

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TQFP
Supplier Device Package	144-TQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efh144-i-ph

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
				Т	imer1 thr	ough Timer	9
T1CK	48	73	A49	106	Ι	ST	Timer1 External Clock Input
T2CK	PPS	PPS	PPS	PPS	I	ST	Timer2 External Clock Input
T3CK	PPS	PPS	PPS	PPS	I	ST	Timer3 External Clock Input
T4CK	PPS	PPS	PPS	PPS	I	ST	Timer4 External Clock Input
T5CK	PPS	PPS	PPS	PPS	I	ST	Timer5 External Clock Input
T6CK	PPS	PPS	PPS	PPS	I	ST	Timer6 External Clock Input
T7CK	PPS	PPS	PPS	PPS	I	ST	Timer7 External Clock Input
T8CK	PPS	PPS	PPS	PPS	I	ST	Timer8 External Clock Input
T9CK	PPS	PPS	PPS	PPS	I	ST	Timer9 External Clock Input
	•	•	•	Real-	Time Clo	ck and Cale	endar
RTCC	46	71	A48	104	0	—	Real-Time Clock Alarm/Seconds Output
Legend:	CMOS = C	MOS-compa	atible input	or output		Analog =	Analog input P = Power

TABLE 1-7: TIMER1 THROUGH TIMER9 AND RTCC PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select

I = Input

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—		—	—	-		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	-	—	—	-	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		—	-	—	—	-	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-1
7:0						_		NF

REGISTER 3-4: CONFIG5: CONFIGURATION REGISTER 5; CP0 REGISTER 16, SELECT 5

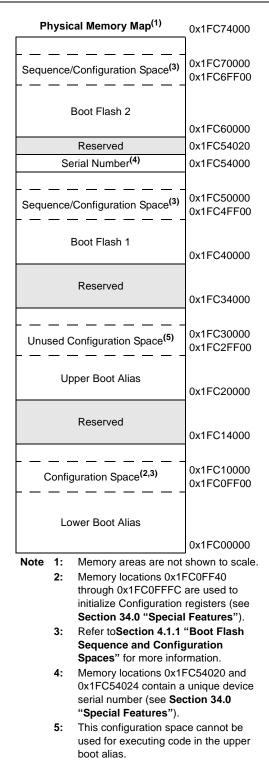
Legend:	r = Reserved		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

bit 0 NF: Nested Fault bit

1 = Nested Fault feature is implemented

REGISTER 3-5: CONFIG7: CONFIGURATION REGISTER 7; CP0 REGISTER 16, SELECT 7


Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	WII	—		-	_	_	—	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—		-	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.6	—	—		-	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	—	_	_	_	_	—	—

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 WII: Wait IE Ignore bit

1 = Indicates that this processor will allow an interrupt to unblock a WAIT instruction

bit 30-0 Unimplemented: Read as '0'

FIGURE 4-5: BOOT AND ALIAS MEMORY MAP

TABLE 4-1: SFR MEMORY MAP

	Virtual Ad	dress
Peripheral	Base	Offset Start
System Bus ⁽¹⁾	0xBF8F0000	0x0000
Prefetch		0x0000
EBI		0x1000
SQI1		0x2000
USB	0xBF8E0000	0x3000
Crypto		0x5000
RNG		0x6000
CAN1 and CAN2		0x0000
Ethernet	0xBF880000	0x2000
USBCR		0x4000
PORTA-PORTK	0xBF860000	0x0000
Timer1-Timer9		0x0000
IC1-IC9		0x2000
OC1-OC9	0xBF840000	0x4000
ADC		0xB000
Comparator 1, 2		0xC000
I2C1-I2C5		0x0000
SPI1-SPI6	0,000000	0x1000
UART1-UART6	0xBF820000	0x2000
PMP		0xE000
Interrupt Controller	0xBF810000	0x0000
DMA	00000	0x1000
Configuration		0x0000
Flash Controller		0x0600
Watchdog Timer		0x0800
Deadman Timer	0vPE800000	0x0A00
RTCC	0xBF800000	0x0C00
CVREF		0x0E00
Oscillator		0x1200
PPS		0x1400

Note 1: Refer to 4.2 "System Bus Arbitration" for important legal information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	— —		—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—		—	—	—
45.0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8	—	—	T13PGV	T12PGV	T11PGV	T10PGV	T9PGV	T8PGV
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0	T7PGV	T6PGV	T5PGV	T4PGV	T3PGV	T2PGV	T1PGV	T0PGV

REGISTER 4-2: SBFLAG: SYSTEM BUS STATUS FLAG REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-14 Unimplemented: Read as '0'

bit 13-0 **TxPGV:** Target 'x' Permission Group Violation Status bits ('x' = 0-13)

Refer to Table 4-6 for the list of available targets and their descriptions.

