

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efg144t-i-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

A block diagram of the PIC32MZ EF family processor core is shown in Figure 3-1.

FIGURE 3-1: PIC32MZ EF FAMILY MICROPROCESSOR CORE BLOCK DIAGRAM

4.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive
	not intended to be a comprehensive
	reference source.For detailed
	information, refer to Section 48.
	"Memory Organization and
	Permissions" in the "PIC32 Family
	Reference Manual", which is available
	from the Microchip web site
	(www.microchip.com/PIC32).

PIC32MZ EF microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, PIC32MZ EF devices allow execution from data memory.

Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/ KSEG1/KSEG2/KSEG3) mode address space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Cacheable (KSEG0/KSEG2) and non-cacheable (KSEG1/KSEG3) address regions
- Read/write permission access to predefined memory regions

4.1 Memory Layout

PIC32MZ EF microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The main memory maps for the PIC32MZ EF devices are illustrated in Figure 4-1 through Figure 4-4. Figure 4-5 provides memory map information for boot Flash and boot alias. Table 4-1 provides memory map information for Special Function Registers (SFRs).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	—	—		
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	—		
15.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0		
10.0	—	—	—	—	—	9				
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7.0	SIRQ<7:0>									

REGISTER 7-3: INTSTAT: INTERRUPT STATUS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

bit 10-8 SRIPL<2:0>: Requested Priority Level bits for Single Vector Mode bits⁽¹⁾ 111-000 = The priority level of the latest interrupt presented to the CPU

- bit 7-6 Unimplemented: Read as '0'
- bit 7-0 SIRQ<7:0>: Last Interrupt Request Serviced Status bits 11111111-00000000 = The last interrupt request number serviced by the CPU
- Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24				IPTMF	R<31:24>						
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	IPTMR<23:16>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0	IPTMR<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				IPTM	IR<7:0>						

IPTMR: INTERRUPT PROXIMITY TIMER REGISTER REGISTER 7-4:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IPTMR<31:0>: Interrupt Proximity Timer Reload bits

Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y			
31.24	—	—	—	—		F	PLLODIV<2:0:	>			
22.16	U-0	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y			
23.10	—	PLLMULT<6:0>									
15.0	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y			
15.0	—					PLLIDIV<2:0>					
7.0	R/W-y	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y			
7:0	PLLICLK				_	PLLRANGE<2:0>					

REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER

Legend:	y = Value set from Configuration bits on POR					
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-27 Unimplemented: Read as '0'

bit 26-24 PLLODIV<2:0>: System PLL Output Clock Divider bits

111 = Reserved 110 = Reserved 101 = PLL Divide by 32 100 = PLL Divide by 16 011 = PLL Divide by 8 010 = PLL Divide by 4 001 = PLL Divide by 2 000 = Reserved

The default setting is specified by the FPLLODIV<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

bit 23 Unimplemented: Read as '0'

bit 22-16 PLLMULT<6:0>: System PLL Multiplier bits

- 1111111 = Multiply by 128 1111110 = Multiply by 127 1111101 = Multiply by 126 1111100 = Multiply by 125
- •

0000000 = Multiply by 1

The default setting is specified by the FPLLMULT<6:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

bit 15-11 Unimplemented: Read as '0'

Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "*PIC32 Family Reference Manual*" for details.
 Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER (CONTINUED)

- bit 4 **CHAEN:** Channel Automatic Enable bit
 - 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete 0 = Channel is disabled on block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 **CHEDET:** Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected
- bit 1-0 CHPRI<1:0>: Channel Priority bits
 - 11 = Channel has priority 3 (highest)
 - 10 = Channel has priority 2
 - 01 = Channel has priority 1
 - 00 = Channel has priority 0
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

