

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efh064t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MIPS architecture defines that the result of a multiply or divide operation be placed in one of four pairs of HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

The MDU also implements various shift instructions operating on the HI/LO register and multiply instructions as defined in the DSP ASE. The MDU supports all of the data types required for this purpose and includes three extra HI/LO registers as defined by the ASE.

Table 3-2 lists the latencies and repeat rates for the DSP multiply and dot-product operations. The approximate latencies and repeat rates are listed in terms of pipeline clocks.

TABLE 3-2:	DSP-RELATED LATENCIES
	AND REPEAT RATES

Op code	Latency	Repeat Rate
Multiply and dot-product without saturation after accumulation	5	1
Multiply and dot-product with saturation after accumulation	5	1
Multiply without accumulation	5	1

3.1.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation and cache protocols, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as cache size and set associativity, and the presence of options like microMIPS is also available by accessing the CP0 registers, listed in Table 3-3.

Register Number	Register Name	Function
0	Index	Index into the TLB array (MPU only).
1	Random	Randomly generated index into the TLB array (MPU only).
2	EntryLo0	Low-order portion of the TLB entry for even-numbered virtual pages (MPU only).
3	EntryLo1	Low-order portion of the TLB entry for odd-numbered virtual pages (MPU only).
4	Context/ UserLocal	Pointer to the page table entry in memory (MPU only). User information that can be written by privileged software and read via the RDHWR instruction.
5	PageMask/ PageGrain	PageMask controls the variable page sizes in TLB entries. PageGrain enables support of 1 KB pages in the TLB (MPU only).
6	Wired	Controls the number of fixed (i.e., wired) TLB entries (MPU only).
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers in Non-privileged mode.
8	BadVAddr	Reports the address for the most recent address-related exception.
	BadInstr	Reports the instruction that caused the most recent exception.
	BadInstrP	Reports the branch instruction if a delay slot caused the most recent exception.
9	Count	Processor cycle count.
10	EntryHi	High-order portion of the TLB entry (MPU only).
11	Compare	Core timer interrupt control.

TABLE 3-3: COPROCESSOR 0 REGISTERS

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	r-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—	_	—	
22.46	U-0	R-0	R-1	R-0	R-0	R-0	R-1	R/W-y	
23:16	—	IPLW	<1:0>		MMAR<2:0>	MCU	ISAONEXC ⁽¹⁾		
15.0	R-y	R-y	R-1	R-1	R-1	R-1	U-0	R-1	
15:8	ISA<1	:0> ⁽¹⁾	ULRI	RXI	DSP2P	DSPP	_	ITL	
7.0	U-0	R-1	R-1	R-0	R-1	U-0	U-0	R-0	
7:0	_	VEIC	VINT	SP	CDMM	_	—	TL	
	•	•		•	-				

REGISTER 3-3: CONFIG3: CONFIGURATION REGISTER 3; CP0 REGISTER 16, SELECT 3

Legend:	r = Reserved bit	y = Value set from Co	nfiguration bits on POR
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 **Reserved:** This bit is hardwired as '1' to indicate the presence of the Config4 register

- bit 30-23 Unimplemented: Read as '0'
- bit 22-21 **IPLW<1:0>:** Width of the Status IPL and Cause RIPL bits 01 = IPL and RIPL bits are 8-bits in width
- bit 20-18 **MMAR<2:0>:** microMIPS Architecture Revision Level bits 000 = Release 1
- bit 17 MCU: MIPS[®] MCU[™] ASE Implemented bit
 - 1 = MCU ASE is implemented
- bit 16 **ISAONEXC:** ISA on Exception bit⁽¹⁾ 1 = microMIPS is used on entrance to an exception vector 0 = MIPS32 ISA is used on entrance to an exception vector
- bit 15-14 **ISA<1:0>:** Instruction Set Availability bits⁽¹⁾ 11 = Both MIPS32 and microMIPS are implemented; microMIPS is used when coming out of reset
 - 10 = Both MIPS32 and microMIPS are implemented; MIPS32 ISA used when coming out of reset
- bit 13 ULRI: UserLocal Register Implemented bit
- 1 = UserLocal Coprocessor 0 register is implemented
- bit 12 RXI: RIE and XIE Implemented in PageGrain bit
- 1 = RIE and XIE bits are implemented
- bit 11 **DSP2P:** MIPS DSP ASE Revision 2 Presence bit 1 = DSP Revision 2 is present
- bit 10 **DSPP:** MIPS DSP ASE Presence bit
- 1 = DSP is present
- bit 9 Unimplemented: Read as '0'
- bit 8 ITL: Indicates that iFlowtrace[®] hardware is present
 - $1 = \text{The iFlowtrace}^{\mathbb{R}}$ is implemented in the core
- bit 7 Unimplemented: Read as '0'
- bit 6 **VEIC:** External Vector Interrupt Controller bit
 - 1 = Support for an external interrupt controller is implemented
- bit 5 **VINT:** Vector Interrupt bit
- 1 = Vector interrupts are implemented
- bit 4 SP: Small Page bit
- 0 = 4 KB page size
- bit 3 CDMM: Common Device Memory Map bit
- 1 = CDMM is implemented
- bit 2-1 Unimplemented: Read as '0'
- bit 0 **TL:** Trace Logic bit
 - 0 = Trace logic is not implemented

Note 1: These bits are set based on the value of the BOOTISA Configuration bit (DEVCFG0<6>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—			—		—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16		—			—		—	—		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
10.0	—	—	_	—	—	-	—	—		
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
7:0	FCC<7:0>									

REGISTER 3-7: FCCR: FLOATING POINT CONDITION CODES REGISTER; CP1 REGISTER 25

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FCC<7:0>:** Floating Point Condition Code bits These bits record the results of floating point compares and are tested for floating point conditional branches and conditional moves.

TABLE 4-4: INITIATORS TO TARGETS ACCESS ASSOCIATION

Torgot	Initiator ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Target #	Name	C	CPU	DMA	A Read	DMA	DMA Write		Ethernet Read	Ethernet Write	CAN1	CAN2	SQI1	Flash Controller	Crypto
1	Flash Memory: Program Flash Boot Flash Prefetch Module		x		x				x		х	х			х
2	RAM Bank 1 Memory		Х		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х
3	RAM Bank 2 Memory		Х		Х	2	Х	Х	Х	Х	Х	Х	Х	Х	Х
4	External Memory via EBI and EBI Module		Х		Х	2	Х	Х	Х	Х	Х	Х	Х		Х
5	Peripheral Set 1: System Control, Flash Control, DMT, RTCC, CVR, PPS Input, PPS Output, Interrupts, DMA, WDT		x												
6	Peripheral Set 2: SPI1-SPI6 I2C1-I2C5 UART1-UART6 PMP		х		x	:	x								
7	Peripheral Set 3: Timer1-Timer9 IC1-IC9 OC1-OC9 ADC Comparator 1 Comparator 2		x		x	:	x								
8	Peripheral Set 4: PORTA-PORTK		Х		Х	2	х								
9	Peripheral Set 5: CAN1 CAN2 Ethernet Controller		x												
10	Peripheral Set 6: USB		Х												
11	External Memory via SQI1 and SQI1 Module		Х												
12	Peripheral Set 7: Crypto Engine		х												
13	Peripheral Set 8: RNG Module		х												

TABLE 4-10: SYSTEM BUS TARGET 2 REGISTER MAP

ess		0									Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI		—	_		CODE	<3:0>		-	_	_	—	—	_	_	—	0000
8820	SBT2ELOG1	15:0				INI	ΓID<7:0>					REGIO	N<3:0>		—	C	MD<2:0>		0000
0004	SBT2ELOG2	31:16	_	—	_	—	_	_	_	_	_	_	—	_	_	—	_	_	0000
8824	SBIZELUGZ	15:0	_	_	_	_	_	_	_	_	-	_	_	_	_	_	GROU	P<1:0>	0000
8828	SBT2ECON	31:16			—	_	—		_	ERRP	_	_			—		—	—	0000
0020	3BT2ECON	15:0		-	-	_	-		_	_	_	_					_	-	0000
8830	SBT2ECLRS	31:16	_	_	—	—	—	_	—	—	_	_	—	_	—	_	—		0000
0030	SBIZLOLKS	15:0	_	_	—	—	—	_	—	—	_	_	—	_	—	_	—	CLEAR	0000
8838	SBT2ECLRM	31:16	—	—	_	_	_	_	—	_	—	_	_	_	_	_	_	_	0000
0000	OBTZEOER	15:0	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	CLEAR	0000
8840	SBT2REG0	31:16											xxxx						
0010	OBTEREOU	15:0		BASE<5:0>				PRI	—	SIZE<4:0>					—	—	—	xxxx	
8850	SBT2RD0	31:16	_	_	—	—	—	_	—	—	—		_	_	—	_	—	—	xxxx
	0012:00	15:0	_	_	—	—	—	_	_	—	—	_	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8858	SBT2WR0	31:16	_	—	—	—	—		—	—	—	—			—	—	—	—	xxxx
		15:0	—		—	—	<u> </u>	—	_		—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8860	SBT2REG1	31:16							1	BAS	SE<21:6>								xxxx
		15:0			BA	\SE<5:0>			PRI	_			SIZE<4:0:	>		_	_		xxxx
8870	SBT2RD1	31:16	—	—	_	_			_	_	_	_	_	_	—	—	—		xxxx
	-	15:0	—	_	_	_		_	_	_	_	_	_		GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8878	SBT2WR1	31:16		_	—	—	—	—	—	—	—	—	—	_	—	—	_	—	XXXX
	-	15:0		—	—	_	—	—		—		_	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8880	SBT2REG2	31:16							1	BAS	SE<21:6>								xxxx
		15:0			BA	\SE<5:0>			PRI	—			SIZE<4:0:	>		_	—	—	XXXX
8890	SBT2RD2	31:16	_	_	—	—	—	—	—	—	_	_	—	—	—	—	—	—	xxxx
		15:0	_	_	—	—	—	—	—	—	_	_	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8898	SBT2WR2	31:16	_	_	—	—	—	—	—	—	_	_	—	—	—	—	—	—	xxxx
		15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

REGISTER 4-10: SBTxWRy: SYSTEM BUS TARGET 'x' REGION 'y' WRITE PERMISSIONS REGISTER ('x' = 0-13; 'y' = 0-8)

		•	,					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—			_	—	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_			_		_		_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_	_		_
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1
7:0			_	_	GROUP3	GROUP2	GROUP1	GROUP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-4 Unimplemented: Read as '0'

more information.

		•·····•
bit 3		Group3: Group 3 Write Permissions bits
		1 = Privilege Group 3 has write permission
		0 = Privilege Group 3 does not have write permission
bit 2		Group2: Group 2 Write Permissions bits
		1 = Privilege Group 2 has write permission
		0 = Privilege Group 2 does not have write permission
bit 1		Group1: Group 1 Write Permissions bits
		1 = Privilege Group 1 has write permission
		0 = Privilege Group 1 does not have write permission
bit 0		Group0: Group 0 Write Permissions bits
		1 = Privilege Group 0 has write permission
		0 = Privilege Group 0 does not have write permission
Note	ə 1:	Refer to Table 4-6 for the list of available targets and their descriptions.
	2:	For some target regions, certain bits in this register are read-only with preset values. See Table 4-6 for

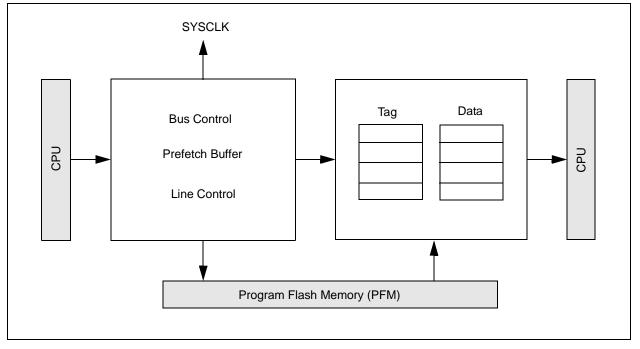
DS60001320D-page 98

NOTES:

9.0 PREFETCH MODULE

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 41. "Prefetch Module for Devices with L1 CPU Cache" (DS60001183) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Prefetch module is a performance enhancing module that is included in the PIC32MZ EF family of devices. When running at high-clock rates, Wait states must be inserted into Program Flash Memory (PFM) read transactions to meet the access time of the PFM. Wait states can be hidden to the core by prefetching and storing instructions in a temporary holding area that the CPU can access quickly. Although the data path to the CPU is 32 bits wide, the data path to the PFM is 128 bits wide. This wide data path provides the same bandwidth to the CPU as a 32-bit path running at four times the frequency.


The Prefetch module holds a subset of PFM in temporary holding spaces known as lines. Each line contains a tag and data field. Normally, the lines hold a copy of what is currently in memory to make instructions or data available to the CPU without Flash Wait states.

The following are key features of the Prefetch module:

- 4x16 byte fully-associative lines
- One line for CPU instructions
- · One line for CPU data
- Two lines for peripheral data
- 16-byte parallel memory fetch
- Configurable predictive prefetch
- Error detection and correction

A simplified block diagram of the Prefetch module is shown in Figure 9-1.

FIGURE 9-1: PREFETCH MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—				_			—	
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	_	_	_	_	_	_	—	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	CHSSIZ<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				CHSSIZ	<7:0>				

REGISTER 10-12: DCHxSSIZ: DMA CHANNEL x SOURCE SIZE REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 10-13: DCHxDSIZ: DMA CHANNEL x DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	_	_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—		—	—	_	—		—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	CHDSIZ<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				CHDSIZ	<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **CHDSIZ<15:0>:** Channel Destination Size bits

111111111111111 = 65,535 byte destination size $\ensuremath{\cdot}$

	1)		0)					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	U-0	U-0	U-0	U-0	R/W-0	R/W-0, HC	R/W-0	R/W-0, HC
31:24				_	-		—	FLSHFIFO
		_			DISPING	DTWREN	DATATGGL	
	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/C-0, HS	R/W-0, HS	R-0, HS	R-0	R-0
23:16	SVCSETEND	SVCRPR	SENDSTALL	SETUPEND	DATAEND	SENTSTALL	TXPKTRDY	RXPKTRDY
	NAKTMOUT	STATPKT	REQPKT	ERROR	SETUPPKT	RXSTALL	IAPKIKUT	KAFKIKUT
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	_	-	—	_	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	_	_	_	_	_

REGISTER 11-5: USBIE0CSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 0)

Legend:	HC = Hardware Cleared	HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 Unimplemented: Read as '0'

- bit 27 DISPING: Disable Ping tokens control bit (*Host mode*)

 1 = USB Module will not issue PING tokens in data and status phases of a Hi-Speed Control transfer
 0 = Ping tokens are issued

 bit 26 DTWREN: Data Toggle Write Enable bit (*Host mode*)

 1 = Enable the current state of the Endpoint 0 data toggle to be written. Automatically cleared.
 0 = Disable data toggle write
- bit 25 **DATATGGL:** Data Toggle bit (*Host mode*)

When read, this bit indicates the current state of the Endpoint 0 data toggle.

If DTWREN = 1, this bit is writable with the desired setting.

If DTWREN = 0, this bit is read-only.

- bit 24 FLSHFIFO: Flush FIFO Control bit
 - 1 = Flush the next packet to be transmitted/read from the Endpoint 0 FIFO. The FIFO pointer is reset and the TXPKTRDY/RXPKTRDY bit is cleared. Automatically cleared when the operation completes. Should only be used when TXPKTRDY/RXPKTRDY = 1.
 - 0 = No Flush operation
- bit 23 SVCSETEND: Clear SETUPEND Control bit (Device mode)
 - 1 = Clear the SETUPEND bit in this register. This bit is automatically cleared.
 - 0 = Do not clear

NAKTMOUT: NAK Time-out Control bit (Host mode)

- 1 = Endpoint 0 is halted following the receipt of NAK responses for longer than the time set by the NAKLIM<4:0> bits (USBICSR<28:24>)
- 0 = Allow the endpoint to continue
- bit 22 SVCRPR: Serviced RXPKTRDY Clear Control bit (Device mode)
 - 1 = Clear the RXPKTRDY bit in this register. This bit is automatically cleared.
 - 0 = Do not clear

STATPKT: Status Stage Transaction Control bit (*Host mode*)

- 1 = When set at the same time as the TXPKTRDY or REQPKT bit is set, performs a status stage transaction
- 0 = Do not perform a status stage transaction

REGISTE	R 21-2: I2CxSTAT: I ² C STATUS REGISTER (CONTINUED)
bit 5	 D_A: Data/Address bit (when operating as I²C slave) 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address Hardware clear at device address match. Hardware set by reception of slave byte.
bit 4	P: Stop bit
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I^2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04:04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	_	—	—	_	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	_	—	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	BDPPLCON<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0		BDPPLCON<7:0>								

REGISTER 26-8: CEPOLLCON: CRYPTO ENGINE POLL CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **BDPPLCON<15:0>:** Buffer Descriptor Processor Poll Control bits

These bits determine the number of SYSCLK cycles that the Crypto DMA would wait before refetching the descriptor control word if the Buffer Descriptor fetched was disabled.

REGIST	ER 28-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)
bit 20-16	S STRGSRC<4:0>: Scan Trigger Source Select bits
	11111 = Reserved
	•
	•
	01101 = Reserved
	01100 = Comparator 2 (COUT)
	01011 = Comparator 1 (COUT) 01010 = OCMP5
	01001 = OCMP3
	01000 = OCMP1
	00111 = TMR5 match
	00110 = TMR3 match 00101 = TMR1 match
	00100 = INTO External interrupt
	00011 = Reserved
	00010 = Global level software trigger (GLSWTRG)
	00001 = Global software edge trigger (GSWTRG) 00000 = No Trigger
bit 15	ON: ADC Module Enable bit
bit 10	1 = ADC module is enabled
	0 = ADC module is disabled
	Note: The ON bit should be set only after the ADC module has been configured.
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	 Discontinue module operation when device enters Idle mode Continue module operation in Idle mode
bit 12	AICPMPEN: Analog Input Charge Pump Enable bit
	1 = Analog input charge pump is enabled (default)
	0 = Analog input charge pump is disabled
bit 11	CVDEN: Capacitive Voltage Division Enable bit
	 1 = CVD operation is enabled 0 = CVD operation is disabled
bit 10	FSSCLKEN: Fast Synchronous System Clock to ADC Control Clock bit
	1 = Fast synchronous system clock to ADC control clock is enabled
	0 = Fast synchronous system clock to ADC control clock is disabled
bit 9	FSPBCLKEN: Fast Synchronous Peripheral Clock to ADC Control Clock bit
	 1 = Fast synchronous peripheral clock to ADC control clock is enabled 0 = Fast synchronous peripheral clock to ADC control clock is disabled
bit 8-7	Unimplemented: Read as '0'
bit 6-4	IRQVS<2:0>: Interrupt Vector Shift bits
	To determine interrupt vector address, this bit specifies the amount of left shift done to the ARDYx status
	bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with the ADCBASE register.
	Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to
	ADCBASE + $x \ll IRQVS < 2:0$, where 'x' is the smallest active input ID from the ADCDSTAT1 or ADCDSTAT2 registers (which has highest priority).
	111 = Shift x left 7 bit position
	110 = Shift x left 6 bit position
	101 = Shift x left 5 bit position
	100 = Shift x left 4 bit position 011 = Shift x left 3 bit position
	010 = Shift x left 2 bit position
	001 = Shift x left 1 bit position
	000 = Shift x left 0 bit position

REGIST	R 29-3: CIINT: CAN INTERRUPT REGISTER (CONTINUED)	
bit 14	NAKIF: CAN Bus Activity Wake-up Interrupt Flag bit L = A bus wake-up activity interrupt has occurred	
) = A bus wake-up activity interrupt has not occurred	
bit 13	CERRIF: CAN Bus Error Interrupt Flag bit	
	L = A CAN bus error has occurred	
) = A CAN bus error has not occurred	
bit 12	SERRIF: System Error Interrupt Flag bit	
	 A system error occurred (typically an illegal address was presented to the System Bu A system error has not occurred 	ls)
bit 11	RBOVIF: Receive Buffer Overflow Interrupt Flag bit	
	L = A receive buffer overflow has occurred	
	D = A receive buffer overflow has not occurred	
bit 10-4	Jnimplemented: Read as '0'	
bit 3	MODIF: CAN Mode Change Interrupt Flag bit	
	 A CAN module mode change has occurred (OPMOD<2:0> has changed to reflect RI A CAN module mode change has not occurred 	EQOP)
bit 2	CTMRIF: CAN Timer Overflow Interrupt Flag bit	
	L = A CAN timer (CANTMR) overflow has occurred	
) = A CAN timer (CANTMR) overflow has not occurred	
bit 1	RBIF: Receive Buffer Interrupt Flag bit	
	L = A receive buffer interrupt is pending	
) = A receive buffer interrupt is not pending	
bit 0	TBIF: Transmit Buffer Interrupt Flag bit	
	L = A transmit buffer interrupt is pending	
) = A transmit buffer interrupt is not pending	

Note 1: This bit can only be cleared by turning the CAN module off and on by clearing or setting the ON bit (CiCON<15>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN23	MSEL23<1:0>		FSEL23<4:0>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN22	MSEL22<1:0>		FSEL22<4:0>				
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.6	FLTEN21	MSEL2	:1<1:0>		F	SEL21<4:0>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN20	MSEL2	MSEL20<1:0>		F	SEL20<4:0>	•	

REGISTER 29-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN23: Filter 23 Enable bit 1 = Filter is enabled
bit 30-29	 0 = Filter is disabled MSEL23<1:0>: Filter 23 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL23<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 •
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN22: Filter 22 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL22<1:0>: Filter 22 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	<pre>FSEL22<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

DS60001320D-page 510

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 25/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24			—	—	—			—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10			—	—	—			—
	U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
15:8		EXCESS DFR	BPNOBK OFF	NOBK OFF	—		LONGPRE	PUREPRE
	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7:0	AUTO PAD ^(1,2)	VLAN PAD ^(1,2)	PAD ENABLE ^(1,3)	CRC ENABLE	DELAYCRC	HUGEFRM	LENGTHCK	FULLDPLX

REGISTER 30-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

bit 14 **EXCESSDER:** Excess Defer bit

- 1 = The MAC will defer to carrier indefinitely as per the Standard
- 0 = The MAC will abort when the excessive deferral limit is reached

bit 13 BPNOBKOFF: Backpressure/No Backoff bit

- 1 = The MAC after incidentally causing a collision during backpressure will immediately retransmit without backoff reducing the chance of further collisions and ensuring transmit packets get sent
- 0 = The MAC will not remove the backoff

bit 12 NOBKOFF: No Backoff bit

- 1 = Following a collision, the MAC will immediately retransmit rather than using the Binary Exponential Backoff algorithm as specified in the Standard
- 0 = Following a collision, the MAC will use the Binary Exponential Backoff algorithm
- bit 11-10 Unimplemented: Read as '0'
- bit 9 LONGPRE: Long Preamble Enforcement bit
 - 1 = The MAC only allows receive packets which contain preamble fields less than 12 bytes in length
 - 0 = The MAC allows any length preamble as per the Standard

bit 8 **PUREPRE:** Pure Preamble Enforcement bit

- 1 = The MAC will verify the content of the preamble to ensure it contains 0x55 and is error-free. A packet with errors in its preamble is discarded
- 0 = The MAC does not perform any preamble checking

bit 7 AUTOPAD: Automatic Detect Pad Enable bit^(1,2)

- 1 = The MAC will automatically detect the type of frame, either tagged or untagged, by comparing the two octets following the source address with 0x8100 (VLAN Protocol ID) and pad accordingly
- 0 = The MAC does not perform automatic detection
- Note 1: Table 30-6 provides a description of the pad function based on the configuration of this register.
 - 2: This bit is ignored if the PADENABLE bit is cleared.
 - **3:** This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware

33.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS60001130) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes power-saving features for the PIC32MZ EF devices. These devices offer various methods and modes that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

33.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the speed of PBCLK7, or selecting a lower power clock source (i.e., LPRC or Sosc).

In addition, the Peripheral Bus Scaling mode is available for each peripheral bus where peripherals are clocked at reduced speed by selecting a higher divider for the associated PBCLKx, or by disabling the clock completely.

33.2 Power-Saving with CPU Halted

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

33.2.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted and the associated clocks are disabled. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- · On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the peripheral bus clocks will start running and the device will enter into Idle mode.