- 1 = Target is reporting a Permission Group (PG) violation
- 0 = Target is not reporting a PG violation

Note: All errors are cleared at the source (i.e., SBTxELOG1, SBTxELOG2, SBTxECLRS, or SBTxECLRM registers).

Interrupt Source ⁽¹⁾	XC22 Vector Name	IRQ	Veeter #		Interru	pt Bit Locatior	ı	Persistent
Interrupt Source /	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
ADC Data 19 ⁽²⁾	_ADC_DATA19_VECTOR	78	OFF078<17:1>	IFS2<14>	IEC2<14>	IPC19<20:18>	IPC19<17:16>	Yes
ADC Data 20 ⁽²⁾	_ADC_DATA20_VECTOR	79	OFF079<17:1>	IFS2<15>	IEC2<15>	IPC19<28:26>	IPC19<25:24>	Yes
ADC Data 21 ⁽²⁾	_ADC_DATA21_VECTOR	80	OFF080<17:1>	IFS2<16>	IEC2<16>	IPC20<4:2>	IPC20<1:0>	Yes
ADC Data 22 ⁽²⁾	_ADC_DATA22_VECTOR	81	OFF081<17:1>	IFS2<17>	IEC2<17>	IPC20<12:10>	IPC20<9:8>	Yes
ADC Data 23 ⁽²⁾	_ADC_DATA23_VECTOR	82	OFF082<17:1>	IFS2<18>	IEC2<18>	IPC20<20:18>	IPC20<17:16>	Yes
ADC Data 24 ⁽²⁾	_ADC_DATA24_VECTOR	83	OFF083<17:1>	IFS2<19>	IEC2<19>	IPC20<28:26>	IPC20<25:24>	Yes
ADC Data 25 ⁽²⁾	_ADC_DATA25_VECTOR	84	OFF084<17:1>	IFS2<20>	IEC2<20>	IPC21<4:2>	IPC21<1:0>	Yes
ADC Data 26 ⁽²⁾	_ADC_DATA26_VECTOR	85	OFF085<17:1>	IFS2<21>	IEC2<21>	IPC21<12:10>	IPC21<9:8>	Yes
ADC Data 27 ⁽²⁾	_ADC_DATA27_VECTOR	86	OFF086<17:1>	IFS2<22>	IEC2<22>	IPC21<20:18>	IPC21<17:16>	Yes
ADC Data 28 ⁽²⁾	_ADC_DATA28_VECTOR	87	OFF087<17:1>	IFS2<23>	IEC2<23>	IPC21<28:26>	IPC21<25:24>	Yes
ADC Data 29 ⁽²⁾	_ADC_DATA29_VECTOR	88	OFF088<17:1>	IFS2<24>	IEC2<24>	IPC22<4:2>	IPC22<1:0>	Yes
ADC Data 30 ⁽²⁾	_ADC_DATA30_VECTOR	89	OFF089<17:1>	IFS2<25>	IEC2<25>	IPC22<12:10>	IPC22<9:8>	Yes
ADC Data 31 ⁽²⁾	_ADC_DATA31_VECTOR	90	OFF090<17:1>	IFS2<26>	IEC2<26>	IPC22<20:18>	IPC22<17:16>	Yes
ADC Data 32 ⁽²⁾	_ADC_DATA32_VECTOR	91	OFF091<17:1>	IFS2<27>	IEC2<27>	IPC22<28:26>	IPC22<25:24>	Yes
ADC Data 33 ⁽²⁾	_ADC_DATA33_VECTOR	92	OFF092<17:1>	IFS2<28>	IEC2<28>	IPC23<4:2>	IPC23<1:0>	Yes
ADC Data 34 ⁽²⁾	_ADC_DATA34_VECTOR	93	OFF093<17:1>	IFS2<29>	IEC2<29>	IPC23<12:10>	IPC23<9:8>	Yes
ADC Data 35 ^(2,3)	_ADC_DATA35_VECTOR	94	OFF094<17:1>	IFS2<30>	IEC2<30>	IPC23<20:18>	IPC23<17:16>	Yes
ADC Data 36 ^(2,3)	_ADC_DATA36_VECTOR	95	OFF095<17:1>	IFS2<31>	IEC2<31>	IPC23<28:26>	IPC23<25:24>	Yes
ADC Data 37 ^(2,3)	_ADC_DATA37_VECTOR	96	OFF096<17:1>	IFS3<0>	IEC3<0>	IPC24<4:2>	IPC24<1:0>	Yes
ADC Data 38 ^(2,3)	_ADC_DATA38_VECTOR	97	OFF097<17:1>	IFS3<1>	IEC3<1>	IPC24<12:10>	IPC24<9:8>	Yes
ADC Data 39 ^(2,3)	_ADC_DATA39_VECTOR	98	OFF098<17:1>	IFS3<2>	IEC3<2>	IPC24<20:18>	IPC24<17:16>	Yes
ADC Data 40 ^(2,3)	_ADC_DATA40_VECTOR	99	OFF099<17:1>	IFS3<3>	IEC3<3>	IPC24<28:26>	IPC24<25:24>	Yes
ADC Data 41 ^(2,3)	_ADC_DATA41_VECTOR	100	OFF100<17:1>	IFS3<4>	IEC3<4>	IPC25<4:2>	IPC25<1:0>	Yes
ADC Data 42 ^(2,3)	_ADC_DATA42_VECTOR	101	OFF101<17:1>	IFS3<5>	IEC3<5>	IPC25<12:10>	IPC25<9:8>	Yes
ADC Data 43	_ADC_DATA43_VECTOR	102	OFF102<17:1>	IFS3<6>	IEC3<6>	IPC25<20:18>	IPC25<17:16>	Yes
ADC Data 44	_ADC_DATA44_VECTOR	103	OFF103<17:1>	IFS3<7>	IEC3<7>	IPC25<28:26>	IPC25<25:24>	Yes
Core Performance Counter Interrupt	_CORE_PERF_COUNT_VECTOR	104	OFF104<17:1>	IFS3<8>	IEC3<8>	IPC26<4:2>	IPC26<1:0>	No
Core Fast Debug Channel Interrupt	_CORE_FAST_DEBUG_CHAN_VECTOR	105	OFF105<17:1>	IFS3<9>	IEC3<9>	IPC26<12:10>	IPC26<9:8>	Yes

TABLE 7-2: INTERRUPT IRQ, VECTOR, AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress)		Ð					-			Bits											
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets		
0050	100.44	31:16	_	—	—		FCEIP<2:0>		FCEIS	<1:0>	_	_	—		RTCCIP<2:0)>	RTCCI	S<1:0>	0000		
03D0	IPC41	15:0	_	_	_		SPI4TXIP<2:0)>	SPI4TXI	S<1:0>	-	_	-	SPI4RXIP<2:0>		SPI4RX	IS<1:0>	0000			
0250	IPC42	31:16		_	_		U4RXIP<2:0:	>	U4RXIS	S<1:0>	_	_	_	U4EIP<2:0>		U4EIS	S<1:0>	0000			
03E0	IPC42	15:0	_	_	—		SQI1IP<2:0>		SQI1IS	5<1:0>	_	_	_		PREIP<2:0	>	PREIS	S<1:0>	0000		
0250	IPC43	31:16	_	_	—		I2C4MIP<2:0>		I2C4MI	S<1:0>	_	_	_		I2C4SIP<2:0)>	I2C4SI	S<1:0>	0000		
03F0	IPC43	15:0		_	_		I2C4BIP<2:0:	>	I2C4BIS	S<1:0>	_	_	-		U4TXIP<2:0	>	U4TXI	S<1:0>	0000		
0.400	10044	31:16	_	_	—		U5EIP<2:0>		U5EIS	<1:0>	_	_	_	S	PI5TXIP<2:0	_{>} (2)	SPI5TXIS	S<1:0> (2)	0000		
0400	IPC44	15:0	-	_	—	5	SPI5RXIP<2:0:	_{>} (2)	SPI5RXIS	S<1:0> (2)	—	_	-	5	SPI5EIP<2:0:	>(2)	SPI5EIS	S<1:0> (2)	0000		
0410	IPC45	31:16	_	_	_		I2C5SIP<2:0:	>	12C5S1	S<1:0>		_	—		I2C5BIP<2:0)>	I2C5BI	S<1:0>	0000		
0410	IPC45	15:0		_	_		U5TXIP<2:0:	>	U5TXIS	6<1:0>	_	_	_		U5RXIP<2:0)>	U5RXI	S<1:0>	0000		
0420	IPC46	31:16	_	_	_	S	SPI6TXIP<2:0>	(2)	SPI6TXIS	6<1:0> ⁽²⁾	-	_	—	S	PI6RXIP<2:0)> ⁽²⁾	SPI6RXI	S<1:0> ⁽²⁾	0000		
0420		15:0	_	_	_		SPI6EIP<2:0>	(2)	SPI6EIS	<1:0> ⁽²⁾		_	—		I2C5MIP<2:0)>	I2C5MI	S<1:0>	0000		
0420	IPC47	31:16	_	—	—	—	_		-			_	_		U6TXIP<2:0	>	U6TXI	S<1:0>	0000		
0430	IFC47	15:0	_	-	—		U6RXIP<2:0:	>	U6RXIS	S<1:0>		_	—		U6EIP<2:0:	>	U6EIS	6<1:0>	0000		
0440	IPC48	31:16	_	_	_	_	_		_			_	—	ADCURDYIP<2:0>		ADCURDYIS<1:0		0000			
0440	IF U40	15:0	_	—	—	A	DCARDYIP<2	:0>	ADCARD	YIS<1:0>		_	_	A	DCEOSIP<2	2:0>	ADCEOS	SIS<1:0>	0000		
0450	IPC49	31:16	_	-	—		ADC1EIP<2:0	>	ADC1EI	S<1:0>				ADC0EIP<2:0>		ADC0E	IS<1:0>	0000			
0430	1FC49	15:0	_	—	—	_	_	_	_	_				A	DCGRPIP<2	2:0>	ADCGR	PIS<1:0>	0000		
0460	IPC50	31:16	_	_	_	_	_		_						ADC4EIP<2:	0>	ADC4E	IS<1:0>	0000		
0400	1FC30	15:0	_	_	_		ADC3EIP<2:0	>	ADC3EI	S<1:0>					ADC2EIP<2:	0>	ADC2E	IS<1:0>	0000		
0470	IPC51	31:16	_	_	_		ADC1WIP<2:0)>	ADC1W	IS<1:0>					ADC0WIP<2:	:0>	ADC0W	'IS<1:0>	0000		
0470	IPC51	15:0		_	_		ADC7EIP<2:0	>	ADC7EI	S<1:0>				_	_	_	-	_	0000		
0490	IPC52	31:16	_	_	_	_	_	-	_						ADC4WIP<2:	:0>	ADC4W	'IS<1:0>	0000		
0460	IPC52	15:0		—	_		ADC3WIP<2:0)>	ADC3W	IS<1:0>					ADC2WIP<2:	:0>	ADC2W	'IS<1:0>	0000		
0400	IPC53	31:16	-	_	_	—	-	—	-	_				—	—	—	—	—	0000		
0490	IPC53	15:0	_	_	—		ADC7WIP<2:0)>	ADC7W	IS<1:0>				_	_	—	_	_	0000		
0540	055000	31:16	_	—	—	_	_	—	_	—	_	—	-	_	—	—	VOFF<	:17:16>	0000		
0540	OFF000	15:0								VOFF<15:1>								—	0000		
0544	055004	31:16	_	—	—	_	—	—	—	—	—	_	—	—	—	_	VOFF<	:17:16>	0000		
0544	OFF001	15:0				•				VOFF<15:1>									0000		

Legend:

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

ss			Bits																
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3340	USB	31:16	_	_	—	—	—	_		_	EP7TXD	EP6TXD	EP5TXD	EP4TXD	EP3TXD	EP2TXD	EP1TXD	_	0000
3340	DPBFD	15:0	_	—	—	—	—	_	_	—	EP7RXD	EP6RXD	EP5RXD	EP4RXD	EP3RXD	EP2RXD	EP1RXD	—	0000
3344		JSB 31:16						THHSRTN<15:0>											05E6
5544	TMCON1	15:0	TUCH<15:0>											4074					
3348	000	31:16	_		—	_	—	—	_	—	_	—	—	_	_	_	-	_	0000
0040	TMCON2	15:0	_	—	—	_	—	—	-	—		—	—	_		THSBT<3	8:0>		0000
		31:16		_	LPM	LPM		LPMNYIE	LPMSTIE	LPMTOIE				LPMNAK ⁽¹⁾		N<1:0>	LPMRES		0000
3360	USB LPMR1	51.10	_		ERRIE	RESIE						_	_	_(2)	(2)	(2)			0000
	2	15:0		ENDPOIN	T<3:0>		—	_	_	RMTWAK		HIRI	D<3:0>			LNKSTATE	<3:0>		0000
		31:16	_	—	_	_	—	_	_	_	_	—	—	_	_	_	—		0000
3364	USB LPMR2	15:0	_			LPI	MFADDR<6:	0>			_	_	LPMERR ⁽¹⁾	LPMRES	LPMNC	LPMACK	LPMNY	LPMST	0000

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1: Device mode.

2: Host mode.

3:

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7). 4:

TABLE 11-2: USB REGISTER MAP 2

s		Bits																	
Virtual Addres (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_	—	—	_	—	USBIF	USBRF	USBWKUP	_	—	—	—	_	—	—	_	0100
4000	USB CRCON	15:0	_	_	_	_	_	_	USB IDOVEN	USB IDVAL	PHYIDEN	VBUS MONEN	ASVAL MONEN	BSVAL MONEN	SEND MONEN	USBIE	USBRIE	USB WKUPEN	8000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	DATA<31:24>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	DATA<23:16>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	DATA<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				DATA	<7:0>						

REGISTER 11-12: USBFIFOX: USB FIFO DATA REGISTER 'x' ('x' = 0-7)

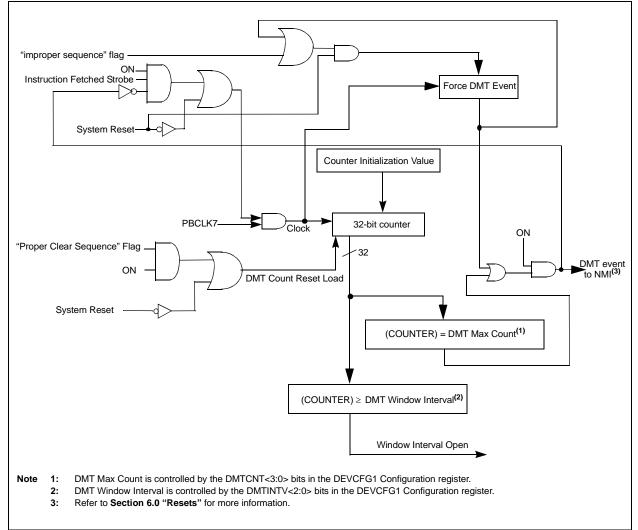
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DATA<31:0>: USB Transmit/Receive FIFO Data bits

Writes to this register loads data into the TxFIFO for the corresponding endpoint. Reading from this register unloads data from the RxFIFO for the corresponding endpoint.

Transfers may be 8-bit, 16-bit or 32-bit as required, and any combination of access is allowed provided the data accessed is contiguous. However, all transfers associated with one packet must be of the same width so that data is consistently byte-, word- or double-word aligned. The last transfer may contain fewer bytes than the previous transfers in order to complete an odd-byte or odd-word transfer.

15.0 DEADMAN TIMER (DMT)


Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The primary function of the Deadman Timer (DMT) is to reset the processor in the event of a software malfunction. The DMT is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs until a count match occurs. Instructions are not fetched when the processor is in Sleep mode. The DMT consists of a 32-bit counter with a time-out count match value as specified by the DMTCNT<3:0> bits in the DEVCFG1 Configuration register.

A Deadman Timer is typically used in mission critical and safety critical applications, where any single failure of the software functionality and sequencing must be detected.

Figure 15-1 shows a block diagram of the Deadman Timer module.

FIGURE 15-1: DEADMAN TIMER BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—		—	-			—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_	—	_		_	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	SIDL	—	_	-	_	—
7.0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0			OC32	OCFLT ⁽¹⁾	OCTSEL ⁽²⁾		OCM<2:0>	

REGISTER 18-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Peripheral On bit
 - 1 = Output Compare peripheral is enabled
 - 0 = Output Compare peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12-6 Unimplemented: Read as '0'
- bit 5 **OC32:** 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source
 - 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 OCFLT: PWM Fault Condition Status bit⁽¹⁾
 - 1 = PWM Fault condition has occurred (cleared in HW only)
 - 0 = No PWM Fault condition has occurred
- bit 3 OCTSEL: Output Compare Timer Select bit⁽²⁾
 - 1 = Timery is the clock source for this Output Compare module
 - 0 = Timerx is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin is enabled
 - 110 = PWM mode on OCx; Fault pin is disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current
- **Note 1:** This bit is only used when OCM<2:0> = '111'. It is read as '0' in all other modes.
 - **2:** Refer to Table 18-1 for Timerx and Timery selections.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	_							_
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	_	—	_	LVL11	LVL10	LVL9	LVL8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	LVL7	LVL6	LVL5	LVL4	LVL3	LVL2	LVL1	LVL0

REGISTER 28-26: ADCTRGSNS: ADC TRIGGER LEVEL/EDGE SENSITIVITY REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

- bit 11 LVL11:LVL0: Trigger Level and Edge Sensitivity bits
 - 1 = Analog input is sensitive to the high level of its trigger (level sensitivity implies retriggering as long as the trigger signal remains high)
 - 0 = Analog input is sensitive to the positive edge of its trigger (this is the value after a reset)

Note 1: This register specifies the trigger level for analog inputs 0 to 31.

2: The higher analog input ID belongs to Class 3, and therefore, is only scan triggered. All Class 3 analog inputs use the Scan Trigger, for which the level/edge is defined by the STRGLVL bit (ADCCON1<3>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0							
31:24		—	—	—	—	—	—	—
22:46	U-0							
23:16	—	—	_	—	_	—	—	—
45.0	U-0	U-0	U-0	R-0, HS, HC				
15:8	—	—	_	EIRDY44 ⁽²⁾	EIRDY43 ⁽²⁾	EIRDY42 ⁽²⁾	EIRDY41 ⁽²⁾	EIRDY40 ⁽²⁾
7.0	R-0, HS, HC							
7:0	EIRDY39 ⁽²⁾	EIRDY38 ⁽²⁾	EIRDY37 ⁽²⁾	EIRDY36 ⁽²⁾	EIRDY35 ⁽²⁾	EIRDY34 ⁽¹⁾	EIRDY33 ⁽¹⁾	EIRDY32 ⁽¹⁾

REGISTER 28-31: ADCEISTAT2: ADC EARLY INTERRUPT STATUS REGISTER 2

Legend:	HS = Hardware Set	HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$	

bit 31-13 Unimplemented: Read as '0'

bit 31-0 **EIRDY44:EIRDY32:** Early Interrupt for Corresponding Analog Input Ready bits

- 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN2 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCEIS<2:0> bits in the ADCCON2 register.
- 0 = Interrupts are disabled

Note 1: This bit is not available on 64-pin devices.

2: This bit is not available on 64-pin and 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04-04	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	—	—	_	_	WKUPCLKCNT<3:0>				
00.40	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	WKIEN7	—	_	WKIEN4	WKIEN3	WKIEN2	WKIEN1	WKIEN0	
45.0	R-0, HS, HC	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	
15:8	WKRDY7	—	_	WKRDY4	WKRDY3	WKRDY2	WKRDY1	WKRDY0	
7.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	ANEN7	_		ANEN4	ANEN3	ANEN2	ANEN1	ANEN0	

REGISTER 28-32: ADCANCON: ADC ANALOG WARM-UP CONTROL REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$

bit 31-28 Unimplemented: Read as '0'

bit 27-24 WKUPCLKCNT<3:0>: Wake-up Clock Count bits

These bits represent the number of ADC clocks required to warm-up the ADC module before it can perform conversion. Although the clocks are specific to each ADC, the WKUPCLKCNT bit is common to all ADC modules.

 $1111 = 2^{15} = 32.768$ clocks $0110 = 2^6 = 64$ clocks $0101 = 2^5 = 32$ clocks $0100 = 2^4 = 16$ clocks $0011 = 2^4 = 16$ clocks $0010 = 2^4 = 16$ clocks $0001 = 2^4 = 16$ clocks $0000 = 2^4 = 16$ clocks bit 23 WKIEN7: Shared ADC (ADC7) Wake-up Interrupt Enable bit 1 = Enable interrupt and generate interrupt when the WKRDY7 status bit is set 0 = Disable interrupt bit 22-21 Unimplemented: Read as '0' bit 20-16 WKIEN4:WKIEN0: ADC4-ADC0 Wake-up Interrupt Enable bit 1 = Enable interrupt and generate interrupt when the WKRDYx status bit is set 0 = Disable interrupt bit 15 WKRDY7: Shared ADC (ADC7) Wake-up Status bit 1 = ADC7 Analog and Bias circuitry ready after the wake-up count number 2^{WKUPEXP} clocks after setting ANEN7 to '1' 0 = ADC7 Analog and Bias circuitry is not ready Note: This bit is cleared by hardware when the ANEN7 bit is cleared bit 14-13 Unimplemented: Read as '0' bit 12-8 WKRDY4:WKRDY0: ADC4-ADC0 Wake-up Status bit 1 = ADCx Analog and Bias circuitry ready after the wake-up count number 2^{WKUPEXP} clocks after setting ANENx to '1' 0 = ADCx Analog and Bias circuitry is not ready

Note: These bits are cleared by hardware when the ANENx bit is cleared

REGISTE	R 29-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3 (CONTINUED)
bit 15	FLTEN13: Filter 13 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL13<1:0>: Filter 13 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	FSEL13<4:0>: FIFO Selection bits
DIL 12-0	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN12: Filter 12 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL12<1:0>: Filter 12 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	FSEL12<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 30-11: ETHRXFC: ETHERNET CONTROLLER RECEIVE FILTER CONFIGURATION REGISTER (CONTINUED) bit 7 **CRCERREN:** CRC Error Collection Enable bit 1 = The received packet CRC must be invalid for the packet to be accepted 0 = Disable CRC Error Collection filtering This bit allows the user to collect all packets that have an invalid CRC. bit 6 CRCOKEN: CRC OK Enable bit 1 = The received packet CRC must be valid for the packet to be accepted 0 = Disable CRC filtering This bit allows the user to reject all packets that have an invalid CRC. **RUNTERREN:** Runt Error Collection Enable bit bit 5 1 = The received packet must be a runt packet for the packet to be accepted 0 = Disable Runt Error Collection filtering This bit allows the user to collect all packets that are runt packets. For this filter, a runt packet is defined as any packet with a size of less than 64 bytes (when CRCOKEN = 0) or any packet with a size of less than 64 bytes that has a valid CRC (when CRCOKEN = 1). RUNTEN: Runt Enable bit bit 4 1 = The received packet must not be a runt packet for the packet to be accepted 0 = Disable Runt filtering This bit allows the user to reject all runt packets. For this filter, a runt packet is defined as any packet with a size of less than 64 bytes. bit 3 UCEN: Unicast Enable bit 1 = Enable Unicast Filtering 0 = Disable Unicast Filtering This bit allows the user to accept all unicast packets whose Destination Address matches the Station Address. bit 2 NOTMEEN: Not Me Unicast Enable bit 1 = Enable Not Me Unicast Filtering 0 = Disable Not Me Unicast Filtering This bit allows the user to accept all unicast packets whose Destination Address does not match the Station Address. MCEN: Multicast Enable bit bit 1 1 = Enable Multicast Filtering 0 = Disable Multicast Filtering This bit allows the user to accept all Multicast Address packets. bit 0 BCEN: Broadcast Enable bit 1 = Enable Broadcast Filtering 0 = Disable Broadcast Filtering This bit allows the user to accept all Broadcast Address packets. Note 1: XOR = True when either one or the other conditions are true, but not both. 2: This Hash Table Filter match is active regardless of the value of the HTEN bit.

3: This Magic Packet Filter match is active regardless of the value of the MPEN bit.

Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—	—	—	—		—
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
10.0	MACMAXF<15:8> ⁽¹⁾							
7:0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0
	MACMAXF<7:0> ⁽¹⁾							

REGISTER 30-28: EMAC1MAXF: ETHERNET CONTROLLER MAC MAXIMUM FRAME LENGTH REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0'

bit 15-0 MACMAXF<15:0>: Maximum Frame Length bits⁽¹⁾ These bits reset to 0x05EE, which represents a maximum receive frame o

These bits reset to 0x05EE, which represents a maximum receive frame of 1518 octets. An untagged maximum size Ethernet frame is 1518 octets. A tagged frame adds four octets for a total of 1522 octets. If a shorter/longer maximum length restriction is desired, program this 16-bit field.

Note 1: If a proprietary header is allowed, this bit should be adjusted accordingly. For example, if 4-byte headers are prepended to frames, MACMAXF could be set to 1527 octets. This would allow the maximum VLAN tagged frame plus the 4-byte header.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	r-1	R/P	r-1	r-1	r-1	r-1	r-1	r-1
	—	UPLLFSEL	_	—	—	_	_	—
23:16	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P
	—	—	_	—	—	FPLLODIV<2:0>		
15:8	r-1	R/P	R/P	R/P	R/P	R/P	R/P	R/P
		FPLLMULT<6:0>						
7:0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P
	FPLLICLK	FPLLRNG<2:0>				FPLLIDIV<2:0>		

REGISTER 34-5: DEVCFG2/ADEVCFG2: DEVICE CONFIGURATION WORD 2

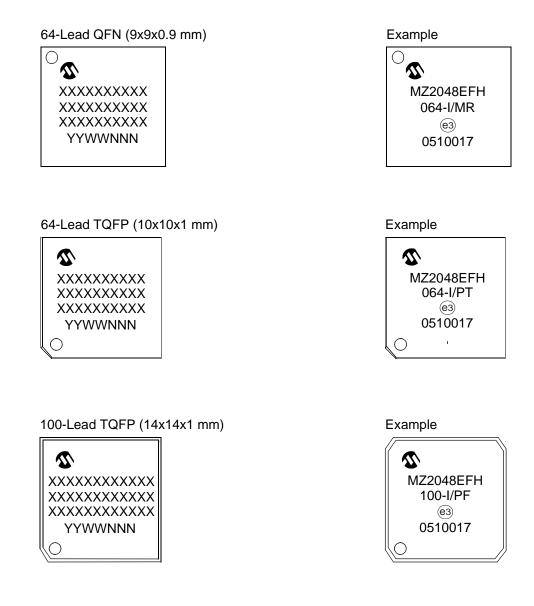
Legend:	r = Reserved bit	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 31 Reserved: Write as '1'
- bit 30 UPLLFSEL: USB PLL Input Frequency Select bit 1 = UPLL input clock is 24 MHz 0 = UPLL input clock is 12 MHz
- bit 29-19 Reserved: Write as '1'

bit 18-16 FPLLODIV<2:0>: Default System PLL Output Divisor bits

- 111 = PLL output divided by 32
- 110 = PLL output divided by 32
- 101 = PLL output divided by 32
- 100 = PLL output divided by 16
- 011 = PLL output divided by 8
- 010 = PLL output divided by 4
- 001 = PLL output divided by 2
- 000 = PLL output divided by 2
- bit 15 Reserved: Write as '1'

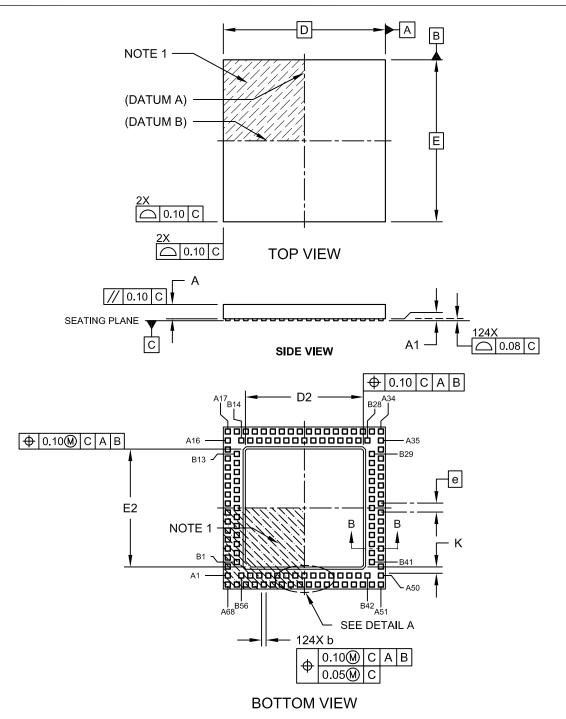
bit 14-8 FPLLMULT<6:0>: System PLL Feedback Divider bits


- 1111111 = Multiply by 128 1111110 = Multiply by 127 1111101 = Multiply by 126
- 1111100 = Multiply by 125
- •
- 0000000 = Multiply by 1
- bit 7 FPLLICLK: System PLL Input Clock Select bit
 - 1 = FRC is selected as input to the System PLL
 - 0 = Posc is selected as input to the System PLL

bit 6-4 **FPLLRNG<2:0>:** System PLL Divided Input Clock Frequency Range bits

- 111 = Reserved
- 110 = Reserved
- 101 = 34-64 MHz
- 100 = 21-42 MHz
- 011 = 13-26 MHz
- 010 = 8-16 MHz
- 001 = 5-10 MHz
- 000 = Bypass

41.0 PACKAGING INFORMATION


41.1 Package Marking Information

Legend	XXX	Customer-specific information							
	Y	Year code (last digit of calendar year)							
	YY	Year code (last 2 digits of calendar year)							
	WW	Week code (week of January 1 is week '01')							
	NNN	Alphanumeric traceability code							
	Pb-free JEDEC designator for Matte Tin (Sn)								
	* This package is Pb-free. The Pb-free JEDEC designator (e_3)								
		can be found on the outer packaging for this package.							
Note:	In the event the full Microchip part number cannot be marked on one line, it will								
	be carried over to the next line, thus limiting the number of available								
	characters for customer-specific information.								
L									

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-193A Sheet 1 of 2

$\begin{array}{c} \bullet \\ \bullet \\ A2 \\ \bullet \\ A1 \\ \bullet \\ \bullet \\ (L1) \\ \bullet \end{array}$

144-Lead Plastic Thin Quad Flatpack (PH)-16x16x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Number of Pins	Ν	144			
Lead Pitch	е	0.40 BSC			
Overall Height	А	-	-	1.20	
Molded PackageThickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Overall Width	D	18.00 BSC			
Overall Length	E	18.00 BSC			
Molded Body Width	D1	16.00 BSC			
Molded Body Length	E1	16.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.13	-	0.23	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-155B Sheet 2 of 2