

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efh100-e-pf

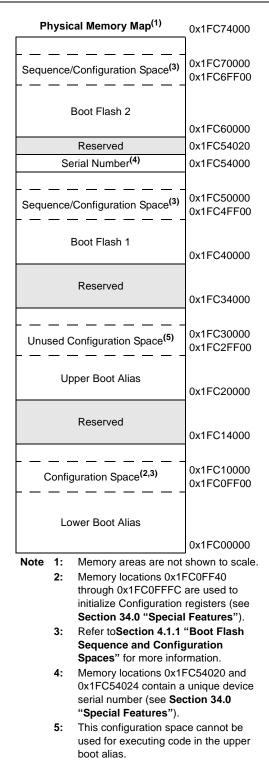
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—			—	
	U-0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	
23:16				—			CAUS	E<5:4>	
	—	_	_			_	E	V	
	R/W-x	R/W-x	R/W-x	U-0	U-0	U-0	U-0	U-0	
15:8		CAUSE	<3:0>						
	Z	0	U	I		_	_	_	
	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	U-0	U-0	
7:0				FLAGS<4:0>					
		V	Z	0	U	I		_	

REGISTER 3-8: FEXR: FLOATING POINT EXCEPTIONS STATUS REGISTER; CP1 REGISTER 26

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 31-18 Unimplemented: Read as '0'

bit 17-12 **CAUSE<5:0>:** FPU Exception Cause bits These bits indicated the exception conditions that arise during execution of an FPU arithmetic instruction.

- bit 17 E: Unimplemented Operation bit
- bit 16 V: Invalid Operation bit
- bit 15 **Z:** Divide-by-Zero bit
- bit 14 **O:** Overflow bit
- bit 13 **U:** Underflow bit
- bit 12 I: Inexact bit
- bit 11-7 Unimplemented: Read as '0'
- bit 6-2 FLAGS<4:0>: FPU Flags bits

These bits show any exception conditions that have occurred for completed instructions since the flag was last reset by software.

- bit 6 V: Invalid Operation bit
- bit 4 **Z:** Divide-by-Zero bit
- bit 4 O: Overflow bit
- bit 3 U: Underflow bit
- bit 2 I: Inexact bit
- bit 1-0 Unimplemented: Read as '0'

FIGURE 4-5: BOOT AND ALIAS MEMORY MAP

TABLE 4-1: SFR MEMORY MAP

	Virtual Ad	dress
Peripheral	Base	Offset Start
System Bus ⁽¹⁾	0xBF8F0000	0x0000
Prefetch		0x0000
EBI		0x1000
SQI1		0x2000
USB	0xBF8E0000	0x3000
Crypto		0x5000
RNG		0x6000
CAN1 and CAN2		0x0000
Ethernet	0xBF880000	0x2000
USBCR		0x4000
PORTA-PORTK	0xBF860000	0x0000
Timer1-Timer9		0x0000
IC1-IC9		0x2000
OC1-OC9	0xBF840000	0x4000
ADC		0xB000
Comparator 1, 2		0xC000
I2C1-I2C5		0x0000
SPI1-SPI6	0,000000	0x1000
UART1-UART6	0xBF820000	0x2000
PMP		0xE000
Interrupt Controller	0xBF810000	0x0000
DMA	00000	0x1000
Configuration		0x0000
Flash Controller		0x0600
Watchdog Timer		0x0800
Deadman Timer	0vPE800000	0x0A00
RTCC	0xBF800000	0x0C00
CVREF		0x0E00
Oscillator		0x1200
PPS		0x1400

Note 1: Refer to 4.2 "System Bus Arbitration" for important legal information.

4.2 System Bus Arbitration

Note:	The	System	Bus	interconnect							
				nstantiations of							
	the So	the SonicsSX [®] interconnect from Sonics									
	Inc. T	his docum	ent conta	ains materials							
	that a	e (c) 2003-	2015 So	nics, Inc., and							
	that co	onstitute pro	oprietary	information of							
	Sonics	, Inc. Son	icsSX is	a registered							
	tradem	nark of S	onics, I	nc. All such							
	materi	als and trad	emarks a	are used under							
	license	e from Sonic	s, Inc.								