ŝŝ											Bits								
Virtual Addres (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2240	USB	31:16	—	—	—	—	—	—	—	—	EP7TXD	EP6TXD	EP5TXD	EP4TXD	EP3TXD	EP2TXD	EP1TXD	—	0000
3340	DPBFD	15:0	_	—	_	—	—	_	—	—	EP7RXD	EP6RXD	EP5RXD	EP4RXD	EP3RXD	EP2RXD	EP1RXD	—	0000
2244	USB	31:16								THF	ISRTN<15:0>	•							05E6
3344	TMCON1	15:0								TI	JCH<15:0>								4074
2249	USB	31:16	_	—	_		_	_		_	_		—		-		_		0000
3340	TMCON2	15:0	_	—	_		_	_		_	_		—		THSBT<3:0>				0000
		21.16			LPM	LPM			DMOTIE					LPMNAK ⁽¹⁾	LPME	N<1:0>			0000
3360	USB LPMR1	51.10			ERRIE	RESIE								(2)	(2)	(2)	LEIMINES		0000
		15:0	5:0 ENDPOINT<3:0> — — RMTWAK HIRD<3:0> LNKSTATE<3:0>									0000							
		31:16	_	—	_		_	_		_	-		—		-		_		0000
$\frac{1364}{1} \frac{150}{1} - \frac{150}{1} - \frac{150}{1} - \frac{150}{1} - \frac{1}{1} - \frac{1}{$							LPMST	0000											

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1: Device mode.

2: Host mode.

3:

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7). 4:

TABLE 11-2: USB REGISTER MAP 2

ş				Bits															
Virtual Addres (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16			—	—	—	USBIF	USBRF	USBWKUP	—	—	—	—	_	—	—	_	0100
4000	CRCON	15:0	_	_	_	_	_	_	USB IDOVEN	USB IDVAL	PHYIDEN	VBUS MONEN	ASVAL MONEN	BSVAL MONEN	SEND MONEN	USBIE	USBRIE	USB WKUPEN	8000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0
31.24	VBUSERRIE	SESSRQIE	DISCONIE	CONNIE	SOFIE	RESETIE	RESUMEIE	SUSPIE
22.16	R-0, HS	R-0, HS	R-0, HS					
23.10	VBUSERRIF	SESSRQIF	DISCONIF	CONNIF	SOFIF	RESETIF	RESUMEIF	SUSPIF
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—	—	—	—
7.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0
7.0	EP7RXIE	EP6RXIE	EP5RXIE	EP4RXIE	EP3RXIE	EP2RXIE	EP1RXIE	_

REGISTER 11-3: USBCSR2: USB CONTROL STATUS REGISTER 2

Legend:	HS = Hardware Set		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 30 SESSRQIE: Session Request Interrupt Enable bit 1 = Session request interrupt is enabled 0 = Session request interrupt is disabled bit 29 DISCONIE: Device Disconnect Interrupt Enable bit 1 = Device disconnect interrupt is enabled 0 = Device connection Interrupt is disabled bit 28 CONNIE: Device Connection Interrupt Enable bit 1 = Device connection Interrupt is enabled 0 = Device connection interrupt is disabled bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is disabled
bit 29 DISCONIE: Device Disconnect Interrupt Enable bit 1 = Device disconnect interrupt is enabled 0 = Device disconnect interrupt is disabled bit 28 CONNIE: Device Connection Interrupt Enable bit 1 = Device connection interrupt is enabled 0 = Device connection interrupt is disabled bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt 0 = No interrupt 0 = No interrupt
bit 28 CONNIE: Device Connection Interrupt Enable bit 1 = Device connection interrupt is enabled 0 = Device connection interrupt is disabled bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (<i>Device mode</i>) or Babble (<i>Host mode</i>) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 22 SESSRQIF: Session Request Interrupt bit 1 = Session request signaling has been detected 0 = No session request detected
 bit 21 DISCONIF: Device Disconnect Interrupt bit 1 = In Host mode, indicates when a device disconnect is detected. In Device mode, indicates when session ends. 0 = No device disconnect detected
bit 20 CONNIF: Device Connection Interrupt bit 1 = In <i>Host mode</i> , indicates when a device connection is detected 0 = No device connection detected

