

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efh144-i-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

124	-PIN VTLA (BOTTOM VIEW)	A17		E	A34 ₃₁₃ B29	
	PIC32MZ0512EF(E/F/K)124 PIC32MZ1024EF(G/H/M)124 PIC32MZ1024EF(E/F/K)124 PIC32MZ2048EF(G/H/M)124			A1	B1 B41 B56	A51
	Pol	arity Inc	lica	tor	A68	
Package Pin #	Full Pin Name			Package Pin #	Full Pin Name	
B1	EBIA5/AN34/PMA5/RA5			B29	Vss	
B2	EBID6/AN16/PMD6/RE6			B30	D+	
B3	EBIA6/AN22/RPC1/PMA6/RC1			B31	RPF2/SDA3/RF2	
B4	AN36/ETXD1/RJ9			B32	ERXD0/RH8	
B5	EBIWE/AN20/RPC3/PMWR/RC3			B33	ECOL/RH10	
B6	AN14/C1IND/RPG6/SCK2/RG6			B34	EBIRDY1/SDA2/RA3	
B7	EBIA3/AN12/C2IND/RPG8/SCL4/PMA3/RG8			B35	Vdd	
B8	VDD			B36	EBIA9/RPF4/SDA5/PMA9/RF4	
B9	EBIA2/AN11/C2INC/RPG9/PMA2/RG9			B37	RPA14/SCL1/RA14	
B10	AN25/RPE8/RE8			B38	EBIA15/RPD9/PMCS2/PMA15/RD9	
B11	AN45/C1INA/RPB5/RB5			B39	EMDC/RPD11/RD11	
B12	AN37/ERXCLK/EREFCLK/RJ11			B40	ERXDV/ECRSDV/RH13	
B13	Vss			B41	SOSCI/RPC13/RC13	
B14	PGEC2/AN46/RPB6/RB6			B42	EBID14/RPD2/PMD14/RD2	
B15	Vref-/CVref-/AN27/RA9			B43	EBID12/RPD12/PMD12/RD12	
B16	AVdd			B44	ETXERR/RJ0	
B17	AN38/ETXD2/RH0			B45	EBIRDY3/RJ2	
B18	EBIA10/AN48/RPB8/PMA10/RB8			B46	SQICS1/RPD5/RD5	
B19	EBIA13/CVREFOUT/AN5/RPB10/PMA13/RB10			B47	ETXCLK/RPD7/RD7	
B20	Vss			B48	Vss	
B21	TCK/EBIA19/AN29/RA1			B49	EBID10/RPF1/PMD10/RF1	
B22	TDO/EBIA17/AN31/RPF12/RF12			B50	EBID8/RPG0/PMD8/RG0	
B23	AN8/RB13			B51	TRD3/SQID3/RA7	
B24	EBIA0/AN10/RPB15/OCFB/PMA0/RB15			B52	EBID0/PMD0/RE0	
B25	Vdd			B53	Vdd	
B26	AN41/ERXD1/RH5			B54	TRD2/SQID2/RG14	
B27	AN32/AETXD0/RPD14/RD14			B55	TRD0/SQID0/RG13	
B28	OSC1/CLKI/RC12			B56	EBID3/RPE3/PMD3/RE3	

TABLE 4: **PIN NAMES FOR 124-PIN DEVICES (CONTINUED)**

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2:

Every I/O port pin (RAx-RJx) can be used as a change notification pin (CNAx-CNJx). See Section 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	PWPULOCK	—	_	—	—		_	_			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	PWP<23:16>										
45.0	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8				PWP<	15:8>						
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	7:0 PWP<7:0>										

REGISTER 5-7: NVMPWP: PROGRAM FLASH WRITE-PROTECT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 PWPULOCK: Program Flash Memory Page Write-protect Unlock bit

1 = Register is not locked and can be modified

0 = Register is locked and cannot be modified

This bit is only clearable and cannot be set except by any reset.

