

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	250MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efg100t-250i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive
	not intended to be a comprehensive
	reference source.For detailed
	information, refer to Section 48.
	"Memory Organization and
	Permissions" in the "PIC32 Family
	Reference Manual", which is available
	from the Microchip web site
	(www.microchip.com/PIC32).

PIC32MZ EF microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, PIC32MZ EF devices allow execution from data memory.

Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/ KSEG1/KSEG2/KSEG3) mode address space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Cacheable (KSEG0/KSEG2) and non-cacheable (KSEG1/KSEG3) address regions
- Read/write permission access to predefined memory regions

4.1 Memory Layout

PIC32MZ EF microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The main memory maps for the PIC32MZ EF devices are illustrated in Figure 4-1 through Figure 4-4. Figure 4-5 provides memory map information for boot Flash and boot alias. Table 4-1 provides memory map information for Special Function Registers (SFRs).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24	—	—	—	—	—	—	—	—					
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23.10	—	—	—	—	—	—	—	—					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8		CHCSIZ<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7.0	CHCSIZ<7:0>												

REGISTER 10-16: DCHxCSIZ: DMA CHANNEL x CELL-SIZE REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits

111111111111111 = 65,535 bytes transferred on an event

REGISTER 10-17: DCHxCPTR: DMA CHANNEL x CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24	—	—	—	—	—	—	—	—					
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	—	—	—	—	—	—	—	—					
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
15:8		CHCPTR<15:8>											
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
7.0	CHCPTR<7:0>												

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

TAE	BLE 11	-1:	USB REGISTER MAP 1 (CONTINUED)																
SS						-			-		Bits	-	-				-	-	
Virtual Addre: (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	USB	31:16			•													•	0000
3128	E2CSR2	15:0		Indexed by the same bits in USBIE2CSR2												0000			
2120	USB	31:16		la faud huite same hije is USBERCORD															
3120	E2CSR3	15:0							Inde	exed by the s		SDIE2CORS							0000
3130	USB	31:16							Inde	exed by the s	same bits in L	SBIE3CSR0							0000
0.00	E3CSR0	15:0								5,104 59 410 4		00.2000.00							0000
3134	USB	31:16							Inde	exed by the	same bits in L	SBIE3CSR1							0000
	E3CSR1	15:0								,									0000
3138	USB F3CSR2	31:16							Inde	exed by the	same bits in L	SBIE3CSR2							0000
	LJOOKZ	15:0																	0000
313C	USB E3CSR3	15:0							Inde	exed by the	same bits in L	SBIE3CSR3							0000
		31.16																	0000
3140	E4CSR0	15:0							Inde	exed by the	same bits in L	SBIE4CSR0							0000
-	LISB	31:16																	0000
3144	E4CSR1	15:0							Inde	exed by the s	same bits in L	SBIE4CSR1							0000
	USB	31:16																	0000
3148	E4CSR2	15:0							Inde	exed by the s	same bits in L	SBIE4CSR2							0000
24.40	USB	31:16							المحدا	مطاهبه طاهمه									0000
3140	E4CSR3	15:0							Inde	exed by the s		SDIE4CSR3							0000
3150	USB	31:16							Inde	exed by the	same hits in l	SBIE5CSR0							0000
0.00	E5CSR0	15:0								5,104 57 410 4		00.2000.00							0000
3154	USB	31:16							Inde	exed by the	same bits in L	SBIE5CSR1							0000
	ESCORT	15:0								•									0000
3158	USB E5CSR2	31:16							Inde	exed by the s	same bits in L	SBIE5CSR2							0000
	LJUGINZ	15:0																	0000
315C	USB E5CSR3	15:0							Inde	exed by the	same bits in L	SBIE5CSR3							0000
	1100	31.16																	0000
3160	E6CSR0	15:0							Inde	exed by the	same bits in L	SBIE6CSR0							0000
-	LICR	31:16																	0000
3164	E6CSR1	15:0							Inde	exed by the	same bits in L	SBIE6CSR1							0000
	USB	31:16										001500005							0000
3168	E6CSR2	15:0							Inde	exed by the s	same bits in U	SBIE6CSR2							0000
2400	USB	31:16	31:16 Dedayed by the same bits in USPIE6CSP2																
3160	E6CSR3	15:0							Inde	exea by the s	Same dits in L	SDIE60SK3							0000
Leger Note	nd: x 1: D	: = unkno Device m	own value on ode.	Reset; — = un	implemented	d, read as '0'	'. Reset valu	es are showr	n in hexadecir	nal.									

