

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efh100-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The FPU implements a high-performance 7-stage pipeline:

- Decode, register read and unpack (FR stage)
- Multiply tree, double pumped for double (M1 stage)
- Multiply complete (M2 stage)
- Addition first step (A1 stage)
- Addition second and final step (A2 stage)
- Packing to IEEE format (FP stage)
- Register writeback (FW stage)

The FPU implements a bypass mechanism that allows the result of an operation to be forwarded directly to the instruction that needs it without having to write the result to the FPU register and then read it back.

Table 3-5 lists the Coprocessor 1 Registers for the FPU.

Register Number	Register Name	Function
0	FIR	Floating Point implementation register. Contains information that identifies the FPU.
25	FCCR	Floating Point condition codes register.
26	FEXR	Floating Point exceptions register.
28	FENR	Floating Point enables register.
31	FCSR	Floating Point Control and Status register.

TABLE 3-5: FPU (CP1) REGISTERS

3.2 Power Management

The processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during Idle periods.

3.2.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see **Section 33.0** "**Power-Saving Features**".

3.2.2 LOCAL CLOCK GATING

The majority of the power consumed by the processor core is in the clock tree and clocking registers. The PIC32MZ family makes extensive use of local gatedclocks to reduce this dynamic power consumption.

3.3 L1 Instruction and Data Caches

3.3.1 INSTRUCTION CACHE (I-CACHE)

The I-Cache is an on-core memory block of 16 Kbytes. Because the I-Cache is virtually indexed, the virtual-tophysical address translation occurs in parallel with the cache access rather than having to wait for the physical address translation. The tag holds 22 bits of physical address, a valid bit, and a lock bit. The LRU replacement bits are stored in a separate array.

The I-Cache block also contains and manages the instruction line fill buffer. Besides accumulating data to be written to the cache, instruction fetches that reference data in the line fill buffer are serviced either by a bypass of that data, or data coming from the external interface. The I-Cache control logic controls the bypass function.

The processor core supports I-Cache locking. Cache locking allows critical code or data segments to be locked into the cache on a per-line basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache locking function is always available on all I-Cache entries. Entries can then be marked as locked or unlocked on a per entry basis using the CACHE instruction.

3.3.2 DATA CACHE (D-CACHE)

The D-Cache is an on-core memory block of 4 Kbytes. This virtually indexed, physically tagged cache is protected. Because the D-Cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access. The tag holds 22 bits of physical address, a valid bit, and a lock bit. There is an additional array holding dirty bits and LRU replacement algorithm bits for each set of the cache.

In addition to I-Cache locking, the processor core also supports a D-Cache locking mechanism identical to the I-Cache. Critical data segments are locked into the cache on a per-line basis. The locked contents can be updated on a store hit, but cannot be selected for replacement on a cache miss.

The D-Cache locking function is always available on all D-Cache entries. Entries can then be marked as locked or unlocked on a per-entry basis using the CACHE instruction.

3.3.3 ATTRIBUTES

The processor core I-Cache and D-Cache attributes are listed in the Configuration registers (see Register 3-1 through Register 3-4).

The System Bus arbitration scheme implements a nonprogrammable, Least Recently Serviced (LRS) priority, which provides Quality Of Service (QOS) for most initiators. However, some initiators can use Fixed High Priority (HIGH) arbitration to guarantee their access to data.

The arbitration scheme for the available initiators is shown in Table 4-5.

Name	ID	QOS
CPU	1	LRS ⁽¹⁾
CPU	2	HIGH ^(1,2)
DMA Read	3	LRS ⁽¹⁾
DMA Read	4	HIGH ^(1,2)
DMA Write	5	LRS ⁽¹⁾
DMA Write	6	HIGH ^(1,2)
USB	7	LRS
Ethernet Read	8	LRS
Ethernet Write	9	LRS
CAN1	10	LRS
CAN2	11	LRS
SQI1	12	LRS
Flash Controller	13	HIGH ⁽²⁾
Crypto	14	LRS

TABLE 4-5:INITIATOR ID AND QOS

- Note 1: When accessing SRAM, the DMAPRI bit (CFGCON<25>) and the CPUPRI bit (CFGCON<24>) provide arbitration control for the DMA and CPU (when servicing an interrupt (i.e., EXL = 1)), respectively, by selecting the use of LRS or HIGH When using HIGH, the DMA and CPU get arbitration preference over all initiators using LRS.
 - 2: Using HIGH arbitration can have serious negative effects on other initiators. Therefore, it is recommended to not enable this type of arbitration for an initiator that uses significant system bandwidth. HIGH arbitration is intended to be used for low bandwidth applications that require low latency, such as LCC graphics applications.

4.3 Permission Access and System Bus Registers

The System Bus on PIC32MZ EF family of microcontrollers provides access control capabilities for the transaction initiators on the System Bus.

The System Bus divides the entire memory space into fourteen target regions and permits access to each target by initiators via permission groups. Four Permission Groups (0 through 3) can be assigned to each initiator. Each permission group is independent of the others and can have exclusive or shared access to a region.

Using the CFGPG register (see Register 34-10 in **Section 34.0 "Special Features"**), Boot firmware can assign a permission group to each initiator, which can make requests on the System Bus.