bit 30-24 Unimplemented: Read as '0'

bit 23-0 PWP<23:0>: Flash Program Write-protect (Page) Address bits

Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress ¢)	b	e						- /		Bi	ts								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0864	OFF201	31:16	—	—	—	—	_	_		—		—		—	—	_	VOFF<	17:16>	0000
0004	011201	15:0								VOFF<15:1>								—	0000
0868	OFF202	31:16	—	—	—	_	_	—	—	—	-	—	-	—	—	_	VOFF<	17:16>	0000
0000	011202	15:0								VOFF<15:1>								_	0000
0874	OFF205	31:16	—	—	—	_	_	—		—		—		_	—	_	VOFF<	17:16>	0000
0074	011203	15:0								VOFF<15:1>								—	0000
0070	OFF206	31:16	_	—	—	_	_	_		_		—		_	—	_	VOFF<	17:16>	0000
0878	OFF200	15:0								VOFF<15:1>								—	0000
0870	OFF207	31:16	—	—	—	_	_	—	—	—	-	—	-	_	—	_	VOFF<	17:16>	0000
0070	0FF207	15:0								VOFF<15:1>								—	0000
0000	OFF208	31:16	_	—	_	_	_	_		_		_		—	—	_	VOFF<	17:16>	0000
0880	OFF200	15:0								VOFF<15:1>								—	0000
0004	OFF209	31:16	_	—	_	_	-	-	-	_	-	—	-	—	-	_	VOFF<	17:16>	0000
0004	0FF209	15:0								VOFF<15:1>								_	0000
0000	OFF210	31:16	-	_	_	-	-	_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
0000	OFF210	15:0								VOFF<15:1>								_	0000
0004	055040	31:16	—	_	—	—	—	_	—	_	—	—	—	—	_	_	VOFF<	17:16>	0000
0894	OFF213	15:0								VOFF<15:1>								_	0000

Legend: x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

This bit or register is not available on devices without a CAN module. 3:

This bit or register is not available on 100-pin devices. 4:

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

6: 7: This bit or register is not available on devices without a Crypto module.

8: This bit or register is not available on 124-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_		_	-	_	_	—	—
00.40	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_		_	—	—
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	_	_	_	—
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_			TUN<	5:0> ⁽¹⁾		

REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

Legend:

· J · · ·			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-6 Unimplemented: Read as '0'

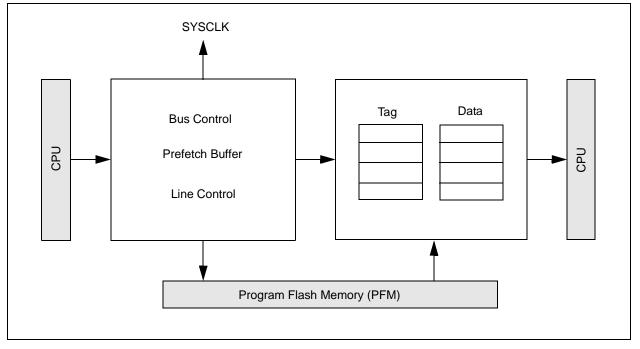
Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized nor tested.

Note:	Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced
	PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

9.0 PREFETCH MODULE

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 41. "Prefetch Module for Devices with L1 CPU Cache" (DS60001183) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Prefetch module is a performance enhancing module that is included in the PIC32MZ EF family of devices. When running at high-clock rates, Wait states must be inserted into Program Flash Memory (PFM) read transactions to meet the access time of the PFM. Wait states can be hidden to the core by prefetching and storing instructions in a temporary holding area that the CPU can access quickly. Although the data path to the CPU is 32 bits wide, the data path to the PFM is 128 bits wide. This wide data path provides the same bandwidth to the CPU as a 32-bit path running at four times the frequency.


The Prefetch module holds a subset of PFM in temporary holding spaces known as lines. Each line contains a tag and data field. Normally, the lines hold a copy of what is currently in memory to make instructions or data available to the CPU without Flash Wait states.