1: 2: 3: 4:

Device mode.
 Host mode.
 Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0).
 Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—		—		—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—		—		—
45.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—			LF	PMFADDR<6:	0>		
7:0	U-0	U-0	R-0	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS
7:0	_	_	LPMERRIF	LPMRESIF	LPMNCIF	LPMACKIF	LPMNYIF	LPMSTIF

Legend:	HS = Hardware Set					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-15 Unimplemented: Read as '0'

bit 14-8 LPMFADDR<6:0>: LPM Payload Function Address bits These bits contain the address of the LPM payload function.

bit 7-6 Unimplemented: Read as '0'

bit 5 LPMERRIF: LPM Error Interrupt Flag bit (Device mode)

1 = An LPM transaction was received that had a LINKSTATE field that is not supported. The response will be a STALL.

0 = No error condition

bit 4 LPMRESIF: LPM Resume Interrupt Flag bit

- 1 = The USB module has resumed (for any reason)
- 0 = No Resume condition
- bit 3 LPMNCIF: LPM NC Interrupt Flag bit

When in Device mode:

- 1 = The USB module received a LPM transaction and responded with a NYET due to data pending in the RX FIFOs.
- 0 = No NC interrupt condition

When in Host mode:

- 1 = A LPM transaction is transmitted and the device responded with an ACK
- 0 = No NC interrupt condition

bit 2 LPMACKIF: LPM ACK Interrupt Flag bit

When in Device mode:

- 1 = A LPM transaction was received and the USB Module responded with an ACK
- 0 = No ACK interrupt condition

When in Host mode:

1 = The LPM transaction is transmitted and the device responds with an ACK

0 = No ACK interrupt condition

bit 1 LPMNYIF: LPM NYET Interrupt Flag bit

When in Device mode:

1 = A LPM transaction is received and the USB Module responded with a NYET

0 = No NYET interrupt flag

When in Host mode:

- 1 = A LPM transaction is transmitted and the device responded with an NYET
- 0 = No NYET interrupt flag

TABLE 12-9: PORTD REGISTER MAP FOR 100-PIN DEVICES ONLY

ess		6								Bits									
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0300	ANSELD	31:16	—	_		_	—	—	—	-	_		—						0000
0000	THOLLD	15:0	ANSD15	ANSD14	_	_	_	_	_	_	_	_	—	_	_	_	_	—	C000
0310	TRISD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
	-	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	—	—	—	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FE3F
0320	PORTD	31:16	-	-	-	-	-	-	-	_	_		-	-	-	-	-	—	0000
		15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	_	_	_	RD5	RD4	RD3	RD2	RD1	RDU	XXXX
0330	LATD	31:16								_	_	_							0000
		31.16	LAIDIS		LAIDIS	LAIDIZ		LAIDIO	LAID9				LAIDS	LAID4	LAIDS	LAIDZ			0000
0340	ODCD	15.0	 ODCD15		 ODCD13	 ODCD12	 ODCD11												0000
		31.16	-	-	-	-	_	-	_	_	_		-	-	-	-	_	-	0000
0350	CNPUD	15:0	CNPUD15	CNPUD14	CNPUD13	CNPUD12	CNPUD11	CNPUD10	CNPUD9	_	_		CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0360	CNPDD	15:0	CNPDD15	CNPDD14	CNPDD13	CNPDD12	CNPDD11	CNPDD10	CNPDD9	_	_		CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
		31:16	—	_		—	—	—	—	_	_	—	—					—	0000
0370	CNCOND	15:0	ON	_	_	_	EDGE DETECT	_	_	_	_	_	_	_	_	_	_	_	0000
0200		31:16	—	—	_	—	—	—	—	—	—	_	—	_	—	—	_	—	0000
0360	CINEIND	15:0	CNEND15	CNEND14	CNEND13	CNEND12	CNEND11	CNEND10	CNEND9			_	CNEND5	CNEND4	CNEND3	CNEND2	CNEND1	CNEND0	0000
		31:16	_	-		_	_	—	_			_	_					—	0000
0390	CNSTATD	15:0	CN STATD15	CN STATD14	CN STATD13	CN STATD12	CN STATD11	CN STATD10	CN STATD9	—	—	—	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	0000
0240		31:16	_		_	—	_	_	_	_	—	_	_	—	—	—	_	—	0000
0340	CININED	15:0	CNNED15	CNNED14	CNNED13	CNNED12	CNNED11	CNNED10	CNNED9	—	_	—	CNNED5	CNNED4	CNNED3	CNNED2	CNNED1	CNNED0	0000
03B0	CNED	31:16	—	_	—	_	—	-	_	—	—	—	—	_	_	_	_	-	0000
0360		15:0	CNFD15	CNFD14	CNFD13	CNFD12	CNFD11	CNFD10	CNFD9	_	_	_	CNFD5	CNFD4	CNFD3	CNFD2	CNFD1	CNFD0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