As shown in the PIC32MZ EF Family Block Diagram (see Figure 1-1), there are multiple initiator modules (I1 through I14) in the system that can access various target modules (T1 through T13). Table 4-4 illustrates which initiator can access which target. The System Bus supports simultaneous access to targets by initiators, so long as the initiators are accessing different targets. The System Bus will perform arbitration, if multiple initiators attempt to access the same target.

The System Bus arbitration scheme implements a nonprogrammable, Least Recently Serviced (LRS) priority, which provides Quality Of Service (QOS) for most initiators. However, some initiators can use Fixed High Priority (HIGH) arbitration to guarantee their access to data.

The arbitration scheme for the available initiators is shown in Table 4-5.

ID	QOS
1	LRS ⁽¹⁾
2	HIGH ^(1,2)
3	LRS ⁽¹⁾
4	HIGH ^(1,2)
5	LRS ⁽¹⁾
6	HIGH ^(1,2)
7	LRS
8	LRS
9	LRS
10	LRS
11	LRS
12	LRS
13	HIGH ⁽²⁾
14	LRS
	1 2 3 4 5 6 7 8 9 10 11 11 12 13

TABLE 4-5:INITIATOR ID AND QOS

- Note 1: When accessing SRAM, the DMAPRI bit (CFGCON<25>) and the CPUPRI bit (CFGCON<24>) provide arbitration control for the DMA and CPU (when servicing an interrupt (i.e., EXL = 1)), respectively, by selecting the use of LRS or HIGH When using HIGH, the DMA and CPU get arbitration preference over all initiators using LRS.
 - 2: Using HIGH arbitration can have serious negative effects on other initiators. Therefore, it is recommended to not enable this type of arbitration for an initiator that uses significant system bandwidth. HIGH arbitration is intended to be used for low bandwidth applications that require low latency, such as LCC graphics applications.

4.3 Permission Access and System Bus Registers

The System Bus on PIC32MZ EF family of microcontrollers provides access control capabilities for the transaction initiators on the System Bus.

The System Bus divides the entire memory space into fourteen target regions and permits access to each target by initiators via permission groups. Four Permission Groups (0 through 3) can be assigned to each initiator. Each permission group is independent of the others and can have exclusive or shared access to a region.

Using the CFGPG register (see Register 34-10 in **Section 34.0 "Special Features"**), Boot firmware can assign a permission group to each initiator, which can make requests on the System Bus.

The available targets and their regions, as well as the associated control registers to assign protection, are described and listed in Table 4-6.

Register 4-2 through Register 4-10 are used for setting and controlling access permission groups and regions.

To change these registers, they must be unlocked in hardware. The register lock is controlled by the PGLOCK Configuration bit (CFGCON<11>). Setting PGLOCK prevents writes to the control registers; clearing PGLOCK allows writes.

To set or clear the PGLOCK bit, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** in the *"PIC32 Family Reference Manual"* for details.