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31.24	—	—	—	—	—	—	NRSTX	NRST
22.46	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R.W-0	R/W-1	R/W-0
23.10				LSEO	F<7:0>			
15.0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R.W-1	R/W-1	R/W-1
10.0				FSEO	F<7:0>			
7.0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R.W-0	R/W-0	R/W-0
7.0				HSEO	F<7:0>			

REGISTER 11-17: USBEOFRST: USB END-OF-FRAME/SOFT RESET CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

- bit 25 NRSTX: Reset of XCLK Domain bit
 - 1 = Reset the XCLK domain, which is clock recovered from the received data by the PHY 0 = Normal operation

bit 24 NRST: Reset of CLK Domain bit

1 = Reset the CLK domain, which is clock recovered from the peripheral bus

0 = Normal operation

bit 23-16 LSEOF<7:0>: Low-Speed EOF bits These bits set the Low-Speed transaction in units of 1.067 μs (default setting is 121.6 μs) prior to the EOF to stop new transactions from beginning.

bit 15-8 **FSEOF<7:0>:** Full-Speed EOF bits These bits set the Full-Speed transaction in units of 533.3 µs (default setting is 63.46 µs) prior to the EOF to stop new transactions from beginning.

bit 7-0 **HSEOF<7:0>:** Hi-Speed EOF bits These bits set the Hi-Speed transaction in units of 133.3 µs (default setting is 17.07µs) prior to the EOF to stop new transactions from beginning.

TABLE 12-18: PORTH REGISTER MAP FOR 144-PIN DEVICES ONLY

ess		0								Bits									
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0700	ANSELH	31:16	—		—	_	_	—	_		—	_		_	—	_	—	_	0000
	-	15:0	-	_	—	_	_	—	_	_	—	ANSH6	ANSH5	ANSH4	—	—	ANSH1	ANSH0	0073
0710	TRISH	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
-		15:0	TRISH15	TRISH14	TRISH13	TRISH12	TRISH11	TRISH10	I RISH9	TRISH8	TRISH/	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	FFFF
0720	PORTH	15.0	— RH15		— RH13				RH0	RH8	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	0000
		31.16	—	_	_		_	_	—	_	_	_	—	—		—	_	_	0000
0730	LATH	15:0	LATH15	LATH14	LATH13	LATH12	LATH11	LATH10	LATH9	LATH8	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATH0	xxxx
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0740	ODCH	15:0	ODCH15	ODCH14	ODCH13	ODCH12	ODCH11	ODCH10	ODCH9	ODCH8	ODCH7	ODCH6	ODCH5	ODCH4	ODCH3	ODCH2	ODCH1	ODCH0	0000
0750		31:16	_		—			_	_	_	—	—	_	_	—		_	_	0000
0750	CINFUR	15:0	CNPUH15	CNPUH14	CNPUH13	CNPUH12	CNPUH11	CNPUH10	CNPUH9	CNPUH8	CNPUH7	CNPUH6	CNPUH5	CNPUH4	CNPUH3	CNPUH2	CNPUH1	CNPUH0	0000
0760	CNPDH	31:16	—	—	—	—	—	—	—	—	_	_	—	—	—	_	—	—	0000
0100		15:0	CNPDH15	CNPDH14	CNPDH13	CNPDH12	CNPDH11	CNPDH10	CNPDH9	CNPDH8	CNPDH7	CNPDH6	CNPDH5	CNPDH4	CNPDH3	CNPDH2	CNPDH1	CNPDH0	0000
0770		31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	_	—	—	0000
0770 0	CNCONH	15:0	ON	_	—	—	EDGE DETECT	—	—	—	—	—	—	—	—	—	-	—	0000
0780		31:16	-	_	—			—	_	_	—	—	_		_	-	_	—	0000
0780	CINLINIT	15:0	CNENH15	CNENH14	CNENH13	CNENH12	CNENH11	CNENH10	CNENH9	CNENH8	CNENH7	CNENH6	CNENH5	CNENH4	CNENH3	CNENH2	CNENH1	CNENH0	0000
		31:16	—	_	—	—	—	—	—	_	—	—	_	—	—	—	—	—	0000
0790 C	CNSTATH	15:0	CN STATH15	CN STATH14	CN STATH13	CN STATH12	CN STATH11	CN STATH10	CN STATH9	CN STATH8	CN STATH7	CN STATH6	CN STATH5	CN STATH4	CN STATH3	CN STATH2	CN STATH1	CN STATH0	0000
0740		31:16	_	_	_				_		_	_			_	_	_	_	0000
UTAU		15:0	CNNEH15	CNNEH14	CNNEH13	CNNEH12	CNNEH11	CNNEH10	CNNEH9	CNNEH8	CNNEH7	CNNEH6	CNNEH5	CNNEH4	CNNEH3	CNNEH2	CNNEH1	CNNEH0	0000
07B0	CNFH	31:16	—	_	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
0100	JINIT	15:0	CNFH15	CNFH14	CNFH13	CNFH12	CNFH11	CNFH10	CNFH9	CNFH8	CNFH7	CNFH6	CNFH5	CNFH4	CNFH3	CNFH2	CNFH1	CNFH0	0000

