

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TFBGA
Supplier Device Package	144-TFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efh144-i-jwx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
AN36	—	—	B4	8	I	Analog	Analog Input Channels
AN37	—	_	B12	27	I	Analog	
AN38	—	_	B17	43	I	Analog	
AN39	—	_	A22	44	Ι	Analog	
AN40	—	—	A30	65	I	Analog	
AN41	—	_	B26	66	I	Analog	
AN42	—	—	A31	67	I	Analog	
AN45	11	20	B11	25	I	Analog	
AN46	17	26	B14	37	I	Analog	
AN47	18	27	A19	38	I	Analog	
AN48	21	32	B18	47	Ι	Analog	
AN49	22	33	A23	48	I	Analog	

TABLE 1-1: ADC PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS-compatible input or output TTL = Transistor-transistor Logic input buffer

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input O = Output PPS = Peripheral Pin Select P = Power I = Input

© 2015-2016 Microchip Technology Inc.

TABLE 4-21: SYSTEM BUS TARGET 13 REGISTER MAP

ess											Bits								
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
D 400		31:16	MULTI	—		—		CODE	<3:0>		—		—	—	—	—	—		0000
Б420	SBITSELUGT	15:0				INI	TID<7:0>					REGIO	N<3:0>		_	С	MD<2:0>		0000
D 40 4		31:16	-	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
D424	SB113ELUG2	15:0	-	—	_	_	—	_	_	_	_	_	_	—	_	_	GROU	P<1:0>	0000
D 400		31:16	_	—		—	—	_	_	ERRP	—	_	_	—	_	_	_	_	0000
D420	SELISECON	15:0	-	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
D 420		31:16	-	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
Б430	SBITSECLKS	15:0	-	—	_	_	_	_	_	_	_	_	_	_	_	_	_	CLEAR	0000
D420	SBT12ECL DM	31:16		—	_	—	_	_	_	—	—		_	—	—	—	_	_	0000
D430	SELISECTRIN	15:0	-	—	_	_	_	_	_	_	_	_	_	_	_	_	_	CLEAR	0000
P440	SPT12PECO	31:16								BA	SE<21:6>								xxxx
Б440	SBITSREGU	15:0			BA	\SE<5:0>			PRI	—			SIZE<4:0	>		_	_	_	xxxx
D 450		31:16	-	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
D450	SELISKDU	15:0	_	_		_	_			_	—	_	_	_	GROUP3	GROUP2	GROUP1	GROUPO	xxxx
D 450		31:16	_	_	_	—	—	_	_	_	_	_	—	—	—	—	_	_	xxxx
D458	SDI I 3WRU	15:0	_	_	_	_	_	_	_	_	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP 0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