SSS				Bits															
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1400		31:16	—	_	_	-	_	_	_		_	_	-	—	-	—	—	—	0000
1400	UJKAK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		U5RX	R<3:0>		0000
1.490	LIFCTOD	31:16	—	—	—	—	_	—	—	_	—	—	_	—	_	_	—	—	0000
1460	USCISK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		U5CTS	R<3:0>		0000
1400		31:16	—	—	—	—	_	—	—	-	—	—	—	_	—	-	_	—	0000
1490	UOKAK	15:0	_	—	—	—	_	—	—	_	—	—	—	-		U6RX	R<3:0>		0000
4 4 9 4	LICOTOD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—		—	0000
1494	UCISK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		U6CTS	R<3:0>		0000
4.400		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—		—	0000
149C	SDI1R	15:0	—	—	—	—	—	—	—	—	—	—	—			SDI1F	R<3:0>		0000
		31:16	—	—	—	_	—	—	—	—	—	—	_	—	_	—	—	_	0000
14A0	SS1R	15:0	—	_	_	_	_	_	_	—	_	_	_	—		SS1R	<3:0>		0000
		31:16	—	_	_	_	_	_	_	_	_	_	_	_	_	—	—	_	0000
14A8	SDI2R	15:0	_	_	—	—	_	_	_	_	—	—	_	_		SDI2F	R<3:0>		0000
		31:16	—	_	_	_	_	_	_	—	_	_	_	—	_	—	—	_	0000
14AC	SS2R	15:0	—	_	_	_	_	_	_	—	_	_	_	—		SS2R	<3:0>		0000
		31:16	—	_	_	_	_	_	_	_	_	_	_	_	_	—	—	_	0000
14B4	SDI3R	15:0	_	_	—	—	_	_	_	_	—	—	_	_		SDI3F	R<3:0>		0000
		31:16	_	_	—	—	_	_	_	_	—	—	_	_	—	_		_	0000
14B8	SS3R	15:0	_	_	—	—	_	_	_	_	—	—	_	_		SS3R	<3:0>		0000
		31:16	_	_	—	—	_	_	_	_	—	—	_	_	—	_		_	0000
14C0	SDI4R	15:0	_	_	—	—	_	_	_	_	—	—	_	_		SDI4F	R<3:0>		0000
		31:16	_	_	_	_	_	—	_	_	—	_	_	_	—			_	0000
14C4	SS4R	15:0	_	_	_	_	_	—	_	_	—	_	_	_		SS4R	<3:0>		0000
	(4)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
14CC	SDI5R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_			SDI5F	R<3:0>		0000
	(4)	31:16	_	_	_	_	_	_	_	_	_	_	_		_				0000
14D0	SS5R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		SS5R	<3:0>		0000
	(4)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	0000
14D8	SDI6R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		SDI6F	R<3:0>		0000
		1													1				

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on devices without a CAN module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—		—	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_		[pin name	e]R<3:0>	

REGISTER 12-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 [*pin name*]R<3:0>: Peripheral Pin Select Input bits Where [*pin name*] refers to the pins that are used to configure peripheral input mapping. See Table 12-2 for input pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