	NORO Martin Martin	IRQ	Martin		Interru	upt Bit Locatior	ı	Persistent
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
UART6 Transfer Done	_UART6_TX_VECTOR	190	OFF190<17:1>	IFS5<30>	IEC5<30>	IPC47<20:18>	IPC47<17:16>	Yes
Reserved	—	191	—	—	_	—	—	—
ADC End of Scan Ready	_ADC_EOS_VECTOR	192	OFF192<17:1>	IFS6<0>	IEC6<0>	IPC48<4:2>	IPC48<1:0>	Yes
ADC Analog Circuits Ready	_ADC_ARDY_VECTOR	193	OFF193<17:1>	IFS6<1>	IEC6<1>	IPC48<12:10>	IPC48<9:8>	Yes
ADC Update Ready	_ADC_URDY_VECTOR	194	OFF194<17:1>	IFS6<2>	IEC6<2>	IPC48<20:18>	IPC48<17:16>	Yes
Reserved	—	195	—	_	_	—	_	—
ADC Group Early Interrupt Request	_ADC_EARLY_VECTOR	196	OFF196<17:1>	IFS6<4>	IEC6<4>	IPC49<4:2>	IPC49<1:0>	Yes
Reserved	—	197	—	—	_	—	_	—
ADC0 Early Interrupt	_ADC0_EARLY_VECTOR	198	OFF198<17:1>	IFS6<6>	IEC6<6>	IPC49<20:18>	IPC49<17:16>	Yes
ADC1 Early Interrupt	_ADC1_EARLY_VECTOR	199	OFF199<17:1>	IFS6<7>	IEC6<7>	IPC49<28:26>	IPC49<25:24>	Yes
ADC2 Early Interrupt	_ADC2_EARLY_VECTOR	200	OFF200<17:1>	IFS6<8>	IEC6<8>	IPC50<4:2>	IPC50<1:0>	Yes
ADC3 Early Interrupt	_ADC2_EARLY_VECTOR	201	OFF201<17:1>	IFS6<9>	IEC6<9>	IPC50<12:10>	IPC50<9:8>	Yes
ADC4 Early Interrupt	_ADC4_EARLY_VECTOR	202	OFF202<17:1>	IFS6<10>	IEC6<10>	IPC50<20:18>	IPC50<17:16>	Yes
Reserved	—	203	—	—	_	—	_	—
Reserved	—	204	—	—	_	—	_	—
ADC7 Early Interrupt	_ADC7_EARLY_VECTOR	205	OFF205<17:1>	IFS6<13>	IEC6<13>	IPC51<12:10>	IPC51<9:8>	Yes
ADC0 Warm Interrupt	_ADC0_WARM_VECTOR	206	OFF206<17:1>	IFS6<14>	IEC6<14>	IPC51<20:18>	IPC51<17:16>	Yes
ADC1 Warm Interrupt	_ADC1_WARM_VECTOR	207	OFF207<17:1>	IFS6<15>	IEC6<15>	IPC51<28:26>	IPC51<25:24>	Yes
ADC2 Warm Interrupt	_ADC2_WARM_VECTOR	208	OFF208<17:1>	IFS6<16>	IEC6<16>	IPC52<4:2>	IPC52<1:0>	Yes
ADC3 Warm Interrupt	_ADC3_WARM_VECTOR	209	OFF209<17:1>	IFS6<17>	IEC6<17>	IPC52<12:10>	IPC52<9:8>	Yes
ADC4 Warm Interrupt	_ADC4_WARM_VECTOR	210	OFF210<17:1>	IFS6<18>	IEC6<18>	IPC52<20:18>	IPC52<17:16>	Yes
Reserved		211	—	_	_	—	—	_
Reserved	_	212	_	_	_	—	—	_
ADC7 Warm Interrupt	_ADC7_WARM_VECTOR	213	OFF213<17:1>	IFS6<21>	IEC6<21>	IPC53<12:10>	IPC53<9:8>	Yes
	Lowest N	atural Orde	er Priority					

TABLE 7-2: INTERRUPT IRQ, VECTOR, AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

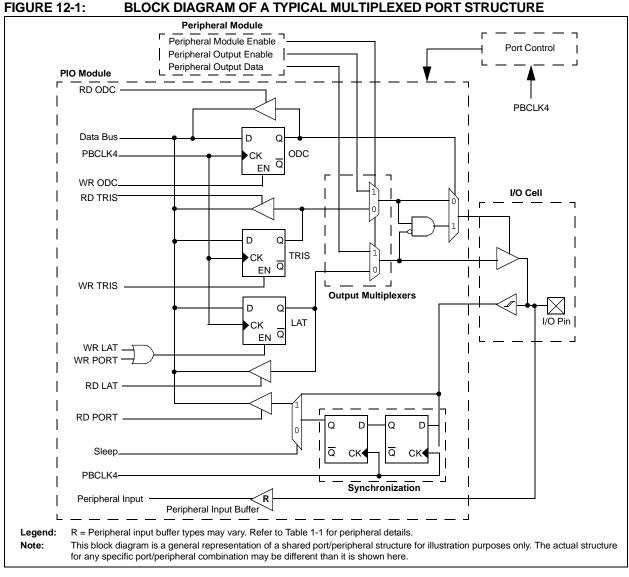
3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER (CONTINUED) bit 15-12 PRI3SS<3:0>: Interrupt with Priority Level 3 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 3 uses Shadow Set 0) 0111 = Interrupt with a priority level of 3 uses Shadow Set 7 0110 = Interrupt with a priority level of 3 uses Shadow Set 6 0001 = Interrupt with a priority level of 3 uses Shadow Set 1 0000 = Interrupt with a priority level of 3 uses Shadow Set 0 bit 11-8 **PRI2SS<3:0>:** Interrupt with Priority Level 2 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 2 uses Shadow Set 0) 0111 = Interrupt with a priority level of 2 uses Shadow Set 7 0110 = Interrupt with a priority level of 2 uses Shadow Set 6 0001 = Interrupt with a priority level of 2 uses Shadow Set 1 0000 = Interrupt with a priority level of 2 uses Shadow Set 0 PRI1SS<3:0>: Interrupt with Priority Level 1 Shadow Set bits⁽¹⁾ bit 7-4 1xxx = Reserved (by default, an interrupt with a priority level of 1 uses Shadow Set 0) 0111 = Interrupt with a priority level of 1 uses Shadow Set 7 0110 = Interrupt with a priority level of 1 uses Shadow Set 6 0001 = Interrupt with a priority level of 1 uses Shadow Set 1 0000 = Interrupt with a priority level of 1 uses Shadow Set 0 bit 3-1 Unimplemented: Read as '0' bit 0 SS0: Single Vector Shadow Register Set bit 1 = Single vector is presented with a shadow set 0 = Single vector is not presented with a shadow set

Note 1: These bits are ignored if the MVEC bit (INTCON<12>) = 0.

12.0 I/O PORTS


Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC32MZ EF family device to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

Some of the key features of the I/O ports are:

- Individual output pin open-drain enable/disable
- Individual input pin weak pull-up and pull-down
- · Monitor selective inputs and generate interrupt when change in pin state is detected
- · Operation during Sleep and Idle modes
- · Fast bit manipulation using CLR, SET and INV registers

Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE

TABLE 12-11: PORTE REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess										В	its								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400	ANSELE	31:16		_			—		_	_		_	—		_	_		_	0000
0400	ANOLLL	15:0	—	_			—	_	ANSE9	ANSE8	ANSE7	ANSE6	ANSE5	ANSE4	_	_	—		03F0
0410	TRISE	31:16	—	—	—	—	—	_	—	—	—	—	—	-	—	—	—	—	0000
0110	HUGE	15:0	—	-	—	—	—	-	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
0420	PORTE	31:16	—	—	—	—	—		—	—	—	—	—		—	—	—	—	0000
0.20		15:0	—	—	—	—	—		RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
0430	LATE	31:16	—	—	—	—	—		—	—	—	—	—		—	_	—	—	0000
		15:0	—	_	—	—	—	_	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	XXXX
0440	ODCE	31:16	_	_	—	—	—	—	—	—		—	—		—	—	—	—	0000
		15:0	—	_	—	—	_	—	ODCE9	ODCE8	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
0450	CNPUE	31:16	—	_	—	—	_	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	_	_	—	_	_	_	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000
0460	CNPDE	31:16	_	_	—	_	_	_	—	_	_	—	—	_	—	—	—	—	0000
		15:0	_	_	_	_	_		CNPDE9	CNPDE8	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
0470		31:16	_	_	_	_	-	_		_	_	_	_	_	_	_	_	_	0000
0470	CNCONE	15:0	ON	_	_	_	EDGE DETECT	_	—	—	—	_	—	_	_	_	_	_	0000
0480	CNENE	31:16	—	-	—	—	—	-	—	—	_	_	—		—	_	—	_	0000
0.00	0.12.12	15:0	_	_	—	_	_	_	CNENE9	CNENE8	CNENE7	CNENE6	CNENE5	CNENE4	CNENE3	CNENE2	CNENE1	CNENE0	0000
		31:16	—	—	—	—	—		—	—	—	—	—		—	_	—	—	0000
0490	CNSTATE	15:0	_	-	—	—	—	_	CN STATE9	CN STATE8	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000
04A0	CNNEE	31:16	_		-	_	-		_		-	١	-				_		0000
04A0	CININEL	15:0	_				-		CNNEE9	CNNEE8	CNNEE7	CNNEE6	CNNEE5	CNNEE4	CNNEE3	CNNEE2	CNNEE1	CNNEE0	0000
04B0	CNFE	31:16	_	-	—	_	_	_	—	—	_	-	_	-	_	-	_	-	0000
0400		15:0	_		—	—	_		CNFE9	CNFE8	CNFE7	CNFE6	CNFE5	CNFE4	CNFE3	CNFE2	CNFE1	CNFE0	0000
04C0	SRCON0E	31:16	—	_	—	—	—	_	—	—	—	_	—	—	_	_	—		0000
0400	SILCONUL	15:0	_		—	—	—	_	—	—	-		—	—	SR0E3	SR0E2	SR0E1	SR0E0	0000
04D0	SRCON1E	31:16	—	_	—	—	—	_	—	—	—	_	—	—	—	_	—	—	0000
0400	SILCONTE	15:0	_	-	—	_	_	_	-	—	_	-	_	—	SR1E3	SR1E2	SR1E1	SR1E0	0000

Legend:

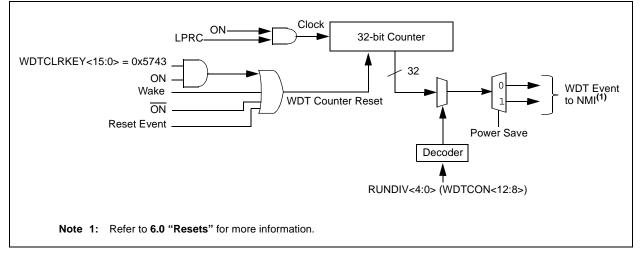
x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 14-1: TIMER2 THROUGH TIMER9 REGISTER MAP (CONTINUED)

ess										В	its								
Virtual Address (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	TMR7	31:16	_		—	—	_	_	—	—	—	_	_	_	_	—	—	—	0000
0010		15:0		TMR7<15:0> 0000															
0C20	PR7	31:16	-	_	_	_	_	-	_	_	—		_		_	_	_		0000
0020		15:0								PR7<	:15:0>								FFFF
0500	T8CON	31:16	_	_	—	—	—	_		—	_	_	—	_	—	_		—	0000
UEUU	TOCON	15:0	ON	—	SIDL	-			—	—	TGATE	-	CKPS<2:0	>	T32	—	TCS	-	0000
0E10	TMR8	31:16		_	—	—	_	—	_	—	—	—	—	—	—	—	_	—	0000
UEIU	TIVIRO	15:0								TMR8	<15:0>								0000
0E20	PR8	31:16		_	—	—	_	—	_	—	—	—	—	—	—	—	_	—	0000
UEZU	FRO	15:0								PR8<	:15:0>								FFFF
1000	T9CON	31:16		_	—	—	_	—	_	—	—	—	—	—	—	—	_	—	0000
1000	19001	15:0	ON	_	SIDL	—	_	—	_	—	TGATE	-	FCKPS<2:0	>	—	—	TCS	—	0000
1010	TMR9	31:16		_	—	—	_	—	_	_	—	_	_	_	_	_	_	_	0000
1010	TIVIR9	15:0								TMR9	<15:0>								0000
1020	PR9	31:16	—		—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
1020	PK9	15:0								PR9<	:15:0>								FFFF

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.


16.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). When enabled, the Watchdog Timer (WDT) operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are key features of the WDT module:

- Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 16-1: WATCHDOG TIMER BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	—	_	_	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	-		—			—
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	_		TΣ	CMDTHR<4:	0>	
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_	_		RX	CMDTHR<4:0	> ⁽¹⁾	

REGISTER 20-6: SQI1CMDTHR: SQI COMMAND THRESHOLD REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8 TXCMDTHR<4:0>: Transmit Command Threshold bits

In transmit initiation mode, the SQI module performs a transmit operation when transmit command threshold bytes are present in the TX FIFO. These bits should usually be set to '1' for normal Flash commands, and set to a higher value for page programming. For 16-bit mode, the value should be a multiple of 2.

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RXCMDTHR<4:0>:** Receive Command Threshold bits⁽¹⁾

In receive initiation mode, the SQI module attempts to perform receive operations to fetch the receive command threshold number of bytes in the receive buffer. If space for these bytes is not present in the FIFO, the SQI will not initiate a transfer. For 16-bit mode, the value should be a multiple of 2.

If software performs any reads, thereby reducing the FIFO count, hardware would initiate a receive transfer to make the FIFO count equal to the value in these bits. If software would not like any more words latched into the FIFO, command initiation mode needs to be changed to Idle before any FIFO reads by software.

In the case of Boot/XIP mode, the SQI module will use the System Bus burst size, instead of the receive command threshold value.

Note 1: These bits should only be programmed when a receive is not active (i.e., during Idle mode or a transmit).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	_	_		—			_	_				
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	_		—	_		_	_				
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	—	—	—	—	DMAEIE	PKTCOMPIE	BDDONEIE	CONTHRIE				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	CONEMPTYIE	CONFULLIE	RXTHRIE	RXFULLIE	RXEMPTYIE	TXTHRIE	TXFULLIE	TXEMPTYIE				

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

HS = Hardware Set

W = Writable bit

'1' = Bit is set

REGISTER 20-8: SQI1INTEN: SQI INTERRUPT ENABLE REGISTER

bit 31-12	Unimplemented: Read as '0'
bit 11	DMAEIE: DMA Bus Error Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 10	PKTCOMPIE: DMA Buffer Descriptor Packet Complete Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 9	BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 8	CONTHRIE: Control Buffer Threshold Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 7	CONEMPTYIE: Control Buffer Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 6	CONFULLIE: Control Buffer Full Interrupt Enable bit
	This bit enables an interrupt when the receive FIFO buffer is full.
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 5	RXTHRIE: Receive Buffer Threshold Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 4	RXFULLIE: Receive Buffer Full Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 3	RXEMPTYIE: Receive Buffer Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 2	TXTHRIE: Transmit Threshold Interrupt Enable bit
	1 = Interrupt is enabled
L.1. A	0 = Interrupt is disabled
bit 1	TXFULLIE: Transmit Buffer Full Interrupt Enable bit
	1 = Interrupt is enabled
h :+ 0	0 = Interrupt is disabled
bit 0	TXEMPTYIE: Transmit Buffer Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled

Legend:

R = Readable bit

-n = Value at POR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	BDADDR<31:24>								
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	BDADDR<23:16>								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	BDADDR<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				BDADDF	R<7:0>				

REGISTER 20-16: SQI1BDBASEADD: SQI BUFFER DESCRIPTOR BASE ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BDADDR<31:0>: DMA Base Address bits

These bits contain the physical address of the root buffer descriptor. This register should be updated only when the DMA is idle.