33.2.2 IDLE MODE

In Idle mode, the CPU is Halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

DC CHARA	ACTERISTICS				Conditions: 2.1V to 3.6V (unless otherwise stated) re $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial		
Param. No.	Typical ⁽²⁾	Maximum ⁽⁵⁾	Units Conditions				
Power-Dov	wn Current (IPI	o) (Note 1)					
DC40k	0.7	7	mA	-40°C			
DC40I	1.5	7	mA	+25°C	Base Power-Down Current		
DC40n	7	20	mA	+85°C			
Module Dif	ferential Curre	ent					
DC41e	15	50	μA	3.6V	Watchdog Timer Current: ΔIWDT (Note 3)		
DC42e	25	50	μA	3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)		
DC43d	3	3.8	mA	3.6V	ADC: ΔIADC (Notes 3, 4)		
DC44	15	50	μA	3.6V	Deadman Timer Current: AIDMT (Note 3)		

TABLE 37-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
- CPU is in Sleep mode
- L1 Cache and Prefetch modules are disabled

No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)

- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- Voltage regulator is in Stand-by mode (VREGS = 0)
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Voltage regulator is operational (VREGS = 1).
- **5:** Data in the "Maximum" column is at 3.3V, +85°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHARACTERISTICS				rd Opera otherwis	se statec rature -	l) 40°C ≤ T	see Note 3): 2.1V to 3.6V A \leq +85°C for Industrial A \leq +125°C for Extended
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments
D300	VIOFF	Input Offset Voltage	_	±10		mV	AVDD = VDD, AVSS = VSS
D301	VICM	Input Common Mode Voltage	0	—	Vdd	V	AVDD = VDD, AVSS = VSS (Note 2)
D302	CMRR	Common Mode Rejection Ratio	55	—		dB	Max VICM = (VDD - 1)V (Note 2, 4)
D303	TRESP	Response Time		150		ns	AVDD = VDD, AVSS = VSS (Notes 1, 2)
D304	ON2ov	Comparator Enabled to Out- put Valid	—	—	10	μs	Comparator module is configured before setting the comparator ON bit (Note 2)
D305	IVref	Internal Voltage Reference	1.194	1.2	1.206	V	—

TABLE 37-14: COMPARATOR SPECIFICATIONS

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

- 2: These parameters are characterized but not tested.
- **3:** The Comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.
- 4: CMRR measurement characterized with a 1 MΩ resistor in parallel with a 25 pF capacitor to Vss.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments	
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time	_		10	μs	See Note 1	
D313	DACREFH	CVREF Input Voltage Reference Range	AVss	_	AVdd	V	CVRSRC with CVRSS = 0	
			VREF-		VREF+	V	CVRSRC with CVRSS = 1	
D314	DVREF	CVREF Programmable Output Range	0		0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size	
			0.25 x DACREFH		0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/32 step size	
D315	DACRES	Resolution	—		DACREFH/24		CVRCON <cvrr> = 1</cvrr>	
					DACREFH/32		CVRCON <cvrr> = 0</cvrr>	
D316	DACACC	Absolute Accuracy ⁽²⁾	—	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>	
			—	_	1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>	

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

Section Name	Update Description
37.0 "Electrical Characteristics"	The DC Characteristics: Operating Current (IDD) and Note 6 were updated (see Table 37-6).
	The DC Characteristics: Idle Current (IIDLE) and Note 4 were updated (see Table 37-7).
	Parameter DC40m and Note 5 in the DC Characteristics: Power-down Current (IPD) were updated (see Table 37-8).
	Parameter DO50 (Cosco) was removed from the Capacitive Loading Requirements on Output Pins (see Table 37-16).
	The Internal FRC Accuracy and Internal LPRC conditions were updated for 125°C (see Table 37-20 and Table 37-21).
	Parameter SP15 and Note 5 of the SPIx Module Master Mode Timing Requirements were updated (see Table 37-30 and Table 37-31).
	The Temperature Sensor Specifications were updated (see Table 37-41).
38.0 "Extended Temperature Electrical Characteristics"	New chapter for Extended Temperature devices was added.
39.0 "AC and DC Characteristics Graphs"	The Typical Temperature Sensor Voltage graph was updated (see Figure 39-7).
40.0 "Packaging Information"	The package drawings and land pattern for the 64-Lead Plastic Quad Flat, No Lead Package (MR) were updated.
Appendix A: "Migrating from PIC32MX5XX/6XX/7XX to PIC32MZ EF"	The Primary Oscillator Configuration section in the Oscillator Configuration Differences was updated (see Table A-1).
Appendix B: "Migrating from PIC32MZ EC to PIC32MZ EF"	Boot Flashing aliasing was updated for PIC32MZ EF devices (see Table B-4).

TABLE C-2: MAJOR SECTION UPDATES (CONTINUED)