

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 [®] M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TQFP
Supplier Device Package	144-TQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efh144-e-ph

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Pin Tables

TABLE 2:	PIN NAMES FOR 64-PIN DEVICES

64	PIN QFN ⁽⁴⁾ AND TQFP (TOP VIEW)		
Pi Pi Pi Pi	C32MZ0512EF(E/F/K)064 C32MZ1024EF(G/H/M)064 C32MZ1024EF(E/F/K)064 C32MZ2048EF(G/H/M)064	QFN ⁽⁴	1 ⁶⁴ 1) TQFP
Pin #	Full Pin Name	Pin #	Full Pin Name
1	AN17/ETXEN/RPE5/PMD5/RE5	33	VBUS
2	AN16/ETXD0/PMD6/RE6	34	VUSB3V3
3	AN15/ETXD1/PMD7/RE7	35	Vss
4	AN14/C1IND/RPG6/SCK2/PMA5/RG6	36	D-
5	AN13/C1INC/RPG7/SDA4/PMA4/RG7	37	D+
6	AN12/C2IND/RPG8/SCL4/PMA3/RG8	38	RPF3/USBID/RF3
7	Vss	39	Vdd
8	Vdd	40	Vss
9	MCLR	41	RPF4/SDA5/PMA9/RF4
10	AN11/C2INC/RPG9/PMA2/RG9	42	RPF5/SCL5/PMA8/RF5
11	AN45/C1INA/RPB5/RB5	43	AERXD0/ETXD2/RPD9/SDA1/PMCS2/PMA15/RD9
12	AN4/C1INB/RB4	44	ECOL/RPD10/SCL1/SCK4/RD10
13	AN3/C2INA/RPB3/RB3	45	AERXCLK/AEREFCLK/ECRS/RPD11/PMCS1/PMA14/RD11
14	AN2/C2INB/RPB2/RB2	46	AERXD1/ETXD3/RPD0/RTCC/INT0/RD0
15	PGEC1/VREF-/CVREF-/AN1/RPB1/RB1	47	SOSCI/RPC13/RC13
16	PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0	48	SOSCO/RPC14/T1CK/RC14
17	PGEC2/AN46/RPB6/RB6	49	EMDIO/AEMDIO/RPD1/SCK1/RD1
18	PGED2/AN47/RPB7/RB7	50	ETXERR/AETXEN/RPD2/SDA3/RD2
19	AVdd	51	AERXERR/ETXCLK/RPD3/SCL3/RD3
20	AVss	52	SQICS0/RPD4/PMWR/RD4
21	AN48/RPB8/PMA10/RB8	53	SQICS1/RPD5/PMRD/RD5
22	AN49/RPB9/PMA7/RB9	54	Vdd
23	TMS/CVREFOUT/AN5/RPB10/PMA13/RB10	55	Vss
24	TDO/AN6/PMA12/RB11	56	ERXD3/AETXD1/RPF0/RF0
25	Vss	57	TRCLK/SQICLK/ERXD2/AETXD0/RPF1/RF1
26	VDD	58	TRD0/SQID0/ERXD1/PMD0/RE0
27	TCK/AN7/PMA11/RB12	59	Vss
28	TDI/AN8/RB13	60	Vdd
29	AN9/RPB14/SCK3/PMA1/RB14	61	TRD1/SQID1/ERXD0/PMD1/RE1
30	AN10/EMDC/AEMDC/RPB15/OCFB/PMA0/RB15	62	TRD2/SQID2/ERXDV/ECRSDV/AECRSDV/PMD2/RE2
31	OSC1/CLKI/RC12	63	TRD3/SQID3/ERXCLK/EREFCLK/RPE3/PMD3/RE3
32	OSC2/CLKO/RC15	64	AN18/ERXERR/PMD4/RE4