REGISTER 20-17: SQI1BDSTAT: SQI BUFFER DESCRIPTOR STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	R-x	R-x	R-x	R-x	R-x	R-x	
23:16	—	—		BDSTAT	DMASTART	DMAACTV			
45.0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
15:8	BDCON<15:8>								
7:0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
				BDCO	N<7:0>				

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21-18 BDSTATE<3:0>: DMA Buffer Descriptor Processor State Status bits

- These bits return the current state of the buffer descriptor processor:
- 5 = Fetched buffer descriptor is disabled
- 4 = Descriptor is done
- 3 = Data phase
- 2 = Buffer descriptor is loading
- 1 = Descriptor fetch request is pending
- 0 = Idle
- bit 17 DMASTART: DMA Buffer Descriptor Processor Start Status bit
 - 1 = DMA has started
 - 0 = DMA has not started
- bit 16 DMAACTV: DMA Buffer Descriptor Processor Active Status bit
 - 1 = Buffer Descriptor Processor is active
 - 0 = Buffer Descriptor Processor is idle
- bit 15-0 **BDCON<15:0>:** DMA Buffer Descriptor Control Word bits These bits contain the current buffer descriptor control word.

REGISTER 26-5: CESTAT: CRYPTO ENGINE STATUS REGISTER (CONTINUED)

bit 16 ACTIVE: Buffer Descriptor Processor Status bit

- 1 = BDP is active
- 0 = BDP is idle
- bit 15-0 BDCTRL<15:0>: Descriptor Control Word Status bits

These bits contain the Control Word for the current Buffer Descriptor.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	_			TRGSRC7<4:0>				
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_			TRGSRC6<4:0>				
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_			TRGSRC5<4:0>				
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
					Т	RGSRC4<4:0)>	

REGISTER 28-18: ADCTRG2: ADC TRIGGER SOURCE 2 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 TRGSRC7<4:0>: Trigger Source for Conversion of Analog Input AN7 Select bits

```
11111 = Reserved

.

.

01101 = Reserved

01100 = Comparator 2 (COUT)

01011 = Comparator 1 (COUT)

01010 = OCMP5

01001 = OCMP3

01000 = OCMP1

00111 = TMR5 match

00101 = TMR3 match

00101 = TMR1 match

00101 = TMR1 match

00101 = STRIG

00011 = Global level software trigger (GLSWTRG)

00001 = Global software edge Trigger (GSWTRG)

00000 = No Trigger
```

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSS*x* registers.

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TRGSRC6<4:0>:** Trigger Source for Conversion of Analog Input AN6 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC5<4:0>:** Trigger Source for Conversion of Analog Input AN5 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC4<4:0>:** Trigger Source for Conversion of Analog Input AN4 Select bits See bits 28-24 for bit value definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	FLTEN3	MSEL3<1:0>		FSEL3<4:0>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN2	MSEL2<1:0>		FSEL2<4:0>				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	FLTEN1	MSEL1<1:0>		FSEL1<4:0>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN0	MSEL0<1:0>		FSEL0<4:0>				

REGISTER 29-10: CIFLTCON0: CAN FILTER CONTROL REGISTER 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN3: Filter 3 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL3<1:0>: Filter 3 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL3<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN2: Filter 2 Enable bit
DIL 23	FLIENZ: Filler 2 Enable bit
DIL 23	1 = Filter is enabled
DIL 23	
bit 22-21	1 = Filter is enabled
	 1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected
	 1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected
	 1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected</pre>
	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 •</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31</pre>

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0								
31:24 CiFIFOBA<31:24>										
00.40	R/W-0	R/W-0								
23:16	CiFIFOBA<23:16>									
15:8	R/W-0	R/W-0								
15:8	CiFIFOBA<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0 ⁽¹⁾	R-0 ⁽¹⁾		
7:0		CiFIFOBA<7:0>								

REGISTER 29-19: CIFIFOBA: CAN MESSAGE BUFFER BASE ADDRESS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CiFIFOBA<31:0>: CAN FIFO Base Address bits

These bits define the base address of all message buffers. Individual message buffers are located based on the size of the previous message buffers. This address is a physical address. Note that bits <1:0> are read-only and read '0', forcing the messages to be 32-bit word-aligned in device RAM.

Note 1: This bit is unimplemented and will always read '0', which forces word-alignment of messages.

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

REGISTER 30-19: ETHMCOLFRM: ETHERNET CONTROLLER MULTIPLE COLLISION FRAMES STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	_	_	_	—	_	—	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	_	_	—	_	—	
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
10.0	MCOLFRMCNT<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	MCOLFRMCNT<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **MCOLFRMCNT<15:0>:** Multiple Collision Frame Count bits Increment count for frames that were successfully transmitted after there was more than one collision.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol Characteristics		Min.	Typical	Max.	Units	Conditions
Operating Voltage							
DC10	Vdd	Supply Voltage (Note 1)	2.1		3.6	V	—
DC12	Vdr	RAM Data Retention Voltage (Note 2)	2.0	—		V	_
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal (Note 3)	1.75	—	_	V	_
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.000011	—	1.1	V/µs	300 ms to 3 µs @ 3.3V

TABLE 37-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: This is the limit to which VDD must be lowered to ensure Power-on Reset.

TABLE 37-5: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Typical	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low (Note 2)	1.88	_	2.02	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

B.4

System Bus

two key differences listed in Table B-3.

The system bus on PIC32MZ EF devices is similar to

the system bus on PIC32MZ EC devices. There are

B.3 CPU

The CPU in PIC32MZ EC devices is the microAptiv[™] MPU architecture. The CPU in the PIC32MZ EF devices is the Series 5 Warrior M-Class M5150 MPU architecture. Most PIC32MZ EF M-Class core features are identical to the microAptiv[™] core in PIC32MZ EC devices. The main differences are that in PIC32MZ EF devices, a floating-point unit (FPU) is included for improved math performance, and PC Sampling for performance measurement.

TABLE B-3: SYSTEM BUS DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature			
Permission Groups during NMI				
On PIC32MZ EC devices, the permission group in which the CPU is part of is lost during NMI handling, and must be manually restored.	On PIC32MZ EF devices, the prior permission group is preserved, and is restored when the CPU returns from the NMI handler.			
DMA	Access			
The DMA can access the peripheral registers on Peripheral Bus 1.	On PIC32MZ EF devices, the DMA no longer has access to registers on Peripheral Bus 1. Refer to Table 4-4 for details on which peripherals are now excluded.			

B.5 Flash Controller

The Flash controller on PIC32MZ EF devices adds the ability both to control boot Flash aliasing, and for locking the current swap settings. Table B-4 lists theses differences.

TABLE B-4:FLASH CONTROLLER DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature				
Boot Flash Aliasing					
On PIC32MZ EC devices, Boot Flash aliasing is done through the DEVSEQ0 register, but no further changes are possible without rebooting the processor.	On PIC32MZ EF devices, the initial Boot Flash aliasing is determined by the DEVSEQ3 register, but the BFSWAP bit (NVMCON<6>) reflects the state of the aliasing, and can be modified to change it during run-time.				
	 BFSWAP (NVMCON<6>) 1 = Boot Flash Bank 2 is mapped to the lower boot alias, and Boot Flash bank 1 is mapped to the upper boot alias 0 = Boot Flash Bank 1 is mapped to the lower boot alias, and Boot Flash Bank 2 is mapped to the upper boot alias 				
PFM and BFM Swap Locking					
On PIC32MZ EC devices, the swapping of PFM is always available.	On PIC32MZ EF devices, a new control, SWAPLOCK<1:0> (NVMCON2<7:6>) allows the locking of PFSWAP and BFSWAP bits, and can restrict any further changes.				
	 SWAPLOCK<1:0> (NVMCON2<7:6>) 11 = PFSWAP and BFSWAP are not writable and SWAPLOCK is not writable 10 = PFSWAP and BFSWAP are not writable and SWAPLOCK is writable 01 = PFSWAP and BFSWAP are not writable and SWAPLOCK is writable 00 = PFSWAP and BFSWAP are writable and SWAPLOCK is writable 				