The following are key features of the Prefetch module:

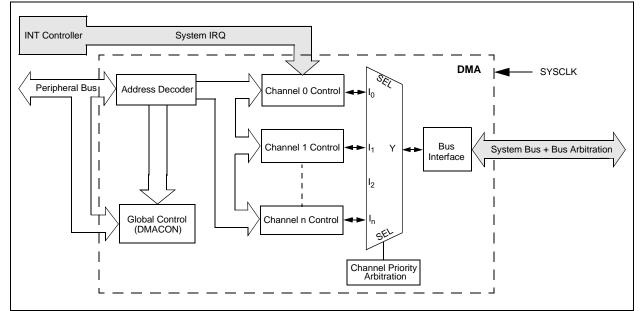
- 4x16 byte fully-associative lines
- One line for CPU instructions
- · One line for CPU data
- Two lines for peripheral data
- 16-byte parallel memory fetch
- Configurable predictive prefetch
- Error detection and correction

A simplified block diagram of the Prefetch module is shown in Figure 9-1.

FIGURE 9-1: PREFETCH MODULE BLOCK DIAGRAM

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The Direct Memory Access (DMA) Controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the device such as SPI, UART, PMP, etc., or memory itself.

The following are key features of the DMA Controller:

- Eight identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination
- Fixed priority channel arbitration

FIGURE 10-1: DMA BLOCK DIAGRAM

- Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Up to 2-byte Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent error address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	_	-	—	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_		—			—
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	ON	—	_	SUSPEND	DMABUSY	_	_	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0		_		_	_			_

REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** DMA On bit
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 Unimplemented: Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally
- bit 11 DMABUSY: DMA Module Busy bit
 - 1 = DMA module is active and is transferring data
 - 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'

REGISTER 11-13: USBOTG: USB OTG CONTROL/STATUS REGISTER (CONTINUED)

bit 0 SESSION: Active Session Control/Status bit

- 'A' device:
- 1 = Start a session
- 0 = End a session

'B' device:

1 = (Read) Session has started or is in progress, (Write) Initiate the Session Request Protocol
 0 = When USB module is in Suspend mode, clearing this bit will cause a software disconnect

Clearing this bit when the USB module is not suspended will result in undefined behavior.

TABLE 12-20: PORTJ REGISTER MAP FOR 144-PIN DEVICES ONLY

ess		0								Bits									
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0800	ANSELJ	31:16		_	_	_	_	—		_	-	—		-	-	—	—	—	0000
0000	ANOLLJ	15:0	—	—	—	—	ANSJ11	—	ANSJ9	ANSJ8	_	—	_	_		—	—	—	0B00
0810	TRISJ	31:16	—	—	—	—	_	—	_	_	_	—	_	_		—		—	0000
0010	11(100	15:0	TRISJ15	TRISJ14	TRISJ13	TRISJ12	TRISJ11	TRISJ10	TRISJ9	TRISJ8	TRISJ7	TRISJ6	TRISJ5	TRISJ4	TRISJ3	TRISJ2	TRISJ1	TRISJ0	FFFF
0820	PORTJ	31:16	—	—	—	—	_	—	_	_	_	—	_	_		—		—	0000
0020	1 OKI3	15:0	RJ15	RJ14	RJ13	RJ12	RJ11	RJ10	RJ9	RJ8	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	xxxx
0830	LATJ	31:16	—	—	—	—	—	—	-	_	_	—	-	—	-	—	—	—	0000
0000	LAIS	15:0	LATJ15	LATJ14	LATJ13	LATJ12	LATJ11	LATJ10	LATJ9	LATJ8	LATJ7	LATJ6	LATJ5	LATJ4	LATJ3	LATJ2	LATJ1	LATJ0	xxxx
0840	ODCJ	31:16	—	—	—	—	—	—	-	_	_	—	-	—	-	—	—	—	0000
0040	0000	15:0	ODCJ15	ODCJ14	ODCJ13	ODCJ12	ODCJ11	ODCJ10	ODCJ9	ODCJ18	ODCJ7	ODCJ6	ODCJ5	ODCJ4	ODCJ3	ODCJ2	ODCJ1	ODCJ0	0000
0850	CNPUJ	31:16	—	—	—	—	—	—	-	_	_	—	-	—	-	—	—	—	0000
0000		15:0	CNPUJ15	CNPUJ14	CNPUJ13	CNPUJ12	CNPUJ11	CNPUJ10	CNPUJ9	CNPUJ8	CNPUJ7	CNPUJ6	CNPUJ5	CNPUJ4	CNPUJ3	CNPUJ2	CNPUJ1	CNPUJ0	0000
0860	CNPDJ	31:16	—	—	—	—	—	—	-	_	_	—	-	—	-	—	—	—	0000
0000		15:0	CNPDJ15	CNPDJ14	CNPDJ13	CNPDJ12	CNPDJ11	CNPDJ10	CNPDJ9	CNPDJ8	CNPDJ7	CNPDJ6	CNPDJ5	CNPDJ4	CNPDJ3	CNPDJ2	CNPDJ1	CNPDJ0	0000
		31:16	—	—	—	—	—	—	-	_	_	—	-	—	-	—	—	—	0000
0870	CNCONJ	15:0	ON	-	-	-	EDGE DETECT	—	_	—	—	-	—	—	—	—	—	—	0000
		31:16	_	_	_	_	_	_		-		_				—	_	_	0000
0880	CNENJ	15:0	CNENJ15	CNENJ14	CNENJ13	CNENJ12	CNENJ11	CNENJ10	CNENJ9	CNENJ8	CNENJ7	CNENJ6	CNENJ5	CNENJ4	CNENJ3	CNENJ2	CNENJ1	CNENJ0	0000
		31:16	_	_	_	_	_	_			-	_		-	-	_	_	_	0000
0890	CNSTATJ	15:0	CN STATJ15	CN STATJ14	CN STATJ13	CN STATJ12	CN STATJ11	CN STATJ10	CN STATJ9	CN STATJ8	CN STATJ7	CN STATJ6	CN STATJ5	CN STATJ4	CN STATJ3	CN STATJ2	CN STATJ1	CN STATJ0	0000
0040		31:16	_	_	_	_	_	_		_	_	_		-	-	_	_	_	0000
08A0	CNNEJ	15:0	CNNEJ15	CNNEJ14	CNNEJ13	CNNEJ12	CNNEJ11	CNNEJ10	CNNEJ9	CNNEJ8	CNNEJ7	CNNEJ6	CNNEJ5	CNNEJ4	CNNEJ3	CNNEJ2	CNNEJ1	CNNEJ0	0000
0000		31:16	_	_	_	_		_				_				_	_	_	0000
08B0	CNFJ	15:0	CNFJ15	CNFJ14	CNFJ13	CNFJ12	CNFJ11	CNFJ10	CNFJ9	CNFJ8	CNFJ7	CNFJ6	CNFJ5	CNFJ4	CNFJ3	CNFJ2	CNFJ1	CNFJ0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER ('x' = 2-9) (CONTINUED)

bit 2 Unimplemented: Read as '0'

- bit 1 TCS: Timer Clock Source Select bit⁽¹⁾
 - 1 = External clock from TxCK pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
 - 2: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.
 - 3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	-	—	—	—	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	-	—	—	—	_	—
15:8	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0.61	SPISGNEXT	—	-	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7.0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	AUDEN ⁽¹⁾	—	_	—	AUDMONO ^(1,2)		AUDMOD	<1:0> ^(1,2)

REGISTER 19-2: SPIxCON2: SPI CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
bit 15	SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
	1 = Data from RX FIFO is sign extended
	0 = Data from RX FIFO is not sign extended
bit 14-13	Unimplemented: Read as '0'
bit 12	FRMERREN: Enable Interrupt Events via FRMERR bit
	1 = Frame Error overflow generates error events
	0 = Frame Error does not generate error events
bit 11	SPIROVEN: Enable Interrupt Events via SPIROV bit
	1 = Receive overflow generates error events
	0 = Receive overflow does not generate error events
bit 10	SPITUREN: Enable Interrupt Events via SPITUR bit
	1 = Transmit Underrun Generates Error Events
	0 = Transmit Underrun Does Not Generates Error Events
bit 9	IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
	1 = A ROV is not a critical error; during ROV data in the FIFO is not overwritten by receive data
	0 = A ROV is a critical error which stop SPI operation
bit 8	IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions)
	1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
1.1.7	0 = A TUR is a critical error which stop SPI operation
bit 7	AUDEN: Enable Audio CODEC Support bit ⁽¹⁾
	1 = Audio protocol is enabled 0 = Audio protocol is disabled
bit 6-5	·
	Unimplemented: Read as '0'
bit 3	AUDMONO: Transmit Audio Data Format bit ^(1,2)
	 1 = Audio data is mono (Each data word is transmitted on both left and right channels) 0 = Audio data is stereo
bit 2	Unimplemented: Read as '0'
bit 1-0	AUDMOD<1:0>: Audio Protocol Mode bit ^(1,2)
bit i o	11 = PCM/DSP mode
	10 = Right Justified mode
	01 = Left Justified mode
	$00 = I^2 S \text{ mode}$

- **Note 1:** This bit can only be written when the ON bit = 0.
 - **2:** This bit is only valid for AUDEN = 1.

TABLE 22-1:	UART1 THROUGH UART6 REGISTER MAP (CONTINUED)
--------------------	--

ess										Bi	ts								6
Virtual Address (BF82_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2600	U4MODE ⁽¹⁾	31:16	—		_	_		_	-	—	_	_	—	—	—	—	—	-	0000
2000	OHNODE	15:0	ON	_	SIDL	IREN	RTSMD	—	UEN		WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
2610	U4STA ⁽¹⁾	31:16		—	—	—	—	—	_	ADM_EN				ADDR		-	-		0000
2010	01017	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
2620	U4TXREG	31:16	—	—	—	—	—	—	_	—	—	—	—		—	—	—	—	0000
2020	OTINILO	15:0	_	—	—	—	—	—		TX8		-		Transmit	Register	-	-		0000
2630	U4RXREG	31:16	_	—	—	—	—	—		—	—	—	—		—	—	—	—	0000
2030	OHININEO	15:0	—	-	—	—	—	—	-	RX8				Receive	Register				0000
2640	U4BRG ⁽¹⁾	31:16	—	_	_	—	—	_	-	—	—	—	—	—	—	—	—	_	0000
2040	040100	15:0							Bau	d Rate Gene	erator Pres	caler							0000
2800	U5MODE ⁽¹⁾	31:16	_		_		_	_		—	—	_	_	_	_	_	_		0000
2000	03WODL	15:0	ON		SIDL	IREN	RTSMD	Ι	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
2810	U5STA ⁽¹⁾	31:16	_	_	-	—	—		-	ADM_EN				ADDR	R<7:0>				0000
2010	055TA* 7	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
2820	U5TXREG	31:16	_	_	—	_	—		_	—	_	—	—	_	_	_	—	_	0000
2820	USIAREG	15:0	_	_	—	—	—	—	_	TX8				Transmit	Register				0000
2020	U5RXREG	31:16	_	_	—	—	—	—	_	—	_	—	—	_	—	—	—	—	0000
2830	USKAREG	15:0	_	_	_	—	—	_	_	RX8				Receive	Register				0000
2840	U5BRG ⁽¹⁾	31:16	_	_	—	—	—	—	_	—	_	—	—	_	—	—	—	—	0000
2840	USBKG'	15:0							Bau	d Rate Gene	erator Pres	caler							0000
0.4.00	U6MODE ⁽¹⁾	31:16	_	—	_	—	—	_	_	—	_	_	—	_	_	_	—	—	0000
2A00	U6MODE	15:0	ON		SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
2A10	U6STA ⁽¹⁾	31:16	—	-	_	—	—	_		ADM_EN				ADDR	8<7:0>				0000
2A 10	0651A.7	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
0.4.00		31:16	—	—	—	—	—	_		—	—	—	—	—	—	—	—	-	0000
2A20	U6TXREG	15:0	—	-	_	_	—	_		TX8				Transmit	Register				0000
0.4.00		31:16	_	_	—	—	—	_	_	—	—	—	—	—	—	—	—	—	0000
2A30	U6RXREG	15:0	_	—	_	—	_	_	_	RX8				Receive	Register				0000
04.40		31:16	_	_	—	_	_	_	_	—	_	—	—		_	—	—		0000
2A40	U6BRG ⁽¹⁾	15:0							Bau	d Rate Gene	erator Pres	caler							0000
Legen	al	- 1		le on Reset: — = unimplemented, read as '0'. Reset values are shown in hexadecimal															

1: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	—	_	-	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	-	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		—	_	_	_	_	—	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				_	AREIE	PKTIE	BDPIE	PENDIE ⁽¹⁾

REGISTER 26-7: CEINTEN: CRYPTO ENGINE INTERRUPT ENABLE REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-4 Unimplemented: Read as '0'
- bit 3 AREIE: Access Response Error Interrupt Enable bit
 - 1 = Access response error interrupts are enabled
 - 0 = Access response error interrupts are not enabled
- bit 2 PKTIE: DMA Packet Completion Interrupt Enable bit
 - 1 = DMA packet completion interrupts are enabled
 - 0 = DMA packet completion interrupts are not enabled
- bit 1 BDPIE: DMA Buffer Descriptor Processor Interrupt Enable bit
 - 1 = BDP interrupts are enabled
 - 0 = BDP interrupts are not enabled
- bit 0 **PENDIE:** Master Interrupt Enable bit⁽¹⁾
 - 1 = Crypto Engine interrupts are enabled
 - 0 = Crypto Engine interrupts are not enabled

Note 1: The PENDIE bit is a global enable bit and must be enabled together with the other interrupts desired.

REGISTER 28-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 3 STRGLVL: Scan Trigger High Level/Positive Edge Sensitivity bit

- 1 = Scan trigger is high level sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), the scan trigger will continue for all selected analog inputs, until the STRIG option is removed.
- 0 = Scan trigger is positive edge sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), only a single scan trigger will be generated, which will complete the scan of all selected analog inputs.
- bit 2-0 Unimplemented: Read as '0'

REGISTER 28-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2 (CONTINUED)

REGISTER	20-0. ADCINICONZ. ADC INFUT IN
bit 21	DIFF26: AN26 Mode bit ⁽¹⁾
	1 = AN26 is using Differential mode
	0 = AN26 is using Single-ended mode
bit 20	SIGN26: AN26 Signed Data Mode bit ⁽¹⁾
	1 = AN26 is using Signed Data mode
	0 = AN26 is using Unsigned Data mode
bit 19	DIFF25: AN25 Mode bit ⁽¹⁾
	1 = AN25 is using Differential mode
	0 = AN25 is using Single-ended mode
bit 18	SIGN25: AN25 Signed Data Mode bit ⁽¹⁾
	1 = AN25 is using Signed Data mode
	0 = AN25 is using Unsigned Data mode
bit 17	DIFF24: AN24 Mode bit ⁽¹⁾
	1 = AN24 is using Differential mode
	0 = AN24 is using Single-ended mode
bit 16	SIGN24: AN24 Signed Data Mode bit ⁽¹⁾
	1 = AN24 is using Signed Data mode
	0 = AN24 is using Unsigned Data mode
bit 15	DIFF23: AN23 Mode bit ⁽¹⁾
	1 = AN23 is using Differential mode
	0 = AN23 is using Single-ended mode
bit 14	SIGN23: AN23 Signed Data Mode bit ⁽¹⁾
	1 = AN23 is using Signed Data mode
	0 = AN23 is using Unsigned Data mode
bit 13	DIFF22: AN22 Mode bit ⁽¹⁾
	1 = AN22 is using Differential mode
	0 = AN22 is using Single-ended mode
bit 12	SIGN22: AN22 Signed Data Mode bit ⁽¹⁾
	1 = AN22 is using Signed Data mode
	0 = AN22 is using Unsigned Data mode
bit 11	DIFF21: AN21 Mode bit ⁽¹⁾
	1 = AN21 is using Differential mode
	0 = AN21 is using Single-ended mode
bit 10	SIGN21: AN21 Signed Data Mode bit ⁽¹⁾
	1 = AN21 is using Signed Data mode
	0 = AN21 is using Unsigned Data mode
bit 9	DIFF20: AN20 Mode bit ⁽¹⁾
	1 = AN20 is using Differential mode
	0 = AN20 is using Single-ended mode
bit 8	SIGN20: AN20 Signed Data Mode bit ⁽¹⁾
	1 = AN20 is using Signed Data mode
	0 = AN20 is using Unsigned Data mode
bit 7	DIFF19: AN19 Mode bit ⁽¹⁾
	1 = AN19 is using Differential mode
	0 = AN19 is using Single-ended mode

Note 1: This bit is not available on 64-pin devices.

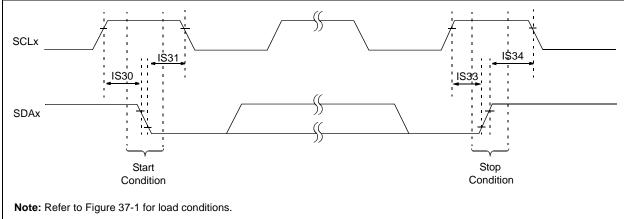
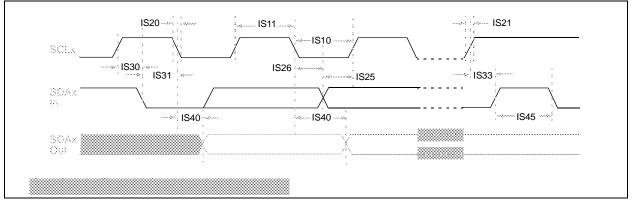
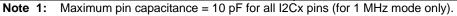
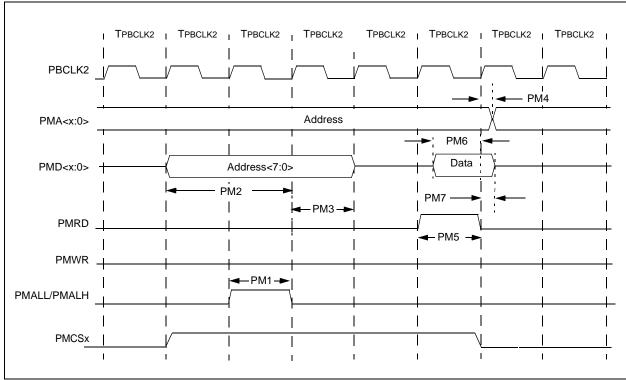

Peripheral	PMDx bit Name	Register Name and Bit Location
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
UART6	U6MD	PMD5<5>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
SPI3	SPI3MD	PMD5<10>
SPI4	SPI4MD	PMD5<11>
SPI5	SPI5MD	PMD5<12>
SPI6	SPI6MD	PMD5<13>
I2C1	I2C1MD	PMD5<16>
I2C2	I2C2MD	PMD5<17>
12C3	I2C3MD	PMD5<18>
I2C4	I2C4MD	PMD5<19>
12C5	I2C5MD	PMD5<20>
USB ⁽²⁾	USBMD	PMD5<24>
CAN1	CAN1MD	PMD5<28>
CAN2	CAN2MD	PMD5<29>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output 1	REFO1MD	PMD6<8>
Reference Clock Output 2	REFO2MD	PMD6<9>
Reference Clock Output 3	REFO3MD	PMD6<10>
Reference Clock Output 4	REFO4MD	PMD6<11>
PMP	PMPMD	PMD6<16>
EBI	EBIMD	PMD6<17>
SQI1	SQI1MD	PMD6<23>
Ethernet	ETHMD	PMD6<28>
DMA	DMAMD	PMD7<4>
Random Number Generator	RNGMD	PMD7<20>
Crypto	CRYPTMD	PMD7<22>

TABLE 33-1: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS⁽¹⁾ (CONTINUED)


Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the lists of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.



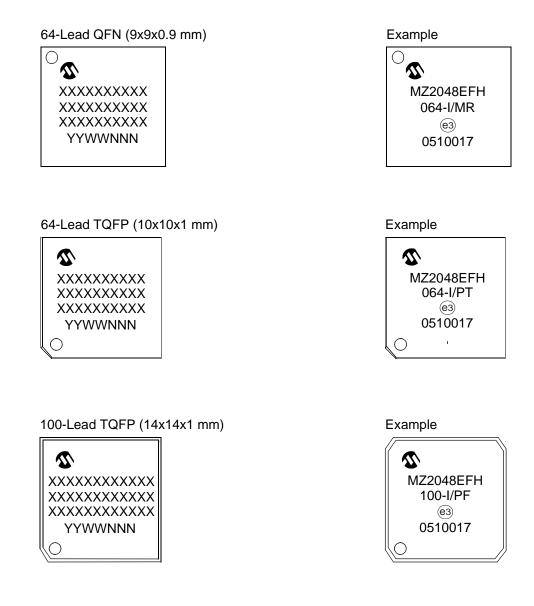

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. No. Symbol Characteristics			eristics	Min.	Max.	Units	Conditions		
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	-	μs	PBCLK must operate at a minimum of 800 kHz		
			400 kHz mode	1.3	—	μs	PBCLK must operate at a minimum of 3.2 MHz		
			1 MHz mode (Note 1)	0.5	—	μs	_		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μs	PBCLK must operate at a minimum of 800 kHz		
			400 kHz mode	0.6	—	μs	PBCLK must operate at a minimum of 3.2 MHz		
			1 MHz mode (Note 1)	0.5	—	μs	—		

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Conditions					
TS10	Vts	Rate of Change	—	+5	_	mV/ºC	—		
TS11	TR	Resolution	—	±5	—	°C	—		
TS12	IVtemp	Voltage Range	0.5	—	1.5	V	—		
TS13	TMIN	Minimum Temperature	—	-40	_	°C	IVTEMP = 0.5V		
TS14	Тмах	Maximum Temperature		160		°C	IVTEMP = 1.5V		

TABLE 37-41: TEMPERATURE SENSOR SPECIFICATIONS

Note 1: The temperature sensor is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 37-22: PARALLEL MASTER PORT READ TIMING DIAGRAM


TABLE 37-43: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions			
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 TPBCLK2	_	_				
PM2	TADSU	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	—	2 TPBCLK2	—	—	_			
PM3	TADHOLD	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 TPBCLK2	_		_			
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	—	_	ns	_			
PM5	Trd	PMRD Pulse Width	_	1 TPBCLK2	_	—	_			
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	—			
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	80	—	ns	—			

Note 1: These parameters are characterized, but not tested in manufacturing.

41.0 PACKAGING INFORMATION

41.1 Package Marking Information

Legend	XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
		Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator ($\stackrel{(e3)}{ ext{e}3}$
		can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will	
	be carrie	d over to the next line, thus limiting the number of available
	characters for customer-specific information.	
L		