The available targets and their regions, as well as the associated control registers to assign protection, are described and listed in Table 4-6.

Register 4-2 through Register 4-10 are used for setting and controlling access permission groups and regions.

To change these registers, they must be unlocked in hardware. The register lock is controlled by the PGLOCK Configuration bit (CFGCON<11>). Setting PGLOCK prevents writes to the control registers; clearing PGLOCK allows writes.

To set or clear the PGLOCK bit, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** in the *"PIC32 Family Reference Manual"* for details.

REGISTER 5-1: NVMCON: FLASH PROGRAMMING CONTROL REGISTER (CONTINUED)

bit 6 **BFSWAP:** Boot Flash Bank Alias Swap Control bit

This bit is only writable when WREN = 0 and the unlock sequence has been performed.

- 1 = Boot Flash Bank 2 is mapped to the lower boot alias and boot Flash Bank 1 is mapped to the upper boot alias
- 0 = Boot Flash Bank 1 is mapped to the lower boot alias and boot Flash Bank 2 is mapped to the upper boot alias
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **NVMOP<3:0>:** NVM Operation bits

These bits are only writable when WREN = 0.

1111 = Reserved

1000 = Reserved

- 0111 = Program erase operation: erase all of program Flash memory (all pages must be unprotected, PWP<23:0> = 0x000000)
- 0110 = Upper program Flash memory erase operation: erases only the upper mapped region of program Flash (all pages in that region must be unprotected)
- 0101 = Lower program Flash memory erase operation: erases only the lower mapped region of program Flash (all pages in that region must be unprotected)
- 0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
- 0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected
- 0010 = Quad Word (128-bit) program operation: programs the 128-bit Flash word selected by NVMADDR, if it is not write-protected
- 0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected⁽²⁾ 0000 = No operation
- Note 1: These bits are only reset by a Power-on Reset (POR) and are not affected by other reset sources.
 - 2: This operation results in a "no operation" (NOP) when the Dynamic Flash ECC Configuration bits = 00 (FECCCON<1:0> (DVCFG0<9:8>)), which enables ECC at all times. For all other FECCCON<1:0> bit settings, this command will execute, but will not write the ECC bits for the word and can cause DED errors if dynamic Flash ECC is enabled (FECCCON<1:0> = 01). Refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) for information regarding ECC and Flash programming.

Reset Control Registers 6.1

TABLE 6-1: RESETS REGISTER MAP

sse				Bits															
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1240	PCON	31:16	_	-	—	—	BCFGERR	BCFGFAIL	-	_	—	—	—	—	—	—	—	—	0x00
1240	RCON	15:0	—	_	—	—	_	-	CMR	—	EXTR	SWR	DMTO	WDTO	SLEEP	IDLE	BOR	POR	0003
1250	DOWDOT	31:16	—	_	—	—	_	-	_	—	-	—		-	-	_	-	—	0000
1250	ROWROI	15:0	—	—	—	—	—	-	—	_	_	—	-	_	_	_	_	SWRST	0000
1260		31:16	—	_	—	—	_	-	DMTO	WDTO	SWNMI	—		-	GNMI	_	CF	WDTS	0000
1200	RINIVICON	15:0 NMICNT<15:0>									0000								
1270		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1270	FWRCON	15:0		_	_	_	_	_	_	_	_	—	_		_		_	VREGS	0000