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	—	—	—	—	—	_	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
		—	—	—	—	—	-	—			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	RCS2 ⁽¹⁾	RCS1 ⁽³⁾									
	RADDR15 ⁽²⁾	RADDR14 ⁽⁴⁾									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		RADDR<7:0>									

REGISTER 23-9: PMRADDR: PARALLEL PORT READ ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0'

bit 15	RCS2: Chip Select 2 bit ⁽¹⁾
	1 = Chip Select 2 is active
	0 = Chip Select 2 is inactive (RADDR15 function is selected)
bit 15	RADDR<15>: Target Address bit 15 ⁽²⁾
bit 14	RCS1: Chip Select 1 bit ⁽³⁾
	1 = Chip Select 1 is active
	0 = Chip Select 1 is inactive (RADDR14 function is selected)

- bit 14 RADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 RADDR<13:0>: Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - **3:** When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

NOTES:

26.0 CRYPTO ENGINE

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246) in the "PIC32 Family Reference Manual". which is available from the Microchip web site (www.microchip.com/PIC32).

The Crypto Engine is intended to accelerate applications that need cryptographic functions. By executing these functions in the hardware module, software overhead is reduced and actions, such as encryption, decryption, and authentication can execute much more quickly.

The Crypto Engine uses an internal descriptor-based DMA for efficient programming of the security association data and packet pointers (allowing scatter/ gather data fetching). An intelligent state machine schedules the Crypto Engines based on the protocol selection and packet boundaries. The hardware engines can perform the encryption and authentication in sequence or in parallel.

The following are key features of the Crypto Engine:

- Bulk ciphers and hash engines
- Integrated DMA to off-load processing:
 - Buffer descriptor-based
 - Secure association per buffer descriptor
- Some functions can execute in parallel

Bulk ciphers that are handled by the Crypto Engine include:

- AES:
 - 128-bit, 192-bit, and 256-bit key sizes
 - CBC, ECB, CTR, CFB, and OFB modes
- DES/TDES:
 - CBC, ECB, CFB, and OFB modes

Authentication engines that are available through the Crypto Engine include:

- SHA-1
- SHA-256
- MD-5
- AES-GCM
- HMAC operation (for all authentication engines)

The rate of data that can be processed by the Crypto Engine depends on these factors:

- Which engine is in use
- Whether the engines are used in parallel or in series
- The demands on source and destination memories by other parts of the system (i.e., CPU, DMA, etc.)
- The speed of PBCLK5, which drives the Crypto Engine

Table 26-1 shows typical performance for various engines.