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

٦

124	-PIN VTLA (BOTTOM VIEW) A17	7	E	A34 B13 B29
	PIC32MZ0512EF(E/F/K)124 PIC32MZ1024EF(G/H/M)124 PIC32MZ1024EF(E/F/K)124 PIC32MZ2048EF(G/H/M)124	Indiaa	A1	B1 B41 B56 A51 A68
Package Pin #	Full Pin Name		Package Pin #	Full Pin Name
B1	EBIA5/AN34/PMA5/RA5	1	B29	Vss
B2	EBID6/AN16/PMD6/RE6		B30	D+
B3	EBIA6/AN22/RPC1/PMA6/RC1		B31	RPF2/SDA3/RF2
B4	AN36/ETXD1/RJ9		B32	ERXD0/RH8
B5	EBIWE/AN20/RPC3/PMWR/RC3		B33	ECOL/RH10
B6	AN14/C1IND/RPG6/SCK2/RG6		B34	EBIRDY1/SDA2/RA3
B7	EBIA3/AN12/C2IND/RPG8/SCL4/PMA3/RG8	1	B35	Vdd
B8	Vdd		B36	EBIA9/RPF4/SDA5/PMA9/RF4
B9	EBIA2/AN11/C2INC/RPG9/PMA2/RG9		B37	RPA14/SCL1/RA14
B10	AN25/RPE8/RE8	1	B38	EBIA15/RPD9/PMCS2/PMA15/RD9
B11	AN45/C1INA/RPB5/RB5	1	B39	EMDC/RPD11/RD11
B12	AN37/ERXCLK/EREFCLK/RJ11		B40	ERXDV/ECRSDV/RH13
B13	Vss		B41	SOSCI/RPC13/RC13
B14	PGEC2/AN46/RPB6/RB6		B42	EBID14/RPD2/PMD14/RD2
B15	Vref-/CVref-/AN27/RA9		B43	EBID12/RPD12/PMD12/RD12
B16	AVdd		B44	ETXERR/RJ0
B17	AN38/ETXD2/RH0		B45	EBIRDY3/RJ2
B18	EBIA10/AN48/RPB8/PMA10/RB8		B46	SQICS1/RPD5/RD5
B19	EBIA13/CVREFOUT/AN5/RPB10/PMA13/RB10	_	B47	ETXCLK/RPD7/RD7
B20	Vss		B48	Vss
B21	TCK/EBIA19/AN29/RA1		B49	EBID10/RPF1/PMD10/RF1
B22	TDO/EBIA17/AN31/RPF12/RF12		B50	EBID8/RPG0/PMD8/RG0
B23	AN8/RB13		B51	TRD3/SQID3/RA7
B24	EBIA0/AN10/RPB15/OCFB/PMA0/RB15		B52	EBID0/PMD0/RE0
B25	Vdd		B53	Vdd
B26	AN41/ERXD1/RH5		B54	TRD2/SQID2/RG14
B27	AN32/AETXD0/RPD14/RD14		B55	TRD0/SQID0/RG13
B28	OSC1/CLKI/RC12		B56	EBID3/RPE3/PMD3/RE3

TABLE 4: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Solect (PPS)" for restrictions

Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RJx) can be used as a change notification pin (CNAx-CNJx). See Section 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

TABLE 4-4: INITIATORS TO TARGETS ACCESS ASSOCIATION

Toract	Initiator ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14
#	Name	CF	CPU		DMA Read		DMA Write		Ethernet Read	Ethernet Write	CAN1	CAN2	SQI1	Flash Controller	Crypto
1	Flash Memory: Program Flash Boot Flash Prefetch Module	>	<		х			x	х		х	х			x
2	RAM Bank 1 Memory	>	<		Х	2	X	Х	Х	Х	Х	Х	Х	Х	Х
3	RAM Bank 2 Memory	>	<		Х	2	х	Х	Х	Х	Х	Х	Х	Х	Х
4	External Memory via EBI and EBI Module	X X		2	х	Х	Х	Х	Х	Х	Х		Х		
5	Peripheral Set 1: System Control, Flash Control, DMT, RTCC, CVR, PPS Input, PPS Output, Interrupts, DMA, WDT	>	<												
6	Peripheral Set 2: SPI1-SPI6 I2C1-I2C5 UART1-UART6 PMP	>	K		x	;	x								
7	Peripheral Set 3: Timer1-Timer9 IC1-IC9 OC1-OC9 ADC Comparator 1 Comparator 2	>	K		x	;	x								
8	Peripheral Set 4: PORTA-PORTK	>	K		х	2	x								
9	Peripheral Set 5: CAN1 CAN2 Ethernet Controller	>	<												
10	Peripheral Set 6: USB	>	<												
11	External Memory via SQI1 and SQI1 Module	>	<												
12	Peripheral Set 7: Crypto Engine	>	<												
13	Peripheral Set 8: RNG Module	>	<												

The System Bus arbitration scheme implements a nonprogrammable, Least Recently Serviced (LRS) priority, which provides Quality Of Service (QOS) for most initiators. However, some initiators can use Fixed High Priority (HIGH) arbitration to guarantee their access to data.