Legend: Note 1:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

TABLE 7-3: **INTERRUPT REGISTER MAP (CONTINUED)**

ress)		e		Bits																	
Virtual Add (BF81_#	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset		
0050	10000	31:16	_	_	-		CRPTIP<2:0>	.(7)	CRPTIS	<1:0> ⁽⁷⁾	_	_	_		SBIP<2:0>	•	SBIS<	:1:0>	0000		
02E0	IPC26	15:0	_	_	_		CFDCIP<2:0	>	CFDCI	S<1:0>	—	_	-		CPCIP<2:0	>	CPCIS	<1:0>	0000		
0050	10007	31:16	_	_	_		SPI1TXIP<2:	0>	SPI1TX	IS<1:0>	_	_	-	:	SPI1RXIP<2	:0>	SPI1RX	S<1:0>	0000		
02F0	IPC27	15:0	—		_		SPI1EIP<2:0	>	SPI1EI	S<1:0>	_	_	—	_	—		_	—	0000		
0200		31:16	—		_		I2C1BIP<2:0	>	I2C1BI	S<1:0>	_	_	—		U1TXIP<2:0)>	U1TXIS	S<1:0>	0000		
0300	IPC20	15:0	_	_	_		U1RXIP<2:0	>	U1RXI	S<1:0>	_	_	_		U1EIP<2:0	>	U1EIS	<1:0>	0000		
0210		31:16	—	—	—		CNBIP<2:0:	>	CNBIS	S<1:0>	—	—	-		CNAIP<2:0>	(2)	CNAIS<	:1:0> (2)	0000		
0310	IPC29	15:0	—	_	_		I2C1MIP<2:0)>	I2C1MI	S<1:0>	—	—	—		I2C1SIP<2:0)>	I2C1SIS	6<1:0>	0000		
0220		31:16	—	_	—		CNFIP<2:0>	>	CNFIS	S<1:0>	—	—	—		CNEIP<2:0	>	CNEIS	<1:0>	0000		
0320	IFC30	15:0	—	_	—		CNDIP<2:0:	>	CNDIS	S<1:0>	—	—	—		CNCIP<2:0	>	CNCIS	<1:0>	0000		
0220		31:16	—	_	_	(CNKIP<2:0> ⁽²)	,4,8)	CNKIS<1	:0> ^(2,4,8)	—	—	—	(CNJIP<2:0> ⁽	2,4)	CNJIS<1	:0> (2,4)	0000		
0330	IFC31	15:0	—	_	—		CNHIP<2:0> ⁽²	2,4)	CNHIS<	1:0> (2,4)	—	—	—		CNGIP<2:0	>	CNGIS	<1:0>	0000		
0240	10022	31:16	—	_	-		CMP2IP<2:0>		CMP2IP<2:0>		CMP2I	S<1:0>	—	—	—	CMP1IP<2:0>		CMP1IP<2:0>		S<1:0>	0000
0340	IF 0.32	15:0	—	_	—		PMPEIP<2:0	>	PMPE	S<1:0>	—	—	_		PMPIP<2:0	>	PMPIS	<1:0>	0000		
0250	10022	31:16	—	_	—		DMA1IP<2:0	>	DMA1	S<1:0>	—	—	—		DMA0IP<2:0)>	DMA0IS	6<1:0>	0000		
0350	IF 033	15:0	—	_	-	ι	JSBDMAIP<2	:0>	USBDMA	\IS<1:0>	—	—	—		USBIP<2:0	>	USBIS	<1:0>	0000		
0260		31:16	—	—	—		DMA5IP<2:0	>	DMA5I	S<1:0>	—	—	—		DMA4IP<2:0)>	DMA4IS	S<1:0>	0000		
0300	IF 0.34	15:0	—	_	—		DMA3IP<2:0	>	DMA3	S<1:0>	—	—	—		DMA2IP<2:0)>	DMA2IS	S<1:0>	0000		
0270	10025	31:16	—	_	—		SPI2RXIP<2:	0>	SPI2RX	IS<1:0>	—	—	—		SPI2EIP<2:)>	SPI2EIS	6<1:0>	0000		
0370	IFC35	15:0	—	—	—		DMA7IP<2:0	>	DMA7I	S<1:0>	—	—	—		DMA6IP<2:0)>	DMA6IS	S<1:0>	0000		
0380	IDC 36	31:16	—	_	—		U2TXIP<2:0	>	U2TXI	S<1:0>	—	—	—		U2RXIP<2:0)>	U2RXIS	S<1:0>	0000		
0300	IF 0.50	15:0	—	_	—		U2EIP<2:0>	•	U2EIS	<1:0>	—	—	—	:	SPI2TXIP<2	0>	SPI2TXI	S<1:0>	0000		
0200		31:16	—	—	—		CAN1IP<2:0>	.(3)	CAN1IS	<1:0> ⁽³⁾	—	—	—	l	2C2MIP<2:0	>(2)	I2C2MIS	<1:0> ⁽²⁾	0000		
0390	IFC3/	15:0	—	_	—		I2C2SIP<2:0>	.(2)	I2C2SIS	<1:0> ⁽²⁾	—	—	—	I	2C2BIP<2:0	>(2)	I2C2BIS	<1:0> ⁽²⁾	0000		
0240		31:16	—	_	—		SPI3RXIP<2:	0>	SPI3RX	IS<1:0>	_	—	-		SPI3EIP<2:)>	SPI3EIS	S<1:0>	0000		
USAU	IF C 30	15:0	—	_	-		ETHIP<2:0>	>	ETHIS	i<1:0>	—	—	—	(CAN2IP<2:0:	_{>} (3)	CAN2IS-	<1:0> (3)	0000		
0280		31:16	—	_	_		U3TXIP<2:0	>	U3TXI	S<1:0>	—	—	—		U3RXIP<2:0)>	U3RXIS	S<1:0>	0000		
0380	11 0 39	15:0	—	—	_		U3EIP<2:0>		U3EIS	<1:0>	_	_	—		SPI3TXIP<2	0>	SPI3TXI	S<1:0>	0000		
0300		31:16	—	—	-		SPI4EIP<2:0>		SPI4EI	S<1:0>	—	-	-	- I2C3MIP<2:0>		I2C3MI	S<1:0>	0000			
0300		15:0	_	_	_		I2C3SIP<2:0	>	I2C3SI	S<1:0>		_	_		I2C3BIP<2:0)>	I2C3BIS	S<1:0>	0000		

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

- Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:
- Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