(1)		IRQ			Interru	upt Bit Location	า	Persistent
Interrupt Source ^(*)	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
DMA Channel 0	_DMA0_VECTOR	134	OFF134<17:1>	IFS4<6>	IEC4<6>	IPC33<20:18>	IPC33<17:16>	No
DMA Channel 1	_DMA1_VECTOR	135	OFF135<17:1>	IFS4<7>	IEC4<7>	IPC33<28:26>	IPC33<25:24>	No
DMA Channel 2	_DMA2_VECTOR	136	OFF136<17:1>	IFS4<8>	IEC4<8>	IPC34<4:2>	IPC34<1:0>	No
DMA Channel 3	_DMA3_VECTOR	137	OFF137<17:1>	IFS4<9>	IEC4<9>	IPC34<12:10>	IPC34<9:8>	No
DMA Channel 4	_DMA4_VECTOR	138	OFF138<17:1>	IFS4<10>	IEC4<10>	IPC34<20:18>	IPC34<17:16>	No
DMA Channel 5	_DMA5_VECTOR	139	OFF139<17:1>	IFS4<11>	IEC4<11>	IPC34<28:26>	IPC34<25:24>	No
DMA Channel 6	_DMA6_VECTOR	140	OFF140<17:1>	IFS4<12>	IEC4<12>	IPC35<4:2>	IPC35<1:0>	No
DMA Channel 7	_DMA7_VECTOR	141	OFF141<17:1>	IFS4<13>	IEC4<13>	IPC35<12:10>	IPC35<9:8>	No
SPI2 Fault	_SPI2_FAULT_VECTOR	142	OFF142<17:1>	IFS4<14>	IEC4<14>	IPC35<20:18>	IPC35<17:16>	Yes
SPI2 Receive Done	_SPI2_RX_VECTOR	143	OFF143<17:1>	IFS4<15>	IEC4<15>	IPC35<28:26>	IPC35<25:24>	Yes
SPI2 Transfer Done	_SPI2_TX_VECTOR	144	OFF144<17:1>	IFS4<16>	IEC4<16>	IPC36<4:2>	IPC36<1:0>	Yes
UART2 Fault	_UART2_FAULT_VECTOR	145	OFF145<17:1>	IFS4<17>	IEC4<17>	IPC36<12:10>	IPC36<9:8>	Yes
UART2 Receive Done	_UART2_RX_VECTOR	146	OFF146<17:1>	IFS4<18>	IEC4<18>	IPC36<20:18>	IPC36<17:16>	Yes
UART2 Transfer Done	_UART2_TX_VECTOR	147	OFF147<17:1>	IFS4<19>	IEC4<19>	IPC36<28:26>	IPC36<25:24>	Yes
I2C2 Bus Collision Event ⁽²⁾	_I2C2_BUS_VECTOR	148	OFF148<17:1>	IFS4<20>	IEC4<20>	IPC37<4:2>	IPC37<1:0>	Yes
I2C2 Slave Event ⁽²⁾	_I2C2_SLAVE_VECTOR	149	OFF149<17:1>	IFS4<21>	IEC4<21>	IPC37<12:10>	IPC37<9:8>	Yes
I2C2 Master Event ⁽²⁾	_I2C2_MASTER_VECTOR	150	OFF150<17:1>	IFS4<22>	IEC4<22>	IPC37<20:18>	IPC37<17:16>	Yes
Control Area Network 1	_CAN1_VECTOR	151	OFF151<17:1>	IFS4<23>	IEC4<23>	IPC37<28:26>	IPC37<25:24>	Yes
Control Area Network 2	_CAN2_VECTOR	152	OFF152<17:1>	IFS4<24>	IEC4<24>	IPC38<4:2>	IPC38<1:0>	Yes
Ethernet Interrupt	_ETHERNET_VECTOR	153	OFF153<17:1>	IFS4<25>	IEC4<25>	IPC38<12:10>	IPC38<9:8>	Yes
SPI3 Fault	_SPI3_FAULT_VECTOR	154	OFF154<17:1>	IFS4<26>	IEC4<26>	IPC38<20:18>	IPC38<17:16>	Yes
SPI3 Receive Done	_SPI3_RX_VECTOR	155	OFF155<17:1>	IFS4<27>	IEC4<27>	IPC38<28:26>	IPC38<25:24>	Yes
SPI3 Transfer Done	_SPI3_TX_VECTOR	156	OFF156<17:1>	IFS4<28>	IEC4<28>	IPC39<4:2>	IPC39<1:0>	Yes
UART3 Fault	_UART3_FAULT_VECTOR	157	OFF157<17:1>	IFS4<29>	IEC4<29>	IPC39<12:10>	IPC39<9:8>	Yes
UART3 Receive Done	_UART3_RX_VECTOR	158	OFF158<17:1>	IFS4<30>	IEC4<30>	IPC39<20:18>	IPC39<17:16>	Yes
UART3 Transfer Done	_UART3_TX_VECTOR	159	OFF159<17:1>	IFS4<31>	IEC4<31>	IPC39<28:26>	IPC39<25:24>	Yes
I2C3 Bus Collision Event	_I2C3_BUS_VECTOR	160	OFF160<17:1>	IFS5<0>	IEC5<0>	IPC40<4:2>	IPC40<1:0>	Yes
I2C3 Slave Event	_I2C3_SLAVE_VECTOR	161	OFF161<17:1>	IFS5<1>	IEC5<1>	IPC40<12:10>	IPC40<9:8>	Yes

TABLE 7-2: INTERRUPT IRQ, VECTOR, AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

