx is 20 ns.

4: Assumes 30 pF load on all SPIx pins.



AC CHA	RACTERIS	STICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param. No. Symbol Characteristics		Min.	Max.	Units	Conditions			
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	-	μs	PBCLK must operate at a minimum of 800 kHz	
			400 kHz mode	1.3	—	μs	PBCLK must operate at a minimum of 3.2 MHz	
			1 MHz mode (Note 1)	0.5	—	μs	_	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μs	PBCLK must operate at a minimum of 800 kHz	
			400 kHz mode	0.6	—	μs	PBCLK must operate at a minimum of 3.2 MHz	
			1 MHz mode (Note 1)	0.5	—	μs	—	

Section Name	Update Description				
27.0 "Random Number Generator (RNG)"	The TRNGMODE bit was added to the RNGCON register (see Register 27-2).				
28.0 "12-bit High-Speed	The S&H Block Diagram was updated (see Figure 28-2).				
Successive Approximation Register (SAR) Analog-to-Digital	The registers, ADCTRG4 through ADCTRG8, were removed.				
Converter (ADC)"	The bit value definitions for the ADCSEL<1:0> and CONCLKDIV<5:0> bits in the ADCCON3 register were updated (see Register 28-3).				
	The bit names in the ADC Status registers (Register 28-12 and Register 28-13) were updated to match the names in the SFR summary table.				
	The ADCTRGSNS register was updated (see Register 28-26).				
	The POR values were changed in the ADC System Configuration registers (see Register 28-34 and Register 28-35).				
34.0 "Special Features"	The FDBGWP bit was removed from the DEVCFG0/ADEVCFG0 registers (see Register 34-3).				
37.0 "Electrical Characteristics"	V-Temp (-40°C \leq TA \leq +105°C) information was removed from all tables.				
	The operating conditions voltage range was updated in the Absolute Maximum Ratings and in all tables to: 2.1V to 3.6V.				
	Notes on Maximum value operating conditions were added to the Operating, Idle, and Power-Down Current tables (see Table 37-6, Table 37-7, and Table 37-8, respectively).				
	The conditions for System Timing Requirement parameters OS55a and OS55b were updated (see Table 37-18).				
	The Internal FRC Accuracy specifications were updated (see Table 37-20).				
	The Internal LPRC Accuracy specifications were updated (see Table 37-21).				
	The ADC Module Specifications were updated (see Table 37-38).				
	The Analog-to-Digital Conversion Timing Requirements were updated (see Table 37-39).				
Appendix B: "Migrating from PIC32MZ EC to PIC32MZ EF"	This appendix was added, which provides an overview of considerations for migrating from PIC32MZ EC devices to the PIC32MZ EF family of devices.				

TABLE C-1: MAJOR SECTION UPDATES (CONTINUED)