TABLE 8-2: OSCILLATOR CONFIGURATION REGISTER MAP (CONTINUED)

ess										Bits									(1
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets ⁽³
1360		31:16	_		—	—	—		—			_	—		_	_		—	0000
1300	I DI DIV	15:0	ON		—	—	PBDIVRDY		—					F	BDIV<6:0>	`			8800
1370		31:16	_		_	_	_		_			_	_	_	_	_		_	0000
1370	1 BODIV	15:0	ON		-	-	PBDIVRDY		-					F	BDIV<6:0>	>			8801
1200		31:16	Ι	_	_	-	_	_	-	_	_	_	_	_		SYSD	IV<3:0>		0000
1300	SLEWCON	15:0	—	—	—	—	_	S	SLWDIV<2:0	>	—	—	—		—	UPEN	DNEN	BUSY	0204
		31:16	—	_	—	_	_	_	_	_	_	—	_	—	_	_	-	_	0000
13D0	CLKSTAT	15:0	_	_	_	_	_	_	_	_	_	_	LPRC RDY	SOSC RDY	_	POSC RDY	SPLL DIVRDY	FRCRDY	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

TABLE 12-23: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

ŝ			Bits																
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
15B4	RPC13R	31:16	_	—	—	—	—	_	_	—		—	—	—	_	—	_		0000
1001		15:0	_	—	—	—	—	_	_	—	-	—	—	—		RPC13	R<3:0>		0000
15B8	RPC14R	31:16	_	—	—	—	—	_	_	—	—	—	—	—	—	—	—	—	0000
1000		15:0			-	—	—	_	_	—	_	—	—			RPC14	R<3:0>		0000
15C0	RPDOR	31:16	_	—	—	—	—	_	_	—	-	—	—	—	—	—	—	—	0000
1000	NI BOIN	15:0	_	—	—	—	—	_	_	—	—	—	—	—		RPDOF	R<3:0>		0000
15C4	RPD1R	31:16	_	—	—	—	—	_	_	_	_	—	—	—	_	—	—	_	0000
1004	NI DIN	15:0	_	—	—	—	—	_	_	_	_	—	—	—		RPD1F	R<3:0>		0000
1508		31:16	_		—	—	—	_	_		_	—	_		_	—	_	_	0000
1300	IN DZIN	15:0	_	—	—	—	—	—	—	—	—	—	—	—		RPD2F	R<3:0>		0000
1500	RED3R	31:16	_		—	—	—	_	_		_	—	_		_	—	_	_	0000
1300	IN DOIN	15:0	_	—	—	—	—	_	_	—	_	—	—	—		RPD3F	R<3:0>		0000
1500	REDAR	31:16	_		—	—	—	_	_			—	—		_	—	—	—	0000
1300	IXI D4IX	15:0	_	—	—	—	—	_	_	—	—	—	—	—		RPD4F	R<3:0>		0000
15D4		31:16	-	—	—	—	—	-	-	—	-	—	—	—	_	—	_	_	0000
1504	REDSK	15:0		—	_	—	—			_		_	—	—		RPD5F	۲<3:0>		0000
1500		31:16	_	—	—	—	—	_	_	—		—	—	—	_	—	_		0000
1506	KFD0K'	15:0		-	-	-	-			_		-	-	-		RPD6F	२<3:0>		0000
1500	(2) <u>محمم</u> ع	31:16		—	-	_	_						_	—		-			0000
1500	KFD/K ^v	15:0	-	-	—	—	—	-	-	—		-	—	-		RPD7F	۲<3:0>		0000
4554	REDOR	31:16	_	—	-	-	-	—	—	-	_		-	—	_	-	—	_	0000
15E4	RPD9R	15:0	—	—	_	-	-	—	—	-	—		_	—		RPD9F	۲<3:0>		0000
4550		31:16	_	—	_	_	_	—	—	_	_	_	_	—	_	_	—	—	0000
1969	RPDIOR	15:0	_	—	-	-	-	—	—	-	_		-	—		RPD10	R<3:0>		0000
4550		31:16	_	_	—	—	—	_	_		—	—	—	_	_		—	—	0000
ISEC	RPDIIR	15:0	_	-	-	-	-	_	_	_	_	-	-	-		RPD11	R<3:0>		0000
4550	DDD40D(1)	31:16	_	_	—	—	—	_	_		—	—	—	_	_		—	—	0000
15F0	RPD12R ⁽¹⁾	15:0		—	_	—	—			_		_	—	—		RPD12	R<3:0>		0000
4550	DDD4 (D(1)	31:16		_	_	_	_	_	_		_	_	_	_	_		_	_	0000
15F8	RPD14R ⁽¹⁾	15:0		—	_	—	—			_		_	—	—		RPD14	R<3:0>		0000
	DDD (-D(1)	31:16	_	_	_	_	_	_	_	—	_	_	_	_	_	—	—	_	0000
15FC	RPD15R'''	15:0		_	—	_	_			_		_	_	_		RPD15	R<3:0>		0000
1000	DDEAD	31:16	_	—	_	_	_	_	_	_	_	_	_	_	—	—	_	_	0000
160C	KPE3R	15:0	_	—	—	_	_	_	_	—	_	_	—	_		RPE3F	R<3:0>		0000
		31:16	—	—	_	_	_	_	_	—	_	—	_	—	_	—	—	—	0000
1614	KPE5K	15:0	—	—	—	—	—	_	_	—	—	—	—	—		RPE5F	R<3:0>		0000

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is not available on 64-pin devices. Note 1:

This register is not available on 64-pin and 100-pin devices. 2:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	—		
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	—	—	—		T	XINTTHR<4:0)>			
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	_	_	RXINTTHR<4:0>						

REGISTER 20-7: SQI1INTTHR: SQI INTERRUPT THRESHOLD REGISTER

Legend:

- 5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8 **TXINTTHR<4:0>:** Transmit Interrupt Threshold bits A transmit interrupt is set when the transmit FIFO has more space than the set number of bytes. For 16-bit mode, the value should be a multiple of 2.

bit 7-5 Unimplemented: Read as '0'

bit 4-0 RXINTTHR<4:0>: Receive Interrupt Threshold bits

A receive interrupt is set when the receive FIFO count is larger than or equal to the set number of bytes. For 16-bit mode, the value should be multiple of 2.