REGISTER 20-13:	SQI1STAT2: SQI STATUS REGISTER 2
-----------------	----------------------------------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	_	—	_	-	_	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	
23:16	—	—	—	—	—	— CMDSTAT<1:0>			
45.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
0.61	—	—	—	_	CONAVAIL<4:1>				
7:0	R-0	R-0	R-0	R-0	R-0	U-0	R-0	R-0	
	CONAVAIL<0>	SQID3	SQID2	SQID1	SQID0		RXUN	TXOV	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-18 Unimplemented: Read as '0'

- bit 17-16 **CMDSTAT<1:0>:** Current Command Status bits These bits indicate the current command status.
 - 11 = Reserved
 - 10 = Receive
 - 01 = Transmit
 - 00 = Idle
- bit 15-12 Unimplemented: Read as '0'

bit 11-7 **CONAVAIL<4:0>:** Control FIFO Space Available bits These bits indicate the available control Word space. 11111 = 32 bytes are available 11110 = 31 bytes are available

- 00001 = 1 byte is available
- 00000 = No bytes are available

bit 6 SQID3: SQID3 Status bit

- 1 = Data is present on SQID3
- 0 = Data is not present on SQID3 bit 5 **SQID2:** SQID2 Status bit
 - 1 = Data is present on SQID2
 - 0 = Data is not present on SQID2
- bit 4 **SQID1:** SQID1 Status bit
 - 1 = Data is present on SQID1
 - 0 = Data is not present on SQID1
- bit 3 SQID0: SQID0 Status bit
 - 1 = Data is present on SQID0
 - 0 = Data is not present on SQID0
- bit 2 Unimplemented: Read as '0'
- bit 1 RXUN: Receive FIFO Underflow Status bit
 - 1 = Receive FIFO Underflow has occurred
 - 0 = Receive FIFO underflow has not occurred
- bit 0 TXOV: Transmit FIFO Overflow Status bit
 - 1 = Transmit FIFO overflow has occurred
 - 0 = Transmit FIFO overflow has not occurred

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	POLLCON<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
				POLLCO	N<7:0>						

REGISTER 20-18: SQI1BDPOLLCON: SQI BUFFER DESCRIPTOR POLL CONTROL REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **POLLCON<15:0>:** Buffer Descriptor Processor Poll Status bits These bits indicate the number of cycles the BDP would wait before refetching the descriptor control word if the previous descriptor fetched was disabled.

REGISTER 20-19: SQI1BDTXDSTAT: SQI BUFFER DESCRIPTOR DMA TRANSMIT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	R-x	R-x	R-x	R-x	U-0		
	—	—	—		TXSTATE<3:0>					
23:16	U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x		
	—	—	—		TXBUFCNT<4:0>					
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	—	—	—	—	—	—	—	—		
7:0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x		
				TXCURBUF	LEN<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-25 **TXSTATE<3:0>:** Current DMA Transmit State Status bits These bits provide information on the current DMA receive states.

bit 24-21 Unimplemented: Read as '0'

bit 20-16 **TXBUFCNT<4:0>:** DMA Buffer Byte Count Status bits

These bits provide information on the internal FIFO space.

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 **TXCURBUFLEN<7:0>:** Current DMA Transmit Buffer Length Status bits These bits provide the length of the current DMA transmit buffer.

22.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The UART module is one of the serial I/O modules available in the PIC32MZ EF family of devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN, and IrDA[®]. The module also supports the hardware flow control option, with UXCTS and UXRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- One or two Stop bits
- Hardware auto-baud feature
- Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 25 Mbps at 100 MHz (PBCLK2)
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- LIN Protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 22-1 illustrates a simplified block diagram of the UART module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24		—	—	—	—	—	—	-				
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10		—	—	—	—	—	—	—				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	WCS2 ⁽¹⁾	WCS1 ⁽³⁾										
	WADDR15 ⁽²⁾	WADDR14 ⁽⁴⁾		WADDR<13:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	WADDR<7:0>											

REGISTER 23-8: PMWADDR: PARALLEL PORT WRITE ADDRESS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 WCS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
- bit 15 WADDR<15>: Target Address bit 15⁽²⁾
- bit 14 WCS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active 0 = Chip Select 1 is inactive
- bit 14 WADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 WADDR<13:0>: Address bits
- **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - 3: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24		—	—	—	—	—	—	—			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10		—	—	—	—	—	-	-			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	RDATAIN<15:8>										
7:0	R/W-0 R/W-0		R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0			
				RDATAIN<	:7:0>						

REGISTER 23-10: PMRDIN: PARALLEL PORT READ INPUT DATA REGISTER

Legend:

9			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RDATAIN<15:0>: Port Read Input Data bits

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1' and exclusively for reads. If the DUALBUF bit is '0', the PMDIN register (Register 23-5) is used for reads instead of PMRDIN.

Figure 26-10 shows the Security Association control word structure.

The Crypto Engine fetches different structures for different flows and ensures that hardware fetches minimum words from SA required for processing. The structure is ready for hardware optimal data fetches.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31-24	_	—	VERIFY	_	NO_RX	OR_EN	ICVONLY	IRFLAG		
23-16	LNC	LOADIV	FB	FLAGS	—	—	—	ALGO<6>		
15-8			ALGO	<5:0>			ENC	KEY SIZE<1>		
7-0	KEY SIZE<0>	ML	ILTITASK<2:	0>		CRYPTOA	LGO<3:0>			
bit 31-30	Reserved: Do not use									
bit 29	VERIFY: NI 1 = NIST pr 0 = Do not u	ST Procedure ocedures are use NIST proc	e Verification to be used cedures	Setting						
bit 28	Reserved:	Do not use								
bit 27	NO_RX: Re 1 = Only cal 0 = Normal	eceive DMA C Iculate ICV fo processing	ontrol Setting r authenticati	g ion calculatic	ns					
bit 26	OR_EN: OR Register Bits Enable Setting 1 = OR the register bits with the internal value of the CSR register 0 = Normal processing									
bit 25	ICVONLY: I This affects 1 = Only thr 0 = All result	ncomplete Ch the SHA-1 al ee words of th Its from the H	neck Value O gorithm only. ne HMAC res MAC result a	nly Flag It has no eff sult are availa ire available	ect on the Al able	ES algorithm				
bit 24	IRFLAG: In This bit is set 1 = Save the 0 = Do not s	nmediate Res et when the in e immediate r save the imme	ult of Hash S nmediate res esult for has ediate result	etting ult for hashir hing	ng is request	ed.				
bit 23	LNC: Load 1 = Load a 0 = Do not I	New Keys Se new set of key oad new keys	tting ys for encryp	tion and auth	nentication					
bit 22	LOADIV: Lo 1 = Load the 0 = Use the	oad IV Setting e IV from this next IV	Security Ass	ociation						
bit 21	FB: First Blo This bit indic 1 = Indicate 0 = Indicate	FB: First Block Setting This bit indicates that this is the first block of data to feed the IV value. 1 = Indicates this is the first block of data 0 = Indicates this is not the first block of data								
bit 20	FLAGS: Inc 1 = Security 0 = Security	 FLAGS: Incoming/Outgoing Flow Setting 1 = Security Association is associated with an outgoing flow 0 = Security Association is associated with an incoming flow 								
bit 19-17	Reserved:	Do not use								

FIGURE 26-10: FORMAT OF SA_CTRL

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31:24		DATA<31:24>										
22:40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
23:16	DATA<23:16>											
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
10.0	DATA<15:8>											
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				DATA	<7:0>							

REGISTER 28-25: ADCDATAX: ADC OUTPUT DATA REGISTER ('x' = 0 THROUGH 44)

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DATA<31:0>: ADC Converted Data Output bits.

- **Note 1:** The registers, ADCDATA19 through ADCDATA34, are not available on 64-pin devices.
 - 2: The registers, ADCDATA35 through ADCDATA42, are not available on 64-pin and 100-pin devices.
 - **3:** When an alternate input is used as the input source for a dedicated ADC module, the data output is still read from the Primary input Data Output Register.
 - 4: Reading the ADCDATAx register value after changing the FRACT bit converts the data into the format specified by FRACT bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15.0	—	—	—			FILHIT<4:0>		
7.0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7.0	_			I	CODE<6:0>(1	1)		

REGISTER 29-4: CiVEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-13 Unimplemented: Read as '0'

bit 12-8	FILHIT<4:0>: Filter Hit Number bit
	11111 = Filter 31
	11110 = Filter 30
	•
	•
	•
	00001 = Filter 1
	00000 = Filter 0
bit 7	Unimplemented: Read as '0'
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits ⁽¹⁾
	1001000-1111111 = Reserved
	1001000 = Invalid message received (IVRIF)
	1000111 = CAN module mode change (MODIF)
	1000110 = CAN timestamp timer (CTMRIF)
	1000101 = Bus bandwidth error (SERRIF)
	1000100 = Address error interrupt (SERRIF)
	1000011 = Receive FIFO overflow interrupt (RBOVIF)
	1000010 = Wake-up interrupt (WAKIF)
	1000001 = Error Interrupt (CERRIF)
	1000000 = No interrupt
	0100000-0111111 = Reserved
	0011111 = FIFO31 Interrupt (CiFSTAT<31> set)
	0011110 = FIFO30 Interrupt (CiFSTAT<30> set)
	•
	•
	•
	0000001 = FIFO1 Interrupt (CiFSTAT<1> set)
	0000000 = FIFO0 Interrupt (CiFSTAT<0> set)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	_	—		
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	_	—		
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	SCOLFRMCNT<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				SCOLFRM	1CNT<7:0>					

REGISTER 30-18: ETHSCOLFRM: ETHERNET CONTROLLER SINGLE COLLISION FRAMES STATISTICS REGISTER

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **SCOLFRMCNT<15:0>:** Single Collision Frame Count bits Increment count for frames that were successfully transmitted on the second try.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

				O. ALIL								•							
ess										Bi	ts								
Virtual Addr (BFC0_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FF 40		31:16	-	FUSBIDIO	IOL1WAY	PMDL1WAY	PGL1WAY	—	FETHIO	FMIIEN	—	_	—	—	—	_	—	_	xxxx
FF40	ADEVCFG3	15:0								USERID	0<15:0>								xxxx
EE11		31:16		UPLLFSEL	_	—	_	_			—	_	_	_	—	FPLL	_ODIV<2:0:	>	xxxx
1144	ADE VOI 02	15:0				FPL	LMULT<6:0	>			FPLLICLK	F	PLLRNG<2:0>	-	—	FPL	LIDIV<2:0>		xxxx
FF48		31:16	FDMTEN			DMTCNT<4:0	>		FWDTWI	NSZ<1:0>	FWDTEN	WINDIS	WDTSPGM			WDTPS<4:0>			xxxx
1140	ADEVOIO	15:0	FCKS	SM<1:0>	—	_	—	OSCIOFNC	POSCM	OD<1:0>	IESO	FSOSCEN	DMT	INTV<2:0:	>	FN	OSC<2:0>		xxxx
FF4C	ADEVCEGO	31:16	_	EJTAGBEN	—	—	_	_	_	—	—	—	POSCBOOST	POSCG	AIN<1:0>	SOSCBOOST	SOSCG	AIN<1:0>	xxxx
		15:0	SMCLR		DBGPER<2:	0>		FSLEEP	FECCC	ON<1:0>	_	BOOTISA	TRCEN	ICESE	L<1:0>	JTAGEN	DEBUG	G<1:0>	XXXX
FF50	ADEVCP3	31:16	—	_	—	-	—	_	—	—	-	—	—	—	—		—	_	XXXX
		15:0	—	_	—	-	—	_	—	—	-	—	—	—	—		—	_	XXXX
FF54	ADEVCP2	31:16			-		_	_				_	—	_	_		_	_	XXXX
		15:0			_			_				_	—	_					XXXX
FF58	ADEVCP1	31:16	_	_	-		—	_	_	_		—	_		—	_	—	_	XXXX
		15:0			_							_							XXXX
FF5C	ADEVCP0	31.10				CP													XXXX
		31.16																	~~~~
FF60	ADEVSIGN3	15.0													_	_			~~~~
		31.16						_			<u> </u>			_	_				~~~~
FF64	ADEVSIGN2	15:0	_	_	_	_	_	_	_	_	_	_			_		_	_	XXXX
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
FF68	ADEVSIGN1	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
		31:16	0	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	xxxx
FF6C	ADEVSIGN0	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
																			-

TABLE 34-2: ADEVCFG: ALTERNATE DEVICE CONFIGURATION WORD SUMMARY

Legend: x = unknown value on Reset; - = Reserved, read as '1'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
					—	—	CRYPTF	PG<1:0>
00.40	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
23:16	FCPC	G<1:0>	SQI1P	G<1:0>	—	—	ETHPG<1:0>	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
15:8	CAN2F	PG<1:0>	CAN1F	PG<1:0>	—	—	USBPC	G<1:0>
7.0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
7:0	—	_	DMAP	G<1:0>		—	CPUPO	G<1:0>

REGISTER 34-10: CFGPG: PERMISSION GROUP CONFIGURATION REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-26 Unimplemented: Read as '0'

bit 25-24	CRYPTPG<1:0>: Crypto Engine Permission Group bits
	11 = Initiator is assigned to Permission Group 3
	10 = Initiator is assigned to Permission Group 2
	01 = Initiator is assigned to Permission Group 1
	00 = Initiator is assigned to Permission Group 0
bit 23-22	FCPG<1:0>: Flash Control Permission Group bits
	Same definition as bits 25-24.
bit 21-20	SQI1PG<1:0>: SQI Module Permission Group bits
	Same definition as bits 25-24.
bit 19-18	Unimplemented: Read as '0'
bit 17-16	ETHPG<1:0>: Ethernet Module Permission Group bits
	Same definition as bits 25-24.
bit 15-14	CAN2PG<1:0>: CAN2 Module Permission Group bits
	Same definition as bits 25-24.
bit 13-12	CAN1PG<1:0>: CAN1 Module Permission Group bits
	Same definition as bits 25-24.
bit 11-10	Unimplemented: Read as '0'
bit 9-8	USBPG<1:0>: USB Module Permission Group bits
	Same definition as bits 25-24.
bit 7-6	Unimplemented: Read as '0'

- bit 5-4 **DMAPG<1:0>:** DMA Module Permission Group bits Same definition as bits 25-24.
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 **CPUPG<1:0>:** CPU Permission Group bits Same definition as bits 25-24.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param. No.	Symbol	Characteristics	Min.	Min. Typical ⁽¹⁾ Max. Units Cond						
DI60a	licl	Input Low Injection Current	0	_	₋₅ (2,5)	mA	This parameter applies to all pins, with the exception of RB10. Maximum IICH current for this exception is 0 mA.			
DI60b	lich	Input High Injection Current	0	_	+5 ^(3,4,5)	mA	This parameter applies to all pins, with the exception of all 5V toler- ant pins, OSCI, OSCO, SOSCI, SOSCO, D+, D- and RB10. Maximum IICH current for these exceptions is 0 mA.			
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁶⁾	_	+20 ⁽⁶⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT			

TABLE 37-10: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: VIL source < (Vss - 0.3). Characterized but not tested.

3: VIH source > (VDD + 0.3) for non-5V tolerant pins only.

4: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 2, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 3, IICH = ((IICH source - (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss - 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

|--|

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$			
Param. No. Symbol Characteristics				Min.	Max.	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	-	μs	PBCLK must operate at a minimum of 800 kHz
			400 kHz mode	1.3	_	μs	PBCLK must operate at a minimum of 3.2 MHz
1 MHz mode (Note 1)		0.5	_	μs	_		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	PBCLK must operate at a minimum of 800 kHz
			400 kHz mode	0.6	—	μs	PBCLK must operate at a minimum of 3.2 MHz
1 MHz mode (Note 1)		0.5	—	μs	—		

		Standard Operating Conditions: 2.1V to 3.6V								
AC CHA	RACTER	ISTICS ⁽²⁾	(unless otherwise stated)							
			Operat	Operating temperature $-40^{\circ}C \le IA \le +85^{\circ}C$ for Industrial						
	[T		-40-0	≤ IA ≤ +125°C for Extended			
Param.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions			
	Town	Comple Time for								
AD60a	ISAMP	ADC7 (Class 2 and	0				Source impedance $\leq 200\Omega$			
		Class 2 Inputs) with	a a				CVDCPL<2:0>(ADCCON2<28:26>) = 001			
		the CVDEN hit	11				CVDCPL < 2:0> (ADCCON2 < 28:26>) = 0.11			
		(ADCCON1<11>) = 1	12	—	—	TAD	CVDCPL < 2:0> (ADCCON2 < 28:26>) = 100			
			14				CVDCPL < 2:0> (ADCCON2 < 28:26>) = 1.01			
			16				CVDCPL<2:0> (ADCCON2<28:26>) = 110			
			17				CVDCPL<2:0> (ADCCON2<28:26>) = 111			
							Source Impedance $\leq 500\Omega$			
			10				CVDCPL<2:0> (ADCCON2<28:26>) = 001			
			12				CVDCPL<2:0> (ADCCON2<28:26>) = 010			
			14			Тлр	CVDCPL<2:0> (ADCCON2<28:26>) = 011			
			16	_	_	IAD	CVDCPL<2:0> (ADCCON2<28:26>) = 100			
			18				CVDCPL<2:0> (ADCCON2<28:26>) = 101			
			19				CVDCPL<2:0> (ADCCON2<28:26>) = 110			
			21				CVDCPL<2:0> (ADCCON2<28:26>) = 111			
			40				Source Impedance $\leq 1 \text{ K}\Omega$			
			13				CVDCPL<2:0> (ADCCON2<28:26>) = 001			
			16				CVDCPL<2:0> (ADCCON2<28:26>) = 010			
			10	_	_	TAD	CVDCPL<2.0>(ADCCON2<28.26>) = 011			
			23				CVDCPL < 2:0> (ADCCON2<28:26>) = 100			
			26				CVDCPI < 2:0> (ADCCON2 < 28:26>) = 110			
			28				CVDCPL<2:0> (ADCCON2<28:26>) = 111			
							Source Impedance $\leq 5 \text{ K}\Omega$			
			41				CVDCPL<2:0> (ADCCON2<28:26>) = 001			
			48				CVDCPL<2:0> (ADCCON2<28:26>) = 010			
			56			TAD	CVDCPL<2:0> (ADCCON2<28:26>) = 011			
			63	—	—	IAD	CVDCPL<2:0> (ADCCON2<28:26>) = 100			
			70				CVDCPL<2:0> (ADCCON2<28:26>) = 101			
			78				CVDCPL<2:0> (ADCCON2<28:26>) = 110			
			85				CVDCPL<2:0> (ADCCON2<28:26>) = 111			

TABLE 37-40: ADC SAMPLE TIMES WITH CVD ENABLED

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

38.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MZ EF device AC characteristics and timing parameters.

TABLE 38-5:	SYSTEM TIMING REQUIREMENTS
-------------	----------------------------

AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No. Symbol Characteristics			Min.	Тур.	Max.	Units	Conditions	
EOS51	Fsys	System Frequency	DC	—	180	MHz	USB module disabled	
			30	_	180	MHz	USB module enabled	
EOS55a	Fрв	Peripheral Bus Frequency	DC		90	MHz	For PBCLKx, 'x' \neq 4, 7	
EOS55b			DC		180	MHz	For PBCLK4, PBCLK7	
EOS56	Fref	Reference Clock Frequency	_		45	MHz	For REFCLKI1, 3, 4 and REFCLKO1, 3, 4 pins	

TABLE 38-6: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS Standard (unless o Operating				Operati therwise tempera	ng Conditio e stated) ature -40°C	n s: 2.1\ ≍ ≤ Ta ≤ +	/ to 3.6V ⊦125°C fe	or Extended
Param. No.	Symbol	Characteristics ⁽¹⁾		Min.	Typical	Max.	Units	Conditions
EOS54a	Fpll	PLL Output Frequer	10	_	180	MHz		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{PBCLK2}{\sqrt{CommunicationClock}}}}$$

For example, if PBCLK2 = 100 MHz and SPI bit rate = 50 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{100}{50}}} = \frac{D_{CLK}}{1.41}$$

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	E	0.50 BSC				
Contact Pad Spacing	C1		11.40			
Contact Pad Spacing	C2		11.40			
Contact Pad Width (X28)	X1			0.30		
Contact Pad Length (X28)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-193A Sheet 1 of 2