The arbitration scheme for the available initiators is shown in Table 4-5.

Name	ID	QOS
CPU	1	LRS ⁽¹⁾
CPU	2	HIGH ^(1,2)
DMA Read	3	LRS ⁽¹⁾
DMA Read	4	HIGH ^(1,2)
DMA Write	5	LRS ⁽¹⁾
DMA Write	6	HIGH ^(1,2)
USB	7	LRS
Ethernet Read	8	LRS
Ethernet Write	9	LRS
CAN1	10	LRS
CAN2	11	LRS
SQI1	12	LRS
Flash Controller	13	HIGH ⁽²⁾
Crypto	14	LRS

TABLE 4-5:INITIATOR ID AND QOS

- Note 1: When accessing SRAM, the DMAPRI bit (CFGCON<25>) and the CPUPRI bit (CFGCON<24>) provide arbitration control for the DMA and CPU (when servicing an interrupt (i.e., EXL = 1)), respectively, by selecting the use of LRS or HIGH When using HIGH, the DMA and CPU get arbitration preference over all initiators using LRS.
 - 2: Using HIGH arbitration can have serious negative effects on other initiators. Therefore, it is recommended to not enable this type of arbitration for an initiator that uses significant system bandwidth. HIGH arbitration is intended to be used for low bandwidth applications that require low latency, such as LCC graphics applications.

4.3 Permission Access and System Bus Registers

The System Bus on PIC32MZ EF family of microcontrollers provides access control capabilities for the transaction initiators on the System Bus.

The System Bus divides the entire memory space into fourteen target regions and permits access to each target by initiators via permission groups. Four Permission Groups (0 through 3) can be assigned to each initiator. Each permission group is independent of the others and can have exclusive or shared access to a region.

Using the CFGPG register (see Register 34-10 in **Section 34.0 "Special Features"**), Boot firmware can assign a permission group to each initiator, which can make requests on the System Bus.

The available targets and their regions, as well as the associated control registers to assign protection, are described and listed in Table 4-6.

Register 4-2 through Register 4-10 are used for setting and controlling access permission groups and regions.

To change these registers, they must be unlocked in hardware. The register lock is controlled by the PGLOCK Configuration bit (CFGCON<11>). Setting PGLOCK prevents writes to the control registers; clearing PGLOCK allows writes.

To set or clear the PGLOCK bit, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** in the *"PIC32 Family Reference Manual"* for details.

7.1 CPU Exceptions

CPU coprocessor 0 contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including boundary cases in data, external events or program errors. Table 7-1 lists the exception types in order of priority.