TABLE 26-1: CRYPTO ENGINE PERFORMANCE

Engine/ Algorithm	Performance Factor (Mbps/MHz)	Maximum Mbps (PBCLK5 = 100 MHz)
DES	14.4	1440
TDES	6.6	660
AES-128	9.0	900
AES-192	7.9	790
AES-256	7.2	720
MD5	15.6	1560
SHA-1	13.2	1320
SHA-256	9.3	930

FIGURE 26-1: CRYPTO ENGINE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	FEN	—	—	ADC4EN	ADC3EN	ADC2EN	ADC1EN	ADC0EN
00.40	R/W-0	R-0, HS, HC	R-0, HS, HC	U-0	U-0	U-0	U-0	U-0
23.10	FIEN	FRDY	FWROVERR	_	—	—	—	
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0				FCNT	<7:0>			
7.0	R-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
7.0	FSIGN	—	—		_		ADCID<2:0>	•

REGISTER 28-22: ADCFSTAT: ADC FIFO STATUS REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FEN: FIFO Enable bit
	1 = FIFO is enabled
	0 = FIFO is disabled; no data is being saved into the FIFO
bit 30-29	Unimplemented: Read as '0'
bit 28-24	ADC4EN:ADC0EN: ADCx Enable bits ('x' = 0 through 4)
	1 = Converted output data of ADCx is stored in the FIFO
	0 = Converted output data of ADCx is not stored in the FIFO
	Note: While using FIFO, the output data is additionally stored in the respective output data register (ADCDATAx).
bit 23	FIEN: FIFO Interrupt Enable bit
	 1 = FIFO interrupts are enabled; an interrupt is generated once the FRDY bit is set 0 = FIFO interrupts are disabled
bit 22	FRDY: FIFO Data Ready Interrupt Status bit
	1 = FIFO has data to be read
	0 = No data is available in the FIFO
	Note: This bit is cleared when the FIFO output data in ADCFIFO has been read and there is no additional data ready in the FIFO (that is, the FIFO is empty).
bit 21	FWROVERR: FIFO Write Overflow Error Status bit
	 1 = A write overflow error in the FIFO has occurred (circular FIFO) 0 = A write overflow error in the FIFO has not occurred
	Note: This bit is cleared after ADCFSTAT<23:16> are read by software.
bit 15-8	FCNT<7:0>: FIFO Data Entry Count Status bit
	The value in these bits indicates the number of data entries in the FIFO.
bit 7	FSIGN: FIFO Sign Setting bit
	This bit reflects the sign of data stored in the ADCFIFO register.
bit 6-3	Unimplemented: Read as '0'
bit 2-0	ADCID<2:0>: ADCx Identifier bits ('x' = 0 through 4)
	These bits specify the ADC module whose data is stored in the FIFO.
	111 = Reserved
	110 = Reserved
	101 = Reserved
	•
	•
	•
	000 - Converted data of ADCO is stored in FIFO

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	—	_		
00.40	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
23.10	—	WAKFIL	—	—	—	SEG	62PH<2:0> ⁽¹	,4)		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	:	SEG1PH<2:0:	>	Р	RSEG<2:0>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0	SJW<1:	0> ⁽³⁾		BRP<5:0>						

REGISTER 29-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear	S = Settable bit	
R = Readable bit	W = Writable bit	P = Programmable bit	r = Reserved bit
U = Unimplemented bit	-n = Bit Value at POR: ('0)', '1', x = Unknown)	

bit 31-23 Unimplemented: Read as '0'

bit 22 WAKFIL: CAN Bus Line Filter Enable bit

1 = Use CAN bus line filter for wake-up

0 = CAN bus line filter is not used for wake-up

bit 21-19 Unimplemented: Read as '0'

bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x TQ
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾
	1 = Freely programmable
	0 = Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾
	1 = Bus line is sampled three times at the sample point
	0 = Bus line is sampled once at the sample point
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾
	111 = Length is 8 x TQ
	•
	•

 $000 = \text{Length is } 1 \times TQ$

- Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
 - **2:** 3 Time bit sampling is not allowed for BRP < 2.
 - **3:** SJW \leq SEG2PH.
 - **4:** The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15.0	—	—	—			FILHIT<4:0>		
7.0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7.0	_			I	CODE<6:0>(1	1)		

REGISTER 29-4: CiVEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8	FILHIT<4:0>: Filter Hit Number bit
	11111 = Filter 31
	11110 = Filter 30
	•
	•
	•
	00001 = Filter 1
	00000 = Filter 0
bit 7	Unimplemented: Read as '0'
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits ⁽¹⁾
	1001000-1111111 = Reserved
	1001000 = Invalid message received (IVRIF)
	1000111 = CAN module mode change (MODIF)
	1000110 = CAN timestamp timer (CTMRIF)
	1000101 = Bus bandwidth error (SERRIF)
	1000100 = Address error interrupt (SERRIF)
	1000011 = Receive FIFO overflow interrupt (RBOVIF)
	1000010 = Wake-up interrupt (WAKIF)
	1000001 = Error Interrupt (CERRIF)
	1000000 = No interrupt
	0100000-0111111 = Reserved
	0011111 = FIFO31 Interrupt (CiFSTAT<31> set)
	0011110 = FIFO30 Interrupt (CiFSTAT<30> set)
	•
	•
	•
	0000001 = FIFO1 Interrupt (CiFSTAT<1> set)
	0000000 = FIFO0 Interrupt (CiFSTAT<0> set)

33.3 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 33-1 for more information.

Note:	Disabling a peripheral module while it?			
	ON bit is set, may result in undefined			
	behavior. The ON bit for the associated			
peripheral module must be cleared pric				
	disable a module via the PMDx bits.			

TABLE 33-1:	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS ⁽¹⁾

Peripheral	PMDx bit Name	Register Name and Bit Location
ADC	ADCMD	PMD1<0>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Input Capture 6	IC6MD	PMD3<5>
Input Capture 7	IC7MD	PMD3<6>
Input Capture 8	IC8MD	PMD3<7>
Input Capture 9	IC9MD	PMD3<8>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Output Compare 6	OC6MD	PMD3<21>
Output Compare 7	OC7MD	PMD3<22>
Output Compare 8	OC8MD	PMD3<23>
Output Compare 9	OC9MD	PMD3<24>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
Timer6	T6MD	PMD4<5>
Timer7	T7MD	PMD4<6>
Timer8	T8MD	PMD4<7>
Timer9	T9MD	PMD4<8>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the lists of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

DC CHARACTERISTICS			Standard (unless of Operating	Operating Conditions: 2.1V to 3.6V therwise stated) temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Parameter Typical ⁽²⁾ Maximum ⁽⁴⁾			Units	Conditions			
Idle Current (III	Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)						
DC30a	7	22	mA	4 MHz (Note 3)			
DC31a	8	24	mA	10 MHz			
DC32a	13	32	mA	60 MHz (Note 3)			
DC33a	21	42	mA	130 MHz (Note 3)			
DC34	26	48	mA	180 MHz (Note 3)			
DC35	28	52	mA	200 MHz			

TABLE 37-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE current measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBPMD = 1), VUSB3V3 is connected to VSS, PBCLKx divisor = 1:128 ('x' ≠ 7)
- CPU is in Idle mode (CPU core Halted)
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared (except USBPMD)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: Data in the "Maximum" column is at 3.3V, +85°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHA	RACTER	RISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions				
EB10	TEBICLK	Internal EBI Clock Period (PBCLK8)	10			ns	—
EB11	TEBIRC	EBI Read Cycle Time (TRC<5:0>)	20			ns	_
EB12	TEBIPRC	EBI Page Read Cycle Time (TPRC<3:0>)	20	_	_	ns	—
EB13	TEBIAS	EBI Write Address Setup (TAS<1:0>)	10	—	—	ns	—
EB14	TEBIWP	EBI Write Pulse Width (TWP<5:0>)	10			ns	—
EB15	Tebiwr	EBI Write Recovery Time (TWR<1:0>)	10			ns	_
EB16	Тевісо	EBI Output Control Signal Delay	_		5	ns	See Note 1
EB17	Tebido	EBI Output Data Signal Delay	— — 5 ns See Note 1				See Note 1
EB18	TEBIDS	EBI Input Data Setup	5 — — ns See Note 1			See Note 1	
EB19	TEBIDH	EBI Input Data Hold	3	—	—	ns	See Note 1, 2

TABLE 37-47: EBI TIMING REQUIREMENTS

Note 1: Maximum pin capacitance = 10 pF.

2: Hold time from EBI Address change is 0 ns.

TABLE 37-48: EBI THROUGHPUT REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Characteristic	Min.	Тур.	Max.	Units	Conditions	
EB20	Asynchronous SRAM Read	—	100	—	Mbps	_	
EB21	Asynchronous SRAM Write	_	533	—	Mbps	—	

Note 1: Maximum pin capacitance = 10 pF.

2: Hold time from EBI Address change is 0 ns.

APPENDIX A: MIGRATING FROM PIC32MX5XX/6XX/7XX TO PIC32MZ EF

This appendix provides an overview of considerations for migrating from PIC32MX5XX/6XX/7XX devices to the PIC32MZ EF family of devices. The code developed for PIC32MX5XX/6XX/7XX devices can be ported to PIC32MZ EF devices after making the appropriate changes outlined in the following sections.

The PIC32MZ EF devices are based on a new architecture, and feature many improvements and new capabilities over PIC32MX5XX/6XX/7XX devices.

A.1 Oscillator and PLL Configuration

Because the maximum speed of the PIC32MZ EF family is greater, the configuration of the oscillator is different from prior PIC32MX5XX/6XX/7XX devices.

Table A-1 summarizes the differences (indicated by **Bold** type) between the family devices for the oscillator.

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature		
Primary Oscillat	or Configuration		
On PIC32MX devices, XT mode had to be selected if the input fre- quency was in the 3 MHz to 10 MHz range (4-10 for PLL), and HS mode had to be selected if the input frequency was in the 10 MHz to 20 MHz range.	On PIC32MZ EF devices, HS mode has a wider input frequency range (4 MHz to 12 MHz). The bit setting of '01' is Reserved.		
POSCMOD<1:0> (DEVCFG1<9:8>) 11 = Primary Oscillator disabled 10 = HS Oscillator mode selected 01 = XT Oscillator mode selected 00 = External Clock mode selected	POSCMOD<1:0> (DEVCFG1<9:8>) 11 = Primary Oscillator disabled 10 = HS Oscillator mode selected 01 = Reserved 00 = External Clock mode selected		
On PIC32MX devices, crystal mode could be selected with the HS or XT POSC setting, but an external oscillator could be fed into the OSC1/CLKI pin and the part would operate normally.	On PIC32MZ devices, this option is not available. External oscil- lator signals should only be fed into the OSC1/CLKI pin with the POSC set to EC mode.		
Oscillator	Selection		
On PIC32MX devices, clock selection choices are as follows:	On PIC32MZ EF devices, clock selection choices are as follows:		
FNOSC<2:0> (DEVCFG1<2:0>) NOSC<2:0> (OSCCON<10:8>) 111 = FRCDIV 110 = FRCDIV16 101 = LPRC 011 = POSC with PLL module 010 = POSC (XT, HS, EC) 001 = FRCDIV+PLL 000 = FRC	FNOSC<2:0> (DEVCFG1<2:0>) NOSC<2:0> (OSCCON<10:8>) 111 = FRCDIV 110 = Reserved 101 = LPRC 100 = SOSC 011 = Reserved 010 = POSC (HS or EC) 001 = System PLL (SPLL) 000 = FRCDIV		
COSC<2:0> (OSCCON<14:12>) 111 = FRC divided by FRCDIV 110 = FRC divided by 16 101 = LPRC 100 = SOSC 011 = POSC + PLL module 010 = POSC 001 = FRCPLL 000 = FRC	COSC<2:0> (OSCCON<14:12>) 111 = FRC divided by FRCDIV 110 = BFRC 101 = LPRC 100 = SOSC 011 = Reserved 010 = POSC 001 = System PLL 000 = FRC divided by FRCDIV		