REGISTER 20-13:	SQI1STAT2: SQI STATUS REGISTER 2
-----------------	----------------------------------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	_	—	_	-	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
23:16	—	—	—	—	—	_	AT<1:0>	
45.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
0.61	—	—	—	_		CONAVA	AIL<4:1>	
7.0	R-0	R-0	R-0	R-0	R-0	U-0	R-0	R-0
7:0	CONAVAIL<0>	SQID3	SQID2	SQID1	SQID0		RXUN	TXOV

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-18 Unimplemented: Read as '0'

- bit 17-16 **CMDSTAT<1:0>:** Current Command Status bits These bits indicate the current command status.
 - 11 = Reserved
 - 10 = Receive
 - 01 = Transmit
 - 00 = Idle
- bit 15-12 Unimplemented: Read as '0'

bit 11-7 **CONAVAIL<4:0>:** Control FIFO Space Available bits These bits indicate the available control Word space. 11111 = 32 bytes are available 11110 = 31 bytes are available

- 00001 = 1 byte is available
- 00000 = No bytes are available

bit 6 SQID3: SQID3 Status bit

- 1 = Data is present on SQID3
- 0 = Data is not present on SQID3 bit 5 **SQID2:** SQID2 Status bit
 - 1 = Data is present on SQID2
 - 0 = Data is not present on SQID2
- bit 4 **SQID1:** SQID1 Status bit
 - 1 = Data is present on SQID1
 - 0 = Data is not present on SQID1
- bit 3 SQID0: SQID0 Status bit
 - 1 = Data is present on SQID0
 - 0 = Data is not present on SQID0
- bit 2 Unimplemented: Read as '0'
- bit 1 RXUN: Receive FIFO Underflow Status bit
 - 1 = Receive FIFO Underflow has occurred
 - 0 = Receive FIFO underflow has not occurred
- bit 0 TXOV: Transmit FIFO Overflow Status bit
 - 1 = Transmit FIFO overflow has occurred
 - 0 = Transmit FIFO overflow has not occurred

23.1 PMP Control Registers

TABLE 23-1: PARALLEL MASTER PORT REGISTER MAP

ess										В	its								
Virtual Addr (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E000	PMCON	31:16	—	—	_	—	—	—			RDSTART			—	—	—	DUALBUF	_	0000
LUUU	TWOON	15:0	ON	—	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
F010	PMMODE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
2010	TIMITOPE	15:0	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>	WAITE	3<1:0>		WAIT	Л<3:0>		WAITE	=<1:0>	0000
		31:16	—	—	_	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
E020	PMADDR	15.0	CS2	CS1							ADDR	<13.0>							0000
			ADDR15	ADDR14								10.02							0000
E030	PMDOUT	31:16	—	—	—	—		—	—		—	—	—		—		—	—	0000
		15:0								DATAOL	JT<15:0>			-					0000
E040	PMDIN	31:16	—	—	—	—	—	—	_	_		_	_	—	—	—	—	—	0000
		15:0								DATAI	N<15:0>								0000
E050	PMAEN	31:16		-	_	_		—	—	—	—	_	_	—			—		0000
		15:0								PTEN	<15:0>			-					0000
E060	PMSTAT	31:16	—	—	—		_	_	_	_	_	_	_	-	_	_	—	—	0000
		15:0	IBF	IBOV	_		IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	0081
		31:16	—	—															0000
E070	PMWADDR	15:0	WCS2	WCS1	_	_		—			_				_			—	0000
			WADDR15	WADDR14							WADDF	R<13:0>		-					0000
		31:16	—	—	—		—	_	_	_	_	_	_	-	—	—	_	_	0000
E080	PMRADDR	15:0	RCS2	RCS1	—	_	—	—	—	—	—	_	_	—	—	—	—	—	0000
			RADDR15	RADDR14							RADDF	R<13:0>							0000
F090	PMRDIN	31:16	31:16	—	—	—	—	-	—	—	—	—	—	—	—	—	-		0000
		15:0	15:0							RI	DATAIN<15	:0>							0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

25.1 RTCC Control Registers

TABLE 25-1: RTCC REGISTER MAP

ess										I	Bits								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	RTCCON	31:16			—	—	_						CAL	<9:0>					0000
0000	RICCON	15:0	ON		SIDL	_	—	RTCCLK	SEL<1:0>	RTCOUT	SEL<1:0>	RTCCLKON	_		RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0010		31:16	_		_	—	—		_	_	-	_	_		—	_	—	—	0000
0010	RICALNI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMAS	K<3:0>					ARP	T<7:0>				0000
0000	DTOTIME	31:16		HR1	0<3:0>			HR01	<3:0>			MIN10	<3:0>			MIN01	<3:0>		XXXX
0020	RICTIVIE	15:0		SEC1	10<3:0>			SEC0	1<3:0>		—	—	_		—	—	—	_	xx00
0020	DTODATE	31:16		YEAR	10<3:0>			YEARC)1<3:0>			MONTH1	0<3:0>			MONTH	01<3:0>		XXXX
0030	RICDATE	15:0		DAY1	10<3:0>			DAY0 ⁻	1<3:0>		—	—	_			WDAY0	1<3:0>		xx00
0040		31:16		HR1	0<3:0>			HR01	<3:0>			MIN10	<3:0>			MIN01	<3:0>		XXXX
0040		15:0		SEC1	10<3:0>			SEC0	1<3:0>		—	—	_		—	—	—	_	xx00
0050		31:16	—	—	—	—	—	—	_	_		MONTH1	0<3:0>			MONTH	01<3:0>		00xx
0050		15:0		DAY1	10<3:0>			DAY0 ⁻	1<3:0>		_	_	_	_		WDAY0	1<3:0>		xx0x

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

REGISTER 28-5: ADCIMCON1: ADC INPUT MODE CONTROL REGISTER 1 (CONTINUED)

bit 4 SIGN2: AN2 Signed Data Mode bit 1 = AN2 is using Signed Data mode 0 = AN2 is using Unsigned Data mode bit 3 DIFF1: AN1 Mode bit 1 = AN1 is using Differential mode 0 = AN1 is using Single-ended mode bit 2 SIGN1: AN1 Signed Data Mode bit 1 = AN1 is using Signed Data mode 0 = AN1 is using Unsigned Data mode bit 1 DIFF0: AN0 Mode bit 1 = AN0 is using Differential mode 0 = AN0 is using Single-ended mode SIGNO: ANO Signed Data Mode bit bit 0 1 = AN0 is using Signed Data mode 0 = AN0 is using Unsigned Data mode

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	—	—	—		Т	RGSRC3<4:()>		
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	—	—	—	TRGSRC2<4:0>					
15.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	—	—	—		Т	RGSRC1<4:0)>		
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	_	_	_		Т	RGSRC0<4:0)>		

REGISTER 28-17: ADCTRG1: ADC TRIGGER SOURCE 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28-24 TRGSRC3<4:0>: Trigger Source for Conversion of Analog Input AN3 Select bits
 - 11111 = Reserved . . 01101 = Reserved 01100 = Comparator 2 (COUT) 01011 = Comparator 1 (COUT) 01010 = OCMP5 01001 = OCMP3 01000 = OCMP1 00111 = TMR5 match 00100 = TMR3 match 00100 = TMR1 match 00100 = INT0 External interrupt 00011 = STRIG 00010 = Global level software trigger (GLSWTRG) 00001 = Global software edge Trigger (GSWTRG) 00000 = No Trigger

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSSx registers.

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TRGSRC2<4:0>:** Trigger Source for Conversion of Analog Input AN2 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC1<4:0>:** Trigger Source for Conversion of Analog Input AN1 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC0<4:0>:** Trigger Source for Conversion of Analog Input AN0 Select bits See bits 28-24 for bit value definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC									
31.24				CVDDAT	A<15:8>							
22.16	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC									
23:16	CVDDATA<7:0>											
15.0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC				
15.6		—			AINID	<5:0>						
7.0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO				

REGISTER 28-20: ADCCMPCON1: ADC DIGITAL COMPARATOR 1 CONTROL REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 CVDDATA<15:0>: CVD Data Status bits

In CVD mode, these bits obtain the CVD differential output data (subtraction of CVD positive and negative measurement), whenever a Digital Comparator interrupt is generated. The value in these bits is compliant with the FRACT bit (ADCCON1<23>) and is always signed.

bit 15-14 Unimplemented: Read as '0'

bit 13-8 AINID<5:0>: Digital Comparator 0 Analog Input Identification (ID) bits

When a digital comparator event occurs (DCMPED = 1), these bits identify the analog input being monitored by Digital Comparator 0.

Note: In normal ADC mode, only analog inputs <31:0> can be processed by the Digital Comparator 0. The Digital Comparator 0 also supports the CVD mode, in which all Class 2 and Class 3 analog inputs may be stored in the AINID<5:0> bits.

111111 = Reserved
•
- 101101 - Reserved
101100 - ANAI is being monitored
101100 - AN43 is being monitored
•
000001 = AN1 is being monitored
000000 = ANO is being monitored
ENDCMP: Digital Comparator 0 Enable bit
1 = Digital Comparator 0 is enabled
0 = Digital Comparator 0 is not enabled, and the DCMPED status bit (ADCCMP0CON<5>) is cleared
DCMPGIEN: Digital Comparator 0 Global Interrupt Enable bit
1 = A Digital Comparator 0 interrupt is generated when the DCMPED status bit (ADCCMP0CON<5>) is set $0 = A$ Digital Comparator 0 interrupt is disabled
DCMPED: Digital Comparator 0 "Output True" Event Status bit
The logical conditions under which the digital comparator gets "True" are defined by the IEBTWN IEHIHI
IEHILO, IELOHI, and IELOLO bits.
Note: This bit is cleared by reading the AINID<5:0> bits or by disabling the Digital Comparator module (by setting ENDCMP to '0').
1 = Digital Comparator 0 output true event has occurred (output of Comparator is '1')
0 = Digital Comparator 0 output is false (output of comparator is '0')
IEBTWN: Between Low/High Digital Comparator 0 Event bit
1 = Generate a digital comparator event when DCMPLO<15:0> \leq DATA<31:0> \leq DCMPHI<15:0>

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31:24		ADCCFG<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16	ADCCFG<23:16>												
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8		ADCCFG<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0		ADCCFG<7:0>											

REGISTER 28-33: ADCxCFG: ADCx CONFIGURATION REGISTER 'x' ('x' = 0 THROUGH 4 AND 7)

Legend:

- J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 ADCCFG<31:0>: ADC Module Configuration Data bits

Prior to enabling the ADC, these registers should be written with the corresponding value stored in DEVADCx in software during ADC initialization.

Note: The bits in this register can only change when the applicable ANEN*x* bit in the ADCANCON register is cleared.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y				
31:24	AN<31:23>											
00.40	R-y	R-y	R-y	R-y	R-y	R-1	R-1	R-1				
23:16	AN<23:16>											
45.0	R-1	R-1	R-1	R-1	R-1	R-1	R-1	R-1				
15:8		AN<15:8>										
7.0	R-1	R-1	R-1	R-1	R-1	R-1	R-1	R-1				
7:0				AN<	7:0>							

REGISTER 28-34: ADCSYSCFG1: ADC SYSTEM CONFIGURATION REGISTER 1

Legend:		y = POR value is determ	ined by the specific device
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 AN<31:0>: ADC Analog Input bits

These bits reflect the system configuration and are updated during boot-up time. By reading these readonly bits, the user application can determine whether or not an analog input in the device is available. AN<31:0>: Reflects the presence or absence of the respective analog input (AN31-AN0).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	—	—
45.0	U-0	U-0	U-0	R-1	R-1	R-y	R-y	R-y
15:8	—	—	—			AN<44:40>		
7.0	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y
7.0				AN<3	9:32>			

REGISTER 28-35: ADCSYSCFG2: ADC SYSTEM CONFIGURATION REGISTER 2

Legend:		y = POR value is determine	ined by the specific device
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-0 AN<44:32>: ADC Analog Input bits

These bits reflect the system configuration and are updated during boot-up time. By reading these readonly bits, the user application can determine whether or not an analog input in the device is available. AN<63:32>: Reflects the presence or absence of the respective analog input (AN63-AN32).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	—	—	—	_	TXNFULLIE	TXHALFIE	TXEMPTYIE
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	—	—	—	RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE
45.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8	—	—	—	—		TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
7:0					RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾

REGISTER 29-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('n' = 0-31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26	TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO not full
	0 = Interrupt disabled for FIFO not full
bit 25	TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full
	0 = Interrupt disabled for FIFO half full
bit 24	TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit
	1 = Interrupt enabled for FIFO empty
	0 = Interrupt disabled for FIFO empty
bit 23-20	Unimplemented: Read as '0'
bit 19	RXOVFLIE: Overflow Interrupt Enable bit
	1 = Interrupt enabled for overflow event
	0 = Interrupt disabled for overflow event
bit 18	RXFULLIE: Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO full
L:1 47	
DIT 17	RXHALFIE: FIFO Haif Full Interrupt Enable bit
	\perp = Interrupt enabled for FIFO half full
hit 16	BYNEMBTYIE: Empty Interrupt Enable bit
	1 - Interrupt enabled for EIEO not empty
	1 = Interrupt disabled for FIFO not empty
bit 15-11	Unimplemented: Read as '0'
bit 10	TYNELIL LIE: Transmit EIEO Not Full Interrupt Elag hit ⁽¹⁾
DICTO	TXEN = 1: (EIEO configured as a Transmit Ruffer)
	1 = FIFO is not full
	0 = FIFO is full
	TXEN = 0 ; (FIFO configured as a Receive Buffer)
	Unused, reads '0'

Note 1: This bit is read-only and reflects the status of the FIFO.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-x	R/P	r-1	r-1	r-1	r-1	r-1	r-1
31:24	—	EJTAGBEN	—	—	—	—	_	—
00.40	r-1	r-1	R/P	R/P	R/P	R/P	R/P	R/P
23:16	—	—	POSCBOOST	POSCG	AIN<1:0>	SOSCBOOST SOSCGAIN<1		AIN<1:0>
45.0	R/P	R/P	R/P	R/P	r-y	R/P	R/P	R/P
15:8	SMCLR	DBGPER<2:0>			—	FSLEEP	FECCC	ON<1:0>
7.0	r-1	R/P	R/P	R/P	R/P	R/P	R/P	R/P
7:0	—	BOOTISA	TRCEN	ICESE	L<1:0>	JTAGEN ⁽¹⁾	DEBU	G<1:0>

REGISTER 34-3: DEVCFG0/ADEVCFG0: DEVICE CONFIGURATION WORD 0

Legend:	r = Reserved bit	y = Value set from Configuration bits on POR	
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Reserved: The reset value of this bit is the same as DEVSIGN0<31>.

- bit 30 EJTAGBEN: EJTAG Boot Enable bit
 - 1 = Normal EJTAG functionality
 - 0 = Reduced EJTAG functionality
- bit 29-22 Reserved: Write as '1'
- bit 21 POSCBOOST: Primary Oscillator Boost Kick Start Enable bit
 - 1 = Boost the kick start of the oscillator
 - 0 = Normal start of the oscillator
- bit 20-19 POSCGAIN<1:0>: Primary Oscillator Gain Control bits
 - 11 = Gain Level 3 (highest)
 - 10 = Gain Level 2
 - 01 = Gain Level 1
 - 00 = Gain Level 0 (lowest)
- bit 18 SOSCBOOST: Secondary Oscillator Boost Kick Start Enable bit
 - 1 = Boost the kick start of the oscillator
 - 0 = Normal start of the oscillator
- bit 17-16 SOSCGAIN<1:0>: Secondary Oscillator Gain Control bits
 - 11 = Gain Level 3 (highest)
 - 10 = Gain Level 2
 - 01 = Gain Level 1
- 00 = Gain Level 0 (lowest)
- bit 15 SMCLR: Soft Master Clear Enable bit

$1 = \overline{MCLR}$ pin generates a normal system Reset

- 0 = MCLR pin generates a POR Reset
- bit 14-12 DBGPER<2:0>: Debug Mode CPU Access Permission bits
 - 1xx = Allow CPU access to Permission Group 2 permission regions
 - x1x = Allow CPU access to Permission Group 1 permission regions
 - xx1 = Allow CPU access to Permission Group 0 permission regions
 - 0xx = Deny CPU access to Permission Group 2 permission regions
 - ${\rm x}0{\rm x}$ = Deny CPU access to Permission Group 1 permission regions
 - xx0 = Deny CPU access to Permission Group 0 permission regions

When the CPU is in Debug mode and the CPU1PG<1:0> bits (CFGPG<1:0>) are set to a denied permission group as defined by DBGPER<2:0>, the transaction request is assigned Group 3 permissions.

- bit 11 **Reserved:** This bit is controlled by debugger/emulator development tools and should not be modified by the user.
- Note 1: This bit sets the value of the JTAGEN bit in the CFGCON register.

DC CHARACTERISTICS	Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Required Flash Wait States ⁽¹⁾	SYSCLK	Units	Conditions		
With ECC:					
0 Wait states	$0 < SYSCLK \le 60$				
1 Wait state	60 < SYSCLK ≤ 120	MHz	—		
2 Wait states	120 < SYSCLK ≤ 200				
4 Wait states	$200 < SYSCLK \le 252$				
Without ECC:					
0 Wait states	$0 < SYSCLK \le 74$				
1 Wait state	74 < SYSCLK ≤ 140	MHz	—		
2 Wait states	$140 < SYSCLK \le 200$				
4 Wait states	$200 < SYSCLK \le 252$				

TABLE 39-4: DC CHARACTERISTICS: PROGRAM FLASH MEMORY WAIT STATES

Note 1: To use Wait states, the Prefetch module must be enabled (PREFEN<1:0> ≠ 00) and the PFMWS<2:0> bits must be written with the desired Wait state value.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Brand — Architecture Flash Memory Size Family Key Feature Set Pin Count Additional Feature S Tape and Reel Flag (Speed Temperature Range Package Pattern	PIC32 MZ XXXX EF E XXX A T - 250 I/PT - XXX PIC32 MZ XXXX EF E XXX A T - 250 I/PT - XXX PIC32MZ2048EFH144-I/PT: Embedded Connectivity PIC32, MIPS32 [®] M-Class MPU core, 2048 KB program memory, 144-pin, with Floating Point Unit, Industrial temperature, TQFP package.
Flash Memory Fan	nily
Architecture	MZ = MIPS32 [®] M-Class MPU Core
Flash Memory Size	0512 = 512 KB 1024 = 1024 KB 2048 = 2048 KB
Family	EF = Embedded Connectivity Microcontroller Family with Floating Point Unit
Key Feature	 E = PIC32 EF Family Features (no CAN, no Crypto) F = PIC32 EF Family Features (CAN, no Crypto) G = PIC32 EF Family Features (no CAN, no Crypto) H = PIC32 EF Family Features (CAN, no Crypto) K = PIC32 EF Family Features (Crypto and CAN) M = PIC32 EF Family Features (Crypto and CAN)
Pin Count	064 = 64-pin 100 = 100-pin 124 = 124-pin 144 = 144-pin
Speed	Blank = Up to 200 MHz 250 = Up to 252 MHz
Temperature Range	$ \begin{array}{l} = -40^{\circ}\text{C to } +85^{\circ}\text{C (Industrial)} \\ \text{E} &= -40^{\circ}\text{C to } +125^{\circ}\text{C (Extended)} \end{array} $
Package	MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flatpack) PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack) TL = 124-Lead (9x9x0.9 mm) VTLA (Very Thin Leadless Array) PH = 144-Lead (16x16x1 mm) TQFP (Thin Quad Flatpack) PL = 144-Lead (20x20x1.40 mm) LQFP (Low Profile Quad Flatpack)
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample