

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efk064-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4:PIN NAMES FOR 124-PIN DEVICES

124	-PIN VTLA (BOTTOM VIEW) A1	7		A34 B29		
	PIC32MZ0512EF(E/F/K)124 PIC32MZ1024EF(G/H/M)124 PIC32MZ1024EF(E/F/K)124 PIC32MZ2048EF(G/H/M)124			B1 E	B41 56	A51
	Polarity	Indica	A1 tor	A	68	
Package Pin #	Full Pin Name		Package Pin #		Full Pin Name	
A1	No Connect	_	A35	VBUS		
A2	AN23/RG15		A36	VUSB3	/3	
Δ3	EBID5/AN17/RPE5/PMD5/RE5		Δ37	D-		
A4	EBID7/AN15/PMD7/RE7		A38	RPF3/	USBID/RE3	
A5			A39	FBIRE	Y2/RPF8/SCI 3/RF8	
A6	FBIA12/AN21/RPC2/PMA12/RC2		A40	FRXD	3/RH9	
Δ7			Δ41	EBICS	0/SCI 2/RA2	
A8	EBIA4/AN13/C1INC/RPG7/SDA4/PMA4/RG7		A42	FBIA1	4/PMCS1/PMA14/RA4	
A9	Vss		A43	Vss		
A10	MCLR		A44	EBIA8	/RPF5/SCL5/PMA8/RF5	
A11	TMS/EBIA16/AN24/RA0		A45	RPA1	5/SDA1/RA15	
A12	AN26/RPE9/RE9		A46	RPD1	D/SCK4/RD10	
A13	AN4/C1INB/RB4		A47	ECRS	/RH12	
A14	AN3/C2INA/RPB3/RB3		A48	RPD0	RTCC/INT0/RD0	
A15	Vdd		A49	SOSC	O/RPC14/T1CK/RC14	
A16	AN2/C2INB/RPB2/RB2		A50	Vdd		
A17	PGEC1/AN1/RPB1/RB1		A51	Vss		
A18	PGED1/AN0/RPB0/RB0		A52	RPD1	SCK1/RD1	
A19	PGED2/AN47/RPB7/RB7		A53	EBID1	5/RPD3/PMD15/RD3	
A20	VREF+/CVREF+/AN28/RA10		A54	EBID1	3/PMD13/RD13	
A21	AVss		A55	EMDIO	D/RJ1	
A22	AN39/ETXD3/RH1		A56	SQICS	60/RPD4/RD4	
A23	EBIA7/AN49/RPB9/PMA7/RB9		A57	ETXE	N/RPD6/RD6	
A24	AN6/RB11		A58	Vdd		
A25	Vdd		A59	EBID1	1/RPF0/PMD11/RF0	
A26	TDI/EBIA18/AN30/RPF13/SCK5/RF13		A60	EBID	/RPG1/PMD9/RG1	
A27	EBIA11/AN7/PMA11/RB12		A61	TRCL	K/SQICLK/RA6	
A28	EBIA1/AN9/RPB14/SCK3/PMA1/RB14		A62	RJ4		
A29	Vss		A63	Vss		
A30	AN40/ERXERR/RH4		A64	EBID1	/PMD1/RE1	
A31	AN42/ERXD2/RH6		A65	TRD1/	SQID1/RG12	
A32	AN33/RPD15/SCK6/RD15		A66	EBID2	/SQID2/PMD2/RE2	
A33	OSC2/CLKO/RC15		A67	EBID4	/AN18/PMD4/RE4	
A34	No Connect		A68	No Co	nnect	

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RJx) can be used as a change notification pin (CNAx-CNJx). See Section 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

	Virtual Memory Map			Physical Memory Map	
0xFFFFFFF 0xF4000000	Reserved			Reserved	0xFFFFFFFF
0xF3FFFFF 0xF0000000	External Memory via SQI	G3 ⁽⁴⁾ heable			0x34000000
0xE4000000	Reserved	KSE of cac		External Memory via SQI	0x33FFFFFF
0xE3FFFFF 0xE0000000	External Memory via EBI	ב 		Reserved	0x30000000
0xD4000000	Reserved			External Memory via	0x24000000 0x23FFFFFF
0xD0000000	SQI	EG2 ⁽⁴⁾ theable		EBI	0x20000000
0xC4000000	Reserved	(cac		Reserved	0x1FC74000
0xC3FFFFF 0xC0000000	External Memory via EBI	~		Boot Flash (see Figure 4-5)	0x1FC73FFF
0xBFFFFFF 0xBFC74000 0xBFC73FFF	Reserved			Reserved	0x1F900000
0xBFC00000	Boot Flash (see Figure 4-5)			SFRs	0x1F8FFFFF
0xBF900000	Reserved				0x1F800000
0xBF8FFFF	SFRs (see Table 4-1)	11 able)		Reserved	0x1D200000
0xBF800000	Reserved	KSEG t cache		Program Flash	0x1D1FFFFF
0xBD200000 0xBD1FFFFF		- Dou		Reserved	
0xBD000000	Program Flash			RAM ⁽³⁾	0x00080000 0x0007FFFF
0xA0080000	Reserved				0×00000000
0xA007FFF	RAM ⁽³⁾)		
0xA000000	Reserved	\leq			
0x9FC74000 0x9FC73FFF		_			
0x9FC00000	Boot Flash (see Figure 4-5)				
0x9D200000	Reserved	EG0 eable)			
0x9D1FFFFF 0x9D000000	Program Flash	KS (cach			
0x80080000	Reserved				
0x8007FFFF	RAM ⁽³⁾		ļ		
0x80000000	Reserved		/		
0x0000000	Momony]	to 00010		
Note 1: 2:	The Cache, MMU, and	snown TLB a	to scale. are initialized by compile	er start-up code.	
3: •	RAM memory is divided	d into t	wo equal banks: RAM	Bank 1 and RAM Bank 2	on a half boundary.
4.	The wine must be end	sicu a			

TABLE 4-17: SYSTEM BUS TARGET 9 REGISTER MAP

ess											Bits								
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
A 420		31:16	MULTI	—		—		CODE	<3:0>		_	-	—	—	—	—	—	—	0000
A420	SBIGELOGI	15:0				INI	TID<7:0>					REGIO	N<3:0>		—	С	MD<2:0>		0000
A 4 2 4		31:16		_	_	_	_	—	_				_	—	—	—	_	—	0000
A424	3B19ELOG2	15:0		_		_	_	—	—				—	—	_	_	GROU	P<1:0>	0000
A 4 2 9	SPTOFCON	31:16	_	-		_	_	-	_	ERRP			_	_	—	-	_	-	0000
A420	SBISECON	15:0	_	-		_	_	-	_				_	_	—	-	_	-	0000
A 420		31:16		—	-	—	—	—	—	-	_	_	—	—	—	_	—	—	0000
7430	OBTIECENO	15:0	—	—	_	—	—	—	—	_	_	_	—	—	—	_	—	CLEAR	0000
A/38		31:16	—	—	_	—	—	—	—	_	_	_	—	—	—	_	—	—	0000
7430	ODISECEN	15:0	—		_	—	—	_	—	—	—	_	—	—	—	_	—	CLEAR	0000
A440	SBT9REGO	31:16								BA	SE<21:6>								
71440	OBTOREGO	15:0			BA	ASE<5:0>			PRI	_	SIZE<4:0> — —				—	_	xxxx		
A450	SBT9RD0	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
///00	CETORES	15:0	_	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A458	SBT9WR0	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
////00	CETOTING	15:0		—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A460	SBT9REG1	31:16								BA	SE<21:6>								xxxx
///00	OBTOREOT	15:0		1	BA	ASE<5:0>	-		PRI	_			SIZE<4:0	>	-	_	—	—	xxxx
A470	SBT9RD1	31:16	—	_	_	—	—	—	—	_	_	_	—	—	—	—	—	—	xxxx
	02.500	15:0	_	_	—	—	-	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A478	SBT9WR1	31:16	—	_	_	—	—	—	—	_	_	_		_	—	—	_	—	xxxx
/ 10	00100000	15:0	—	—	_	_	_	—	—	_	—	_	—	-	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

		(x = 0.10)						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
7:0								CLEAR

REGISTER 4-6: SBTxECLRS: SYSTEM BUS TARGET 'x' SINGLE ERROR CLEAR REGISTER ('x' = 0-13)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Single Error on Read bit A single error as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

REGISTER 4-7: SBTxECLRM: SYSTEM BUS TARGET 'x' MULTIPLE ERROR CLEAR REGISTER ('x' = 0-13)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
7:0					_		_	CLEAR

Legend:	
---------	--

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Multiple Errors on Read bit Multiple errors as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

© 2015-2016 Microchip Technology Inc.

ILCI31											
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24		PRI7SS	<3:0> ⁽¹⁾		RW-0 RW-0 <th< td=""></th<>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	PRI5SS<3:0> ⁽¹⁾				PRI4SS<3:0> ⁽¹⁾						
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0		PRI3S	S<3:0>		PRI2SS<3:0> ⁽¹⁾						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0			
7:0		PRI1SS	<3:0> ⁽¹⁾		_		—	SS0			

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re-	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 **PRI7SS<3:0>:** Interrupt with Priority Level 7 Shadow Set bits⁽¹⁾

1xxx = Reserved (by default, an interrupt with a priority level of 7 uses Shadow Set 0) 0111 = Interrupt with a priority level of 7 uses Shadow Set 7 0110 = Interrupt with a priority level of 7 uses Shadow Set 6 0001 = Interrupt with a priority level of 7 uses Shadow Set 1 0000 = Interrupt with a priority level of 7 uses Shadow Set 0 bit 27-24 **PRI6SS<3:0>:** Interrupt with Priority Level 6 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 6 uses Shadow Set 0) 0111 = Interrupt with a priority level of 6 uses Shadow Set 7 0110 = Interrupt with a priority level of 6 uses Shadow Set 6 0001 = Interrupt with a priority level of 6 uses Shadow Set 1 0000 = Interrupt with a priority level of 6 uses Shadow Set 0 bit 23-20 PRI5SS<3:0>: Interrupt with Priority Level 5 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 5 uses Shadow Set 0) 0111 = Interrupt with a priority level of 5 uses Shadow Set 7 0110 = Interrupt with a priority level of 5 uses Shadow Set 6 0001 = Interrupt with a priority level of 5 uses Shadow Set 1 0000 = Interrupt with a priority level of 5 uses Shadow Set 0 bit 19-16 PRI4SS<3:0>: Interrupt with Priority Level 4 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 4 uses Shadow Set 0) 0111 = Interrupt with a priority level of 4 uses Shadow Set 7 0110 = Interrupt with a priority level of 4 uses Shadow Set 6 0001 = Interrupt with a priority level of 4 uses Shadow Set 1 0000 = Interrupt with a priority level of 4 uses Shadow Set 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	—		IP3<2:0>	IS3<1:0>		
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	—		IP2<2:0>	IS2<1:0>		
15.9	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	—	—	—		IP1<2:0>		IS1<	:1:0>
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_		_		IP0<2:0>		IS0<	:1:0>

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 2	8-26	IP3<2:0>: Interrupt Priority bits
		111 = Interrupt priority is 7
		•
		•
		-
		0.01 = Interrupt priority is 1
		000 = Interrupt is disabled
bit 2	5-24	IS3<1:0>: Interrupt Subpriority bits
		11 = Interrupt subpriority is 3
		10 = Interrupt subpriority is 2
		01 = Interrupt subpriority is 1
		00 = Interrupt subpriority is 0
bit 2	3-21	Unimplemented: Read as '0'
bit 2	0-18	IP2<2:0>: Interrupt Priority bits
		111 = Interrupt priority is 7
		•
		•
		•
		010 = Interrupt priority is 1
		0.01 = Interrupt promy is 1
hit 1	7 16	
DILI	7-10	132<1.0>. Interrupt Subpriority bits
		11 = Interrupt subpriority is 3
		10 = 1000000000000000000000000000000000
		01 = Interrupt subpriority is 0
hit 1	5-13	Unimplemented: Read as '0'
DIL I	0-10	ommpionented. Neau as 0
No	ote:	This register represents a generic def

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-2 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y				
31.24	—	—	—	—		F	PLLODIV<2:0>					
22.16	U-0	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y				
23.10	—	PLLMULT<6:0>										
15.0	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y				
15.0	—						PLLIDIV<2:0>					
7.0	R/W-y	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y				
7:0	PLLICLK				_	Pl	LRANGE<2:	0>				

REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER

Legend:	y = Value set from Configuration bits on POR					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknow				

bit 31-27 Unimplemented: Read as '0'

bit 26-24 PLLODIV<2:0>: System PLL Output Clock Divider bits

111 = Reserved 110 = Reserved 101 = PLL Divide by 32 100 = PLL Divide by 16 011 = PLL Divide by 8 010 = PLL Divide by 4 001 = PLL Divide by 2 000 = Reserved

The default setting is specified by the FPLLODIV<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

bit 23 Unimplemented: Read as '0'

bit 22-16 PLLMULT<6:0>: System PLL Multiplier bits

- 1111111 = Multiply by 128 1111110 = Multiply by 127 1111101 = Multiply by 126 1111100 = Multiply by 125
- •

0000000 = Multiply by 1

The default setting is specified by the FPLLMULT<6:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

bit 15-11 Unimplemented: Read as '0'

Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "*PIC32 Family Reference Manual*" for details.
Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

<i>(</i> 0		 						-,			Bits								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3028	USB	31:16		DATA<31:16> 0000															
0020	FIFO2	15:0								C	DATA<15:0>								0000
302C	USB	31:16								D	ATA<31:16>								0000
	FIFU3	15:0								0	DATA<15:0>								0000
3030	USB FIFO4	31:16								D	AIA<31:16>								0000
		31.16									ΔTA < 15:0>								0000
3034	FIFO5	15.0								р г	ATA<51.10>								0000
	LISB	31:16								D	ATA<31:16>								0000
3038	FIFO6	15:0								C	DATA<15:0>								0000
	USB	31:16								D	ATA<31:16>								0000
3030	FIF07	15:0								C	OATA<15:0>								0000
2060	USBOTO	31:16	—	—	—	RXDPB		RXFIFC	OSZ<3:0>		—	_	_	TXDPB		TXFIFOSZ	<3:0>		0000
3060	15:0 TXEDMA RXEDMA BDEV FSDEV LSDEV VBUS<1:0> HOSTMODE H					HOSTREQ	SESSION	N 0080											
3064	USB	31:16	:16 — — — RXFIFOAD<12:0>									0000							
	FIFOA	15:0	_							0000									
306C	USB	31:16	_	_	—	—	—	—	—	—	—	—	—	_	—	-	—	_	0000
	HWVER	15:0	RC		VE	RMAJOR<4:	0>					MEO	VERMINC)R<9:0>	1		0		0800
3078	USB INFO	31:16		DMACHAN	10 - 2-0-	VPLEN	<7:0>	DAMD	ITC -2:05								:U>		3C5C
		31.16	_	DIVIACHAIN			_		NRSTY	NRST		KAEND	10<0.0>	I SEOE-7	0>	TAENDETS	<3.0>		0072
307C	EOFRST	15:0				FSEOF	<7:0>		NIXOTX	NICOT				HSEOF<7	:0>				7780
	USB	31:16	_			TX	HUBPRT<6	:0>			MULTTRAN			TXHU	BADD<6:0>				0000
3080	EOTXA	15:0	_	_	_	_	_	_	_	_	_	-		TXFA	DDR<6:0>				0000
	USB	31:16	_			RX	HUBPRT<6	:0>			MULTTRAN			RXHU	BADD<6:0>				0000
3084	EORXA	15:0	_	_	—	_	_	_	_	_	—	_	_	_	_	_	_	_	0000
2088	USB	31:16	_			TX	HUBPRT<6	:0>			MULTTRAN			TXHU	BADD<6:0>				0000
5000	E1TXA	15:0	—	—	—	—	—	—	—	—	—			TXFA	DDR<6:0>				0000
308C	USB	31:16	_			RX	HUBPRT<6	:0>	1		MULTTRAN			RXHU	BADD<6:0>				0000
	E1RXA	15:0	_	—	—	—	—		_	—	—			RXFA	DDR<6:0>				0000
3090		31:16	_			TX	HUBPRT<6	:0>			MULTTRAN			TXHU	BADD<6:0>				0000
	LZIAA	15:0	_	_	_			<u> </u>	_	_									0000
3094	USB E2RXA	31:16	KXHUBPR1<6:0> MULTIRAN RXHUBADD<6:0>							0000									
		31.16	_			тх	HUBPRT-6	:0>			MULTTRAN			ТХНП	BADD<6:0>				0000
3098	E3TXA	15:0																	
Leger Note	LESTAR 15:0 - - - - - 0000 rend: x = unknown value on Reset; = unimplemented, read as '0'. Reset values are shown in hexadecimal. 0000 e 1: Device mode. 2: Host mode. 3: Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). 0. 4: Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).																		

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1			
31.24	THHSRTN<15:8>										
22.16	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0			
23.10	THHSRTN<7:0>										
45.0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	TUCH<15:8>										
7.0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1	R/W-0	R/W-0			
7:0				TUCH	l<7:0>						

REGISTER 11-26: USBTMCON1: USB TIMING CONTROL REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **THHSRTN:<15:0>:** Hi-Speed Resume Signaling Delay bits These bits set the delay from the end of Hi-Speed resume signaling (acting as a Host) to enable the UTM normal operating mode.

bit 15-0 **TUCH<15:0>:** Chirp Time-out bits These bits set the chirp time-out. This number, when multiplied by 4, represents the number of USB module clock cycles before the time-out occurs.

Note: Use of this register will allow the Hi-Speed time-out to be set to values that are greater than the maximum specified in the USB 2.0 specification, making the USB module non-compliant.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	_	_	_	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	—	_	_	_	—	
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.0	—	—	—	—	_	_	_	—	
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	—	—	—	—		THBS	Γ<3:0>		

REGISTER 11-27: USBTMCON2: USB TIMING CONTROL REGISTER 2

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 THBST<3:0>: High Speed Time-out Adder bits

These bits represent the value to be added to the minimum high speed time-out period of 736 bit times. The time-out period can be increased in increments of 64 Hi-Speed bit times (133 ns).

Note: Use of this register will allow the Hi-Speed time-out to be set to values that are greater than the maximum specified in the USB 2.0 specification, making the USB module non-compliant.

REGISTER 11-30: USBCRCON: USB CLOCK/RESET CONTROL REGISTER (CONTINUED)

- bit 3 SENDMONEN: Session End VBUS Monitoring for OTG Enable bit
 - 1 = Enable monitoring for VBUS in Session End range (between 0.2V and 0.8V)
 - 0 = Disable monitoring for VBUS in Session End range
- bit 2 USB General Interrupt Enable bit
 - 1 = Enables general interrupt from USB module
 - 0 = Disables general interrupt from USB module
- bit 1 USBRIE: USB Resume Interrupt Enable bit
 - 1 = Enable remote resume from suspend Interrupt
 - 0 = Disable interrupt to a Remote Devices USB resume signaling

bit 0 USBWKUPEN: USB Activity Detection Interrupt Enable bit

- 1 = Enable interrupt for detection of activity on USB bus in Sleep mode
- 0 = Disable interrupt for detection of activity on USB bus in Sleep mode

The timer source for each Output Compare module depends on the setting of the OCACLK bit in the CFG-CON register. The available configurations are shown in Table 18-1.

TABLE 18-1:	TIMER SOURCE
	CONFIGURATIONS

Output Compare Module	Timerx	Timery					
OCACLK (CFGCON<16>) = 0							
OC1	Timer2	Timer3					
•	•	•					
•	•	•					
•	•	•					
OC9	Timer2	Timer3					
OCACLK (CFGC	OCACLK (CFGCON<16>) = 1						
OC1	Timer4	Timer5					
OC2	Timer4	Timer5					
OC3	Timer4	Timer5					
OC4	Timer2	Timer3					
OC5	Timer2	Timer3					
OC6	Timer2	Timer3					
OC7	Timer6	Timer7					
OC8	Timer6	Timer7					
OC9	Timer6	Timer7					

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
31:24	—	—	—	—	—	—	—	ADM_EN		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	ADDR<7:0>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1		
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT		
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0		
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA		

REGISTER 22-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled

bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

- bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits
 - 11 = Reserved, do not use
 - 10 = Interrupt is generated and asserted while the transmit buffer is empty
 - 01 = Interrupt is generated and asserted when all characters have been transmitted
 - 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space
- bit 13 UTXINV: Transmit Polarity Inversion bit
 - If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):
 - 1 = UxTX Idle state is '0'
 - 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'
- bit 12 URXEN: Receiver Enable bit
 - 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset
- bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register is Empty bit (read-only)
 - 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	S/HC-0	R/W-1	R/W-0	R/W-0	
31.24	—	—	—	—	ABAT	F	REQOP<2:0>		
22.10	R-1	R-0	R-0	R/W-0	U-0	U-0	U-0	U-0	
23.10	OPMOD<2:0>			CANCAP	—	—	—	—	
45.0	R/W-0	U-0	R/W-0	U-0	R-0	U-0	U-0	U-0	
15:8	ON ⁽¹⁾	—	SIDLE	—	CANBUSY	—	—	—	
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	_	_	_						

REGISTER 29-1: CICON: CAN MODULE CONTROL REGISTER

Legend:	HC = Hardware Clear	S = Settable bit	
R = Readable bit	W = Writable bit	P = Programmable bit	r = Reserved bit
U = Unimplemented bit	t -n = Bit Value at POR: ('	0'. '1'. x = Unknown)	

bit 31-28 Unimplemented: Read as '0'

bit 27 **ABAT:** Abort All Pending Transmissions bit

- 1 = Signal all transmit buffers to abort transmission
- 0 = Module will clear this bit when all transmissions aborted

bit 26-24 REQOP<2:0>: Request Operation Mode bits

- 111 = Set Listen All Messages mode
- 110 = Reserved Do not use
- 101 = Reserved Do not use
- 100 = Set Configuration mode
- 011 = Set Listen Only mode
- 010 = Set Loopback mode
- 001 = Set Disable mode
- 000 = Set Normal Operation mode

bit 23-21 OPMOD<2:0>: Operation Mode Status bits

- 111 = Module is in Listen All Messages mode
- 110 = Reserved
- 101 = Reserved
- 100 = Module is in Configuration mode
- 011 = Module is in Listen Only mode
- 010 = Module is in Loopback mode
- 001 = Module is in Disable mode
- 000 = Module is in Normal Operation mode

bit 20 CANCAP: CAN Message Receive Time Stamp Timer Capture Enable bit

- 1 = CANTMR value is stored on valid message reception and is stored with the message
- 0 = Disable CAN message receive time stamp timer capture and stop CANTMR to conserve power
- bit 19-16 Unimplemented: Read as '0'
- bit 15 **ON:** CAN On bit⁽¹⁾
 - 1 = CAN module is enabled
 - 0 = CAN module is disabled
- bit 14 Unimplemented: Read as '0'
- **Note 1:** If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—		—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	—	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	—	—	—	-	—	—
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0
7:0	_	CVROE	CVRR	CVRSS	CVR<		<3:0>	

REGISTER 32-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

bit 15	ON: Comparator Voltage Reference On bit						
	1 = Module is enabled						
	Setting this bit does not affect other bits in the register.						
	0 = Module is disabled and does not consume current.						
	Clearing this bit does not affect the other bits in the register.						
bit 14-7	Unimplemented: Read as '0'						
bit 6	CVROE: CVREFOUT Enable bit						
	1 = Voltage level is output on CVREFOUT pin						
	0 = Voltage level is disconnected from CVREFOUT pin						
bit 5	CVRR: CVREF Range Selection bit						
	1 = 0 to 0.67 CVRSRC, with CVRSRC/24 step size						
	0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size						
bit 4	CVRSS: CVREF Source Selection bit						
	1 = Comparator voltage reference source, CVRSRC = (VREF+) - (VREF-)						
	0 = Comparator voltage reference source, CVRSRC = AVDD – AVSS						
bit 3-0	CVR<3:0>: CVREF Value Selection $0 \le$ CVR<3:0> \le 15 bits						
	When CVRR = 1:						
	$CVREF = (CVR < 3:0 > /24) \bullet (CVRSRC)$						
	When CVRR = 0:						
	$CVREF = 1/4 \bullet (CVRSRC) + (CVR<3:0>/32) \bullet (CVRSRC)$						

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-0	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31.24	—	—	—	—	—	—	—	—
22:46	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23.10	—	—	—	—	—	—	—	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	—	—	—	—	—	—	—	—
7:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
	_	_	_	_	_	_	_	_

REGISTER 34-1: DEVSIGN0/ADEVSIGN0: DEVICE SIGNATURE WORD 0 REGISTER

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Reserved: Write as '0'

bit 30-0 Reserved: Write as '1'

Note: The DEVSIGN1 through DEVSIGN3 and ADEVSIGN1 through ADEVSIGN3 registers are used for Quad Word programming operation when programming the DEVSIGN0/ADESIGN0 registers, and do not contain any valid information.

REGISTER 34-2: DEVCP0/ADEVCP0: DEVICE CODE-PROTECT 0 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-1	r-1	r-1	R/P	r-1	r-1	r-1	r-1
31:24	—	—	—	СР	—	—	—	—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	—	—	—	—	—	—	—	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	—	—	—	—	—	—	—	—
7:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
					_		_	_

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Reserved: Write as '1'

bit 28 **CP:** Code-Protect bit

Prevents boot and program Flash memory from being read or modified by an external programming device. 1 = Protection is disabled

0 = Protection is enabled

bit 27-0 Reserved: Write as '1'

Note: The DEVCP1 through DEVCP3 and ADEVCP1 through ADEVCP3 registers are used for Quad Word programming operation when programming the DEVCP0/ADEVCP0 registers, and do not contain any valid information.

36.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

36.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

36.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

36.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

36.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

DC CHARACTERISTICS			Standard (unless of Operating	l Operatin otherwise g temperat	ig Condit stated) ture -40° -40°	ions: 2.1 °C ≤ TA ≤ °C ≤ TA ≤	V to 3.6V +85℃ for Industrial +125℃ for Extended
Param. No. Symbol Characteristics Min. Typical Max. Units Control					Conditions		
Operati	ng Voltag	e					
DC10	Vdd	Supply Voltage (Note 1)	2.1	—	3.6	V	—
DC12	Vdr	RAM Data Retention Voltage (Note 2)	2.0		—	V	_
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal (Note 3)	1.75	—	_	V	_
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.000011	—	1.1	V/µs	300 ms to 3 µs @ 3.3V

TABLE 37-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: This is the limit to which VDD must be lowered to ensure Power-on Reset.

TABLE 37-5: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾ Typical Max. Units Conditions				Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low (Note 2)	1.88		2.02	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

FIGURE 37-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 37-32: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time (Note 3)	Tscк/2	—		ns	—	
SP71	TscH	SCKx Input High Time (Note 3)	Тѕск/2	—		ns	—	
SP72	TscF	SCKx Input Fall Time	_	_	_	ns	See parameter DO32	
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	—	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	—	ns	See parameter DO31	
SP35	TSCH2DOV,	SDOx Data Output Valid after			7	ns	VDD > 2.7V	
	TscL2doV	SCKx Edge	—	—	10	ns	VDD < 2.7V	
SP40	TDIV2sCH, TDIV2sCL	Setup Time of SDIx Data Input to SCKx Edge	5	—	_	ns	_	
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	5	—	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx}\downarrow$ to SCKx \uparrow or SCKx Input	88	—	—	ns	—	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	2.5	_	12	ns	_	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	10	_		ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 20 ns.

4: Assumes 30 pF load on all SPIx pins.

AC CHARACTERISTICS				Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param. No.	Symbol	Characteristics		Min.	Max.	Units	Conditions	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode		100	ns		
			(Note 1)					
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode (Note 1)	—	300	ns		
IS25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	_	
			400 kHz mode	100	—	ns		
			1 MHz mode (Note 1)	100	—	ns		
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns		
			400 kHz mode	0	0.9	μs		
			1 MHz mode (Note 1)	0	0.3	μs		
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4700	—	ns	Only relevant for Repeated	
			400 kHz mode	600	—	ns	Start condition	
			1 MHz mode (Note 1)	250	—	ns		
IS31	Thd:sta	Start Condition Hold Time	100 kHz mode	4000	—	ns	After this period, the first	
			400 kHz mode	600	—	ns	clock pulse is generated	
			1 MHz mode (Note 1)	250		ns		
IS33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4000	—	ns	—	
			400 kHz mode	600	—	ns		
			1 MHz mode (Note 1)	600	—	ns		
IS34	Thd:sto	Stop Condition Hold Time	100 kHz mode	4000	—	ns	—	
			400 kHz mode	600	—	ns		
			1 MHz mode (Note 1)	250		ns		
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—	
			400 kHz mode	0	1000	ns		
			1 MHz mode (Note 1)	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus	
			400 kHz mode	1.3	—	μs	must be free before a new	
			1 MHz mode (Note 1)	0.5	—	μs	transmission can start	
IS50	Св	Bus Capacitive Lo	ading	—	—	pF	See parameter DO58	

TABLE 37-36: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

144-Lead Plastic Low Profile Quad Flatpack (PL) - 20x20x1.40 mm Body [LQFP] 2.00 mm Footprint

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E 0.50 BSC			
Contact Pad Spacing	C1		21.40	
Contact Pad Spacing	C2		21.40	
Contact Pad Width (X144)	X1			0.30
Contact Pad Length (X144)	Y1			1.55

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2044B