REGISTER 12-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	_		-	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	-	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—		_				
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_			_	RPnR<3:0>			

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 **RPnR<3:0>:** Peripheral Pin Select Output bits See Table 12-3 for output pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
31:24	—	—	—		R	XBUFELM<4:	0>	
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
23:16	—	—	—	TXBUFELM<4:0>				
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0
15:8	—	—	—	FRMERR	SPIBUSY	—	—	SPITUR
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0
7:0	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF

REGISTER 19-3: SPIxSTAT: SPI STATUS REGISTER

Legend:	C = Clearable bit	HS = Set in hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 FRMERR: SPI Frame Error status bit
 - 1 = Frame error is detected
 - 0 = No Frame error is detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 SPITUR: Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling/re-enabling the module.

- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 **SPIROV:** Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred

This bit is set in hardware; can only be cleared (= 0) in software.

- bit 5 **SPIRBE:** RX FIFO Empty bit (valid only when ENHBUF = 1)
 - 1 = RX FIFO is empty (CRPTR = SWPTR)
 - 0 = RX FIFO is not empty (CRPTR \neq SWPTR)
- bit 4 Unimplemented: Read as '0'

REGISTER 20-1: SQI1XCON1: SQI XIP CONTROL REGISTER 1 (CONTINUED)

bit 5-4 TYPEMODE<1:0>: SQI Type Mode Enable bits

- The boot controller will send the mode in Single Lane, Dual Lane, or Quad Lane.
 - 11 = Reserved
 - 10 = Quad Lane mode is enabled
 - 01 = Dual Lane mode is enabled
 - 00 = Single Lane mode is enabled
- bit 3-2 **TYPEADDR<1:0>:** SQI Type Address Enable bits

The boot controller will send the address in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 = Quad Lane mode address is enabled
- 01 = Dual Lane mode address is enabled
- 00 = Single Lane mode address is enabled

bit 1-0 TYPECMD<1:0>: SQI Type Command Enable bits

The boot controller will send the command in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 =Quad Lane mode command is enabled
- 01 = Dual Lane mode command is enabled
- 00 = Single Lane mode command is enabled

24.0 EXTERNAL BUS INTERFACE (EBI)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 47. "External Bus Interface (EBI)" (DS60001245) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The External Bus Interface (EBI) module provides a high-speed, convenient way to interface external parallel memory devices to the PIC32MZ EF family device.

With the EBI module, it is possible to connect asynchronous SRAM and NOR Flash devices, as well as non-memory devices such as camera sensors and LCDs.

The features of the EBI module depend on the pin count of the PIC32MZ EF device, as shown in Table 24-1.

Note: The EBI module is not available on 64-pin devices.

TABLE 24-1: EBI MODULE FEATURES

Feature	Number of Device Pins			
	100	124	144	
Async SRAM	Y	Y	Y	
Async NOR Flash	Y	Y	Y	
Available address lines	20	20	24	
8-bit data bus support	Y	Y	Y	
16-bit data bus support	Y	Y	Y	
Available Chip Selects	1	1	4	
Timing mode sets	3	3	3	
8-bit R/W from 16-bit bus	N	Ν	Y	
Non-memory device	Y	Y	Y	
LCD	Y	Y	Y	

Note: Once the EBI module is configured, external devices will be memory mapped and can be access from KSEG2 memory space (see Figure 4-1 through Figure 4-4 in Section 4.0 "Memory Organization" for more information). The MMU must be enabled and the TLB must be set up to access this memory (refer to Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192) of the *"PIC32 Family Reference Manual"* for more information).

FIGURE 24-1: EBI SYSTEM BLOCK DIAGRAM

REGISTER 24-3:	EBISMTX: EXTERNAL BUS INTERFACE STATIC MEMORY TIMING REGISTER
	('x' = 0-2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
31.24	—	—	—	—	-	RDYMODE	PAGESI	ZE<1:0>
22.16	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
23.10	PAGEMODE		TPRC<	<3:0> ⁽¹⁾	TBTA<2:0> ⁽¹⁾			
15.0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
15:8	15:8 TWP<5:0> ⁽¹⁾						TWR<	1:0> ⁽¹⁾
7.0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1
7:0	TAS<1		TRC<5:0> ⁽¹⁾					

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26	RDYMODE: Data Ready Device Select bit
	The device associated with register set 'x' is a data-ready device, and will use the EBIRDYx pin.
	1 = EBIRDYx input is used
	0 = EBIRDYx input is not used
bit 25-24	PAGESIZE<1:0>: Page Size for Page Mode Device bits
	11 = 32-word page
	10 = 16-word page
	01 = 8-word page
	00 = 4-word page
bit 23	PAGEMODE: Memory Device Page Mode Support bit
	1 = Device supports Page mode
	0 = Device does not support Page mode
bit 22-19	TPRC<3:0>: Page Mode Read Cycle Time bits ⁽¹⁾
	Read cycle time is TPRC + 1 clock cycle.
bit 18-16	TBTA<2:0>: Data Bus Turnaround Time bits ⁽¹⁾
	Clock cycles (0-7) for static memory between read-to-write, write-to-read, and read-to-read when Chip
	Select changes.
bit 15-10	TWP<5:0>: Write Pulse Width bits ⁽¹⁾
	Write pulse width is TWP + 1 clock cycle.
bit 9-8	TWR<1:0>: Write Address/Data Hold Time bits ⁽¹⁾

- Number of clock cycles to hold address or data on the bus.bit 7-6TAS<1:0>: Write Address Setup Time bits⁽¹⁾
- TAS<1:0>: Write Address Setup Time bits⁽¹⁾
 Clock cycles for address setup time. A value of '0' is only valid in the case of SSRAM.
- bit 5-0 **TRC<5:0>:** Read Cycle Time bits⁽¹⁾ Read cycle time is TRC + 1 clock cycle.
- Note 1: Refer to the Section 47. "External Bus Interface (EBI)" in the "PIC32 Family Reference Manual" for the EBI timing diagrams and additional information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	—	—	—		Т	RGSRC7<4:0)>	
22.10	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	—	—	—	TRGSRC6<4:0>				
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—	- TRGSRC5<4:)>		
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_		TRGSRC4<4:0>				

REGISTER 28-18: ADCTRG2: ADC TRIGGER SOURCE 2 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 TRGSRC7<4:0>: Trigger Source for Conversion of Analog Input AN7 Select bits

```
11111 = Reserved

.

01101 = Reserved

01100 = Comparator 2 (COUT)

01011 = Comparator 1 (COUT)

01010 = OCMP5

01001 = OCMP3

01000 = OCMP1

00111 = TMR5 match

00101 = TMR1 match

00101 = TMR1 match

00100 = INT0 External interrupt

00011 = STRIG

00010 = Global level software trigger (GLSWTRG)

00001 = Global software edge Trigger (GSWTRG)

00000 = No Trigger
```

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSS*x* registers.

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TRGSRC6<4:0>:** Trigger Source for Conversion of Analog Input AN6 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC5<4:0>:** Trigger Source for Conversion of Analog Input AN5 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC4<4:0>:** Trigger Source for Conversion of Analog Input AN4 Select bits See bits 28-24 for bit value definitions.

	($\mathbf{X} = \mathbf{Z} \prod_{n \in \mathcal{U}} \mathbf{U}$							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10		—	_	_			_	_	
15.0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	
15.0		—	_	AINID<4:0>					
7:0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO	

REGISTER 28-21: ADCCMPCONX: ADC DIGITAL COMPARATOR 'x' CONTROL REGISTER ('x' = 2 THROUGH 6)

Legend:	HS = Hardware Set	HC = Hardware Cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-13 Unimplemented: Read as '0'

bit 12-8	AINID<4:0>: Digital Comparator 'x' Analog Input Identification (ID) bits When a digital comparator event occurs (DCMPED = 1), these bits identify the analog input being monitored by the Digital Comparator.
	Note: Only analog inputs $<31:0>$ can be processed by the Digital Comparator module 'x' ('x' = 1-5).
	11111 = AN31 is being monitored 11110 = AN30 is being monitored
	00001 = AN1 is being monitored 00000 = AN0 is being monitored
bit 7	ENDCMP: Digital Comparator 'x' Enable bit
h:: 0	 1 = Digital Comparator 'x' is enabled 0 = Digital Comparator 'x' is not enabled, and the DCMPED status bit (ADCCMPxCON<5>) is cleared
DIT 6	DCMPGIEN: Digital Comparator X Global Interrupt Enable bit 1 = A Digital Comparator 'x' interrupt is generated when the DCMPED status bit (ADCCMPxCON<5>) is set 0 = A Digital Comparator 'x' interrupt is disabled
bit 5	DCMPED: Digital Comparator 'x' "Output True" Event Status bit The logical conditions under which the digital comparator gets "True" are defined by the IEBTWN, IEHIHI, IEHILO, IELOHI and IELOLO bits.
	Note: This bit is cleared by reading the AINID<5:0> bits (ADCCMP0CON<13:8>) or by disabling the Digital Comparator module (by setting ENDCMP to '0').
	 1 = Digital Comparator 'x' output true event has occurred (output of Comparator is '1') 0 = Digital Comparator 'x' output is false (output of Comparator is '0')
bit 4	IEBTWN: Between Low/High Digital Comparator 'x' Event bit
	 1 = Generate a digital comparator event when the DCMPLO<15:0> bits < DATA<31:0> bits < DCMPHI<15:0> bits 0 = Do not apparato a digital comparator event
bit 3	IEHIHI: High/High Digital Comparator 'x' Event bit
	1 = Generate a Digital Comparator 'x' Event when the DCMPHI<15:0> bits \leq DATA<31:0> bits 0 = Do not generate an event
bit 2	IEHILO: High/Low Digital Comparator 'x' Event bit
	1 = Generate a Digital Comparator 'x' Event when the DATA<31:0> bits < DCMPHI<15:0> bits 0 = Do not generate an event

REGISTER 30-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER (CONTINUED)

- bit 6 **TXBUSY:** Transmit Busy bit^(2,6)
- 1 = TX logic is receiving data

0 = TX logic is idle

This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.

bit 5 **RXBUSY:** Receive Busy bit^(3,6)

1 = RX logic is receiving data 0 = RX logic is idle

This bit indicates that a packet is currently being received. A change in this status bit is not necessarily reflected by the RXDONE interrupt, as RX packets may be aborted or rejected by the RX filter.

- bit 4-0 Unimplemented: Read as '0'
- Note 1: This bit is only used for RX operations.
 - **2:** This bit is only affected by TX operations.
 - **3:** This bit is only affected by RX operations.
 - 4: This bit is affected by TX and RX operations.
 - 5: This bit will be set when the ON bit (ETHCON1 < 15 >) = 1.
 - 6: This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	r-1	R/P	r-1	r-1	r-1	r-1	r-1	r-1		
31:24	—	UPLLFSEL	—	—	—	-	—	—		
00.40	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P		
23:16	—	—	—	—	—	FPLLODIV<2:0>				
45.0	r-1	R/P	R/P	R/P	R/P	R/P R/P		R/P		
15:8		FPLLMULT<6:0>								
7:0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P		
	FPLLICLK	F	PLLRNG<2:0	>	_	FPLLIDIV<2:0>				

REGISTER 34-5: DEVCFG2/ADEVCFG2: DEVICE CONFIGURATION WORD 2

Legend:	r = Reserved bit	P = Programmable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

- bit 31 Reserved: Write as '1'
- bit 30 UPLLFSEL: USB PLL Input Frequency Select bit 1 = UPLL input clock is 24 MHz 0 = UPLL input clock is 12 MHz
- bit 29-19 Reserved: Write as '1'

bit 18-16 **FPLLODIV<2:0>:** Default System PLL Output Divisor bits

- 111 = PLL output divided by 32
- 110 = PLL output divided by 32
- 101 = PLL output divided by 32
- 100 = PLL output divided by 16
- 011 = PLL output divided by 8
- 010 = PLL output divided by 4
- 001 = PLL output divided by 2
- 000 = PLL output divided by 2
- bit 15 Reserved: Write as '1'

bit 14-8 FPLLMULT<6:0>: System PLL Feedback Divider bits

- 1111111 = Multiply by 128 1111110 = Multiply by 127 1111101 = Multiply by 126
- 1111100 = Multiply by 125
- •
- 0000000 = Multiply by 1
- bit 7 FPLLICLK: System PLL Input Clock Select bit
 - 1 = FRC is selected as input to the System PLL
 - 0 = Posc is selected as input to the System PLL

bit 6-4 **FPLLRNG<2:0>:** System PLL Divided Input Clock Frequency Range bits

- 111 = Reserved
- 110 = Reserved
- 101 = 34-64 MHz
- 100 = 21-42 MHz
- 011 = 13-26 MHz
- 010 = 8-16 MHz
- 001 = 5-10 MHz
- 000 = Bypass

FIGURE 37-3: I/O TIMING CHARACTERISTICS

FIGURE 37-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 37-28: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

			Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
OC10	TccF	OCx Output Fall Time	—	_	_	ns	See parameter DO32	
OC11	TCCR	OCx Output Rise Time		—	_	ns	See parameter DO31	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 37-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 37-29: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Typical ⁽²⁾	Max	Units	Conditions	
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns		
OC20	TFLT	Fault Input Pulse Width	50	—	_	ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP10	TSCL	SCKx Output Low Time (Note 3)	Tsck/2		_	ns	_	
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	_	_	ns		
SP15	TscK	SPI Clock Speed (Note 5)			25 50 25 50 25	MHz MHz MHz MHz MHz	SPI1, SPI4 through SPI6 SPI2 on RPB3, RPB5 SPI2 on other I/O SPI3 on RPB10, RPB9, RPF0 SPI3 on other I/O	
SP20	TSCF	SCKx Output Fall Time (Note 4)		_	_	ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—	—	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	—	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	—	ns	See parameter DO31	
SP35	TSCH2DOV,	SDOx Data Output Valid after		—	7	ns	VDD > 2.7V	
	ISCL2DOV	SCKx Edge	—	—	10	ns	Vdd < 2.7V	
SP36	TDOV2SC, TDOV2SCL	SDOx Data Output Setup to First SCKx Edge	—	—	7	ns	_	
SP40	TDIV2scH,	Setup Time of SDIx Data Input	7		—	ns	VDD > 2.7V	
	I DIV2scL	to SCKx Edge	10	—		ns	Vdd < 2.7V	
SP41	TSCH2DIL,	Hold Time of SDIx Data Input	7	—	—	ns	VDD > 2.7V	
	ISCL2DIL	to SUKX Edge	10	—	—	ns	Vdd < 2.7V	

TABLE 37-31: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 20 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 30 pF load on all SPIx pins.

5: To achieve maximum data rate, VDD must be \geq 3.3V, the SMP bit (SPIxCON<9>) must be equal to '1', and the operating temperature must be within the range of -40°C to +105°C.

39.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MZ EF device AC characteristics and timing parameters.

			Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristics	Minimum	Typical	Maximum	Units	Conditions
MOS51	Fsys	System Frequency	DC	_	252	MHz	USB module disabled
			60	—	252	MHz	USB module enabled
MOS55a	Fрв	Peripheral Bus Frequency	DC	_	100	MHz	For PBCLKx, 'x' \neq 4, 7 (see Note 1)
MOS55b			DC		200	MHz	For PBCLK4
MOS55c			DC		252	MHz	For PBCLK7
MOS56	Fref	Reference Clock Frequency	_	_	50	MHz	For REFCLKI1, 3, 4 and REFCLKO1, 3, 4 pins

TABLE 39-5: SYSTEM TIMING REQUIREMENTS

Note 1: If the DEVCFG registers are configured for a SYSCLK speed greater than 200 MHz, these PBCLKs will be running faster than the maximum rating when the device comes out of Reset. To ensure proper operation, firmware must start the device at a speed less than or equal to 200 MHz, adjust the speed of the PBCLKs, and then raise the SYSCLK speed to the desired speed.

TABLE 39-6: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics ⁽¹⁾		Min.	Typical	Max.	Units	Conditions
MOS54a	Fpll	PLL Output Frequer	ncy Range	10	_	252	MHz	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{PBCLK2}{CommunicationClock}}}$$

For example, if PBCLK2 = 100 MHz and SPI bit rate = 50 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{100}{50}}} = \frac{D_{CLK}}{1.41}$$