TABLE 7-1: MIPS32[®] M-CLASS MICROPROCESSOR CORE EXCEPTION TYPES

Exception Type (In Order of Priority)	Description	Branches to	Status Bits Set	Debug Bits Set	EXCCODE	XC32 Function Name
		Highest Priority				
Reset	Assertion MCLR or a Power-on Reset (POR).	0xBFC0_0000	BEV, ERL	_	_	_on_reset
Soft Reset	Assertion of a software Reset.	0xBFC0_0000	BEV, SR, ERL	—	—	_on_reset
DSS	EJTAG debug single step.	0xBFC0_0480	—	DSS	—	—
DINT	EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the EjtagBrk bit in the ECR register.	0xBFC0_0480	—	DINT	_	_
NMI	Assertion of NMI signal.	0xBFC0_0000	BEV, NMI, ERL	—	-	_nmi_handler
Machine Check	TLB write that conflicts with an existing entry.	EBASE+0x180	MCHECK, EXL	—	0x18	_general_exception_handler
Interrupt	Assertion of unmasked hardware or software inter- rupt signal.	See Table 7-2.	IPL<2:0>	—	0x00	See Table 7-2.
Deferred Watch	Deferred watch (unmasked by K DM=>!(K DM) transition).	EBASE+0x180	WP, EXL	—	0x17	_general_exception_handler
DIB	EJTAG debug hardware instruction break matched.	0xBFC0_0480	—	DIB	—	—
WATCH	A reference to an address that is in one of the Watch registers (fetch).	EBASE+0x180	EXL	—	0x17	_general_exception_handler
AdEL	Fetch address alignment error. Fetch reference to protected address.	EBASE+0x180	EXL	—	0x04	_general_exception_handler
TLBL	Fetch TLB miss or fetch TLB hit to page with $V = 0$.	EBASE if Status.EXL = 0	—	—	0x02	—
		EBASE+0x180 if Status.EXL == 1	_	—	0x02	_general_exception_handler
TLBL Execute Inhibit	An instruction fetch matched a valid TLB entry that had the XI bit set.	EBASE+0x180	EXL	—	0x14	_general_exception_handler
IBE	Instruction fetch bus error.	EBASE+0x180	EXL		0x06	_general_exception_handler

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	—	—		—	F	RCDIV<2:0>	
22.10	R/W-0	U-0	R/W-y	U-0	U-0	U-0	U-0	U-0
23.10	DRMEN	—	SLP2SPD ⁽¹⁾	_	—	_	—	—
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
15:8	—		COSC<2:0>		—		NOSC<2:0>	
7.0	R/W-0	U-0	U-0	R/W-0	R/W-0, HS	U-0	R/W-y	R/W-y
7:0	CLKLOCK	_	_	SLPEN	CF		SOSCEN	OSWEN ⁽¹⁾

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:	y = Value set from Config	uration bits on POR	HS = Hardware Set
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

- bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits
 - 111 = FRC divided by 256 110 = FRC divided by 64
 - 101 = FRC divided by 32
 - 100 = FRC divided by 16
 - 011 = FRC divided by 8
 - 010 = FRC divided by 4
 - 001 = FRC divided by 2
 - 000 = FRC divided by 1 (default setting)
- bit 23 **DRMEN:** Dream Mode Enable bit
 - 1 = Dream mode is enabled
 - 0 = Dream mode is disabled
- bit 22 Unimplemented: Read as '0'
- bit 21 SLP2SPD: Sleep 2-speed Startup Control bit⁽¹⁾
 - 1 = Use FRC as SYSCLK until selected clock is ready
 - 0 = Use the selected clock directly
- bit 20-15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
 - 110 = Back-up Fast RC (BFRC) Oscillator
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Reserved
 - 010 = Primary Oscillator (Posc) (HS or EC)
 - 001 = System PLL (SPLL)
 - 000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
- bit 11 Unimplemented: Read as '0'
- **Note 1:** The reset value for this bit depends on the setting of the IESO bit (DEVCFG1<7>). When IESO = 1, the reset value is '1'. When IESO = 0, the reset value is '0'.
- Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

DMA Control Registers 10.1

TABLE 10-1: DMA GLOBAL REGISTER MAP

ess		0								Bi	ts								6
Virtual Addr (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
1000		31:16	_	_	-	—	-	—	—	—	_	—	—	—	_	—	_	_	0000
1000	DIMACON	15:0	ON	—	_	SUSPEND	DMABUSY	_	—	—	_	—	—	—	—	—	—	_	0000
1010		31:16	RDWR	—	—	—	_	—	_	—	—	—	—	—	_	_	—	_	0000
1010	DIVIASTAT	15:0	_	—	—	—	_	—	_	—	—	—	—	—	_	C	MACH<2:0	>	0000
1020		31:16									P-21.0								0000
1020	DIVIAADDR	15:0								DIVIAADL	/1<51.0>								0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

TABLE 10-2: DMA CRC REGISTER MAP

ess										В	its								
Virtual Addr (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1020	DCBCCON	31:16	_	-	BYTC	0<1:0>	WBO	—	—	BITO	—	—	-	_	_	—	—	—	0000
1030	DURUCUN	15:0	_	_	—			PLEN<4:0>	>		CRCEN	CRCAPP	CRCTYP		_	C	RCCH<2:0	>	0000
1040		31:16									TA -21:05								0000
1040	DURUDAIA	15:0								DCRCDF	ATA<51.0>								0000
1050	DCBCVOB	31:16	1:16 DCPCXCP -21:0																
1050	DURUXUR	15:0 DECEMBER 21:05 0000																	
Leger	end: x = unknown value on Reset: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																		

Legend:

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

	. V		0)					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	U-0	U-0	U-0	U-0	R/W-0	R/W-0, HC	R/W-0	R/W-0, HC
31:24					—		—	
	_	_	—	_	DISPING	DTWREN	DATATGGL	FLOHFIFU
	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/C-0, HS	R/W-0, HS	R-0, HS	R-0	R-0
23:16	SVCSETEND	SVCRPR	SENDSTALL	SETUPEND	DATAEND	SENTSTALL	עספדאסעד	
	NAKTMOUT	STATPKT	REQPKT	ERROR	SETUPPKT	RXSTALL	IAFRIKUT	NAFRINDI
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	_		—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7.0	—	_		_	—	—	—	—

REGISTER 11-5: USBIE0CSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 0)

Legend:	HC = Hardware Cleared	HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 Unimplemented: Read as '0'

- bit 27 DISPING: Disable Ping tokens control bit (*Host mode*)

 1 = USB Module will not issue PING tokens in data and status phases of a Hi-Speed Control transfer
 0 = Ping tokens are issued

 bit 26 DTWREN: Data Toggle Write Enable bit (*Host mode*)

 1 = Enable the current state of the Endpoint 0 data toggle to be written. Automatically cleared.
 0 = Disable data toggle write
- bit 25 **DATATGGL:** Data Toggle bit (*Host mode*)

When read, this bit indicates the current state of the Endpoint 0 data toggle.

If DTWREN = 1, this bit is writable with the desired setting.

If DTWREN = 0, this bit is read-only.

- bit 24 FLSHFIFO: Flush FIFO Control bit
 - 1 = Flush the next packet to be transmitted/read from the Endpoint 0 FIFO. The FIFO pointer is reset and the TXPKTRDY/RXPKTRDY bit is cleared. Automatically cleared when the operation completes. Should only be used when TXPKTRDY/RXPKTRDY = 1.
 - 0 = No Flush operation
- bit 23 SVCSETEND: Clear SETUPEND Control bit (Device mode)
 - 1 = Clear the SETUPEND bit in this register. This bit is automatically cleared.
 - 0 = Do not clear

NAKTMOUT: NAK Time-out Control bit (Host mode)

- 1 = Endpoint 0 is halted following the receipt of NAK responses for longer than the time set by the NAKLIM<4:0> bits (USBICSR<28:24>)
- 0 = Allow the endpoint to continue
- bit 22 SVCRPR: Serviced RXPKTRDY Clear Control bit (Device mode)
 - 1 = Clear the RXPKTRDY bit in this register. This bit is automatically cleared.
 - 0 = Do not clear

STATPKT: Status Stage Transaction Control bit (*Host mode*)

- 1 = When set at the same time as the TXPKTRDY or REQPKT bit is set, performs a status stage transaction
- 0 = Do not perform a status stage transaction

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R/W-1, HS
31:24	—	—	—	—	—	USBIF	USBRF	USBWKUP
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
	r-1	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	—	—	—	—	—	—	USB IDOVEN	USB IDVAL
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	PHYIDEN	VBUS MONEN	ASVAL MONEN	BSVAL MONEN	SEND MONEN	USBIE	USBRIE	USB WKUPEN

REGISTER 11-30: USBCRCON: USB CLOCK/RESET CONTROL REGISTER

l egend.

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bi

bit 31-27	Unimplemented: Read as '0'						
bit 26	USBIF: USB General Interrupt Flag bit 1 = An event on the USB Bus has occurred 0 = No interrupt from USB module or interrupts have not been enabled						
bit 25	USBRF: USB Resume Flag bit 1 = Resume from Suspend state. Device wake-up activity can be started. 0 = No Resume activity detected during Suspend, or not in Suspend state						
bit 24	USBWK: USB Activity Status bit 1 = Connect, disconnect, or other activity on USB detected since last cleared 0 = No activity detected on USB						
	Note: This bit should be cleared just prior to entering sleep, but it should be checked that no activit has already occurred on USB before actually entering sleep.						
bit 23-14	Unimplemented: Read as '0'						
bit 15	Reserved: Read as '1'						
bit 14-10	Unimplemented: Read as '0'						
bit 9	USBIDOVEN: USB ID Override Enable bit 1 = Enable use of USBIDVAL bit 0 = Disable use of USBIDVAL and instead use the PHY value						
bit 8	USBIDVAL: USB ID Value bit 1 = ID override value is 1 0 = ID override value is 0						
bit 7	PHYIDEN: PHY ID Monitoring Enable bit 1 = Enable monitoring of the ID bit from the USB PHY 0 = Disable monitoring of the ID bit from the USB PHY						
bit 6	VBUSMONEN: VBUS Monitoring for OTG Enable bit 1 = Enable monitoring for VBUS in VBUS Valid range (between 4.4V and 4.75V) 0 = Disable monitoring for VBUS in VBUS Valid range						
bit 5	ASVALMONEN: A-Device VBUS Monitoring for OTG Enable bit 1 = Enable monitoring for VBUS in Session Valid range for A-device (between 0.8V and 2.0V) 0 = Disable monitoring for VBUS in Session Valid range for A-device						

BSVALMONEN: B-Device VBUS Monitoring for OTG Enable bit

0 = Disable monitoring for VBUS in Session Valid range for B-device

1 = Enable monitoring for VBUS in Session Valid range for B-device (between 0.8V and 4.0V)

© 2015-2016 Microchip Technology Inc.

bit 4

16.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). When enabled, the Watchdog Timer (WDT) operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are key features of the WDT module:

- Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 16-1: WATCHDOG TIMER BLOCK DIAGRAM

NOTES:

REGISTER 25-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER (CONTINUED)

bit 10-9 RTCCLKSEL<1:0>: RTCC Clock Select bits

When a new value is written to these bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.

- 11 = Reserved
- 10 = Reserved
- 01 = RTCC uses the external 32.768 kHz Secondary Oscillator (SOSC)
- 00 = RTCC uses the internal 32 kHz oscillator (LPRC)
- bit 8-7 RTCOUTSEL<1:0>: RTCC Output Data Select bits⁽²⁾
 - 11 = Reserved
 - 10 = RTCC Clock is presented on the RTCC pin
 - 01 = Seconds Clock is presented on the RTCC pin
 - 00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered
- bit 6 RTCCLKON: RTCC Clock Enable Status bit⁽⁵⁾
 - 1 = RTCC Clock is actively running
 - 0 = RTCC Clock is not running
- bit 5-4 Unimplemented: Read as '0'
- bit 3 RTCWREN: Real-Time Clock Value Registers Write Enable bit⁽³⁾
 - 1 = Real-Time Clock Value registers can be written to by the user
 - 0 = Real-Time Clock Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: Real-Time Clock Value Registers Read Synchronization bit
 - 1 = Real-time clock value registers can change while reading (due to a rollover ripple that results in an invalid data read). If the register is read twice and results in the same data, the data can be assumed to be valid.
 - 0 = Real-time clock value registers can be read without concern about a rollover ripple

bit 1 HALFSEC: Half-Second Status bit⁽⁴⁾

- 1 = Second half period of a second
- 0 = First half period of a second
- bit 0 RTCOE: RTCC Output Enable bit
 - 1 = RTCC output is enabled
 - 0 = RTCC output is not enabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - **2:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 3: The RTCWREN bit can be set only when the write sequence is enabled.
 - 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).
 - 5: This bit is undefined when RTCCLKSEL<1:0> = 00 (LPRC is the clock source).

Note: This register is reset only on a Power-on Reset (POR).

FIGURE 28-2: S&H BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
31:24				DATA<	31:24>				
22:40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
23:16	DATA<23:16>								
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
10.0	15:8 DATA<15:8>				<15:8>				
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0				DATA	<7:0>				

REGISTER 28-25: ADCDATAX: ADC OUTPUT DATA REGISTER ('x' = 0 THROUGH 44)

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DATA<31:0>: ADC Converted Data Output bits.

- **Note 1:** The registers, ADCDATA19 through ADCDATA34, are not available on 64-pin devices.
 - 2: The registers, ADCDATA35 through ADCDATA42, are not available on 64-pin and 100-pin devices.
 - **3:** When an alternate input is used as the input source for a dedicated ADC module, the data output is still read from the Primary input Data Output Register.
 - 4: Reading the ADCDATAx register value after changing the FRACT bit converts the data into the format specified by FRACT bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN15	MSEL15<1:0>			F	SEL15<4:0>		
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	FLTEN14	MSEL14<1:0>		FSEL14<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.6	FLTEN13	MSEL13<1:0>		FSEL13<4:0>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	FLTEN12	MSEL12<1:0>		FSEL12<4:0>				

REGISTER 29-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31	FLTEN15: Filter 15 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 30-29	MSEL15<1:0>: Filter 15 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
hit 20 24	
DIL 20-24	FSEL13<4.0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	• • • • • • • • • • • • • • • • • • •
	•
	00001 – Message matching filter is stored in FIEO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN14: Filter 14 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL14<1:0>: Filter 14 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
hit 20-16	ESEI 14<4.05: FIEO Selection bits
511 20 10	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	—	—	—	—	—	
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
10.0	FCSERRCNT<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0				FCSERRCI	NT<7:0>				

REGISTER 30-21: ETHFCSERR: ETHERNET CONTROLLER FRAME CHECK SEQUENCE ERROR STATISTICS REGISTER

Legend:

Logona.					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FCSERRCNT<15:0>:** FCS Error Count bits Increment count for frames received with FCS error and the frame length in bits is an integral multiple of 8 bits.

Note 1: This register is only used for RX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—	—	—	—
7:0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7.0	_			B2	BIPKTGP<6:)>		

REGISTER 30-25: EMAC1IPGT: ETHERNET CONTROLLER MAC BACK-TO-BACK INTERPACKET GAP REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-7 Unimplemented: Read as '0'

bit 6-0 B2BIPKTGP<6:0>: Back-to-Back Interpacket Gap bits

This is a programmable field representing the nibble time offset of the minimum possible period between the end of any transmitted packet, to the beginning of the next. In Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In Full-Duplex the recommended setting is 0x15 (21d), which represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps). In Half-Duplex mode, the recommended setting is 0x12 (18d), which also represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—	—	_	-	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—	—	_	-	—	—
15:8	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P
	STNADDR6<7:0>							
7:0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P
	STNADDR5<7:0>							

REGISTER 30-37: EMAC1SA0: ETHERNET CONTROLLER MAC STATION ADDRESS 0 REGISTER

Legend:		P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15-8 **STNADDR6<7:0>:** Station Address Octet 6 bits These bits hold the sixth transmitted octet of the station address.
- bit 7-0 **STNADDR5<7:0>:** Station Address Octet 5 bits These bits hold the fifth transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)				
			$\begin{array}{ll} Operating \ temperature & -40^\circ C \leq TA \leq +85^\circ C \ for \ Industrial \\ -40^\circ C \leq TA \leq +125^\circ C \ for \ Extended \end{array}$				
Param. No.	Symbol	Characteristics		Min. ⁽¹⁾	Max.	Units	Conditions
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode (Note 2)		300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—
		Setup Time	400 kHz mode	100	—	ns	-
			1 MHz mode (Note 2)	100		ns	
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μs	
			400 kHz mode	0	0.9	μs	
			1 MHz mode (Note 2)	0	0.3	μs	
IM30	TSU:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	Only relevant for
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)		μs	Repeated Start
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs	condition
IM31	THD:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	After this period, the
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)		μs	first clock pulse is
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	—
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)		μs	
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	—	μs	
IM34	THD:STO	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	—	ns	—
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)		ns	
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		ns	
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—
		from Clock	400 kHz mode	—	1000	ns	—
			1 MHz mode (Note 2)	—	350	ns	_
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time
			400 kHz mode	1.3		μs	the bus must be free
			1 MHz mode (Note 2)	0.5		μs	before a new transmission can start
IM50	Св	Bus Capacitive L	oading	—	—	pF	See parameter DO58
IM51	Tpgd	Pulse Gobbler Delay		52	312 ns See N		See Note 3

TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)

Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

NOTES: