

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efk064t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3: **PIN NAMES FOR 100-PIN DEVICES**

100-PIN TQFP (TOP VIEW)

Pin #

1

2

3

4

5

6

7

8

9

10

11

12

13

14 Vdd

15

Vss

MCLR

PIC32MZ0512EF(E/F/K)100 PIC32MZ1024EF(G/H/M)100 PIC32MZ1024EF(E/F/K)100 PIC32MZ2048EF(G/H/M)100

Full Pin Name Pin # Full Pin Name AN23/AERXERR/RG15 36 Vss EBIA5/AN34/PMA5/RA5 37 Vdd EBID5/AN17/RPE5/PMD5/RE5 TCK/EBIA19/AN29/RA1 38 TDI/EBIA18/AN30/RPF13/SCK5/RF13 EBID6/AN16/PMD6/RE6 39 EBID7/AN15/PMD7/RE7 40 TDO/EBIA17/AN31/RPF12/RF12 EBIA6/AN22/RPC1/PMA6/RC1 41 EBIA11/AN7/ERXD0/AECRS/PMA11/RB12 EBIA12/AN21/RPC2/PMA12/RC2 42 AN8/ERXD1/AECOL/RB13 EBIWE/AN20/RPC3/PMWR/RC3 43 EBIA1/AN9/ERXD2/AETXD3/RPB14/SCK3/PMA1/RB14 EBIOE/AN19/RPC4/PMRD/RC4 44 EBIA0/AN10/ERXD3/AETXD2/RPB15/OCFB/PMA0/RB15 AN14/C1IND/ECOL/RPG6/SCK2/RG6 45 Vss EBIA4/AN13/C1INC/ECRS/RPG7/SDA4/PMA4/RG7 Vdd 46 EBIA3/AN12/C2IND/ERXDV/ECRSDV/AERXDV/ AECRSDV/RPG8/SCL4/PMA3/RG8 47 AN32/AETXD0/RPD14/RD14 AN33/AETXD1/RPD15/SCK6/RD15 48 49 OSC1/CLKI/RC12 OSC2/CLKO/RC15 50 EBIA2/AN11/C2INC/ERXCLK/EREFCLK/AERXCLK/

100

1

16	AEREFCLK/RPG9/PMA2/RG9		51	VBUS
17	TMS/EBIA16/AN24/RA0	Ī	52	VUSB3V3
18	AN25/AERXD0/RPE8/RE8	1	53	Vss
19	AN26/AERXD1/RPE9/RE9	ĺ	54	D-
20	AN45/C1INA/RPB5/RB5	Î.	55	D+
21	AN4/C1INB/RB4	Ī	56	RPF3/USBID/RF3
22	AN3/C2INA/RPB3/RB3	[57	EBIRDY3/RPF2/SDA3/RF2
23	AN2/C2INB/RPB2/RB2		58	EBIRDY2/RPF8/SCL3/RF8
24	PGEC1/AN1/RPB1/RB1	1	59	EBICS0/SCL2/RA2
25	PGED1/AN0/RPB0/RB0	Î.	60	EBIRDY1/SDA2/RA3
26	PGEC2/AN46/RPB6/RB6	I	61	EBIA14/PMCS1/PMA14/RA4
27	PGED2/AN47/RPB7/RB7		62	Vdd
28	VREF-/CVREF-/AN27/AERXD2/RA9	I	63	Vss
29	VREF+/CVREF+/AN28/AERXD3/RA10		64	EBIA9/RPF4/SDA5/PMA9/RF4
30	AVdd		65	EBIA8/RPF5/SCL5/PMA8/RF5
31	AVss	I	66	AETXCLK/RPA14/SCL1/RA14
32	EBIA10/AN48/RPB8/PMA10/RB8		67	AETXEN/RPA15/SDA1/RA15
33	EBIA7/AN49/RPB9/PMA7/RB9		68	EBIA15/RPD9/PMCS2/PMA15/RD9
34	EBIA13/CVREFOUT/AN5/RPB10/PMA13/RB10	Ī	69	RPD10/SCK4/RD10
35	AN6/ERXERR/AETXERR/RB11		70	EMDC/AEMDC/RPD11/RD11
1-4-	1. The DDs size and he was down and he see the second here the		- Table	4 for the sourileble manine and south and Souther 40.4 "Denine and

Note an be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin 1: Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

Shaded pins are 5V tolerant. 3:

		Pin Nu	mber							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description			
PORTA										
RA0	—	17	A11	22	I/O	ST	PORTA is a bidirectional I/O port			
RA1	—	38	B21	56	I/O	ST				
RA2	—	59	A41	85	I/O	ST				
RA3	—	60	B34	86	I/O	ST				
RA4	—	61	A42	87	I/O	ST				
RA5	—	2	B1	2	I/O	ST				
RA6	—	89	A61	129	I/O	ST				
RA7	—	90	B51	130	I/O	ST				
RA9	—	28	B15	39	I/O	ST				
RA10	—	29	A20	40	I/O	ST				
RA14	—	66	B37	95	I/O	ST				
RA15	—	67	A45	96	I/O	ST				
	_				PO	RTB				
RB0	16	25	A18	36	I/O	ST	PORTB is a bidirectional I/O port			
RB1	15	24	A17	35	I/O	ST				
RB2	14	23	A16	34	I/O	ST				
RB3	13	22	A14	31	I/O	ST				
RB4	12	21	A13	26	I/O	ST				
RB5	11	20	B11	25	I/O	ST	-			
RB6	17	26	B14	37	I/O	ST	-			
RB7	18	27	A19	38	I/O	ST	-			
RB8	21	32	B18	47	I/O	ST	-			
RB9	22	33	A23	48	I/O	ST	-			
RB10	23	34	B19	49	I/O	ST	-			
RB11	24	35	A24	50	I/O	ST	-			
RB12	27	41	A27	59	I/O	ST				
RB13	28	42	B23	60	I/O	ST				
RB14	29	43	A28	61	I/O	ST				
RB15	30	44	B24	62	I/O	ST				
					PO	RTC	1			
RC1	—	6	B3	6	I/O	ST	PORTC is a bidirectional I/O port			
RC2	—	7	A6	11	I/O	ST				
RC3		8	B5	12	I/O	ST				
RC4		9	A7	13	I/O	ST				
RC12	31	49	B28	71	I/O	ST				
RC13	47	72	B41	105	I/O	ST				
RC14	48	73	A49	106	I/O	ST				
RC15	32	50	A33	72	I/O	ST				
Legend:	CMOS = C	MOS-comp	atible input	or output		Analog =	Analog input P = Power			

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select I = Input

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	—	—	—		—	
	U-0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x
23:16	-	_	_	—		_	CAUSE<5:4>	
							E	V
	R/W-x	R/W-x	R/W-x	U-0	U-0	U-0	U-0	U-0
15:8		CAUSE						
	Z	0	U	I		_	_	—
	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	U-0	U-0
7:0		FLAGS<4:0>						
		V	Z	0	U	I		

REGISTER 3-8: FEXR: FLOATING POINT EXCEPTIONS STATUS REGISTER; CP1 REGISTER 26

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-18 Unimplemented: Read as '0'

bit 17-12 **CAUSE<5:0>:** FPU Exception Cause bits These bits indicated the exception conditions that arise during execution of an FPU arithmetic instruction.

- bit 17 E: Unimplemented Operation bit
- bit 16 V: Invalid Operation bit
- bit 15 **Z:** Divide-by-Zero bit
- bit 14 **O:** Overflow bit
- bit 13 **U:** Underflow bit
- bit 12 I: Inexact bit
- bit 11-7 Unimplemented: Read as '0'
- bit 6-2 FLAGS<4:0>: FPU Flags bits

These bits show any exception conditions that have occurred for completed instructions since the flag was last reset by software.

- bit 6 V: Invalid Operation bit
- bit 4 **Z:** Divide-by-Zero bit
- bit 4 O: Overflow bit
- bit 3 U: Underflow bit
- bit 2 I: Inexact bit
- bit 1-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	—	—		—	—	—
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—		—	—	—
45.0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8	—	—	T13PGV	T12PGV	T11PGV	T10PGV	T9PGV	T8PGV
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	T7PGV	T6PGV	T5PGV	T4PGV	T3PGV	T2PGV	T1PGV	TOPGV

REGISTER 4-2: SBFLAG: SYSTEM BUS STATUS FLAG REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-14 Unimplemented: Read as '0'

bit 13-0 **TxPGV:** Target 'x' Permission Group Violation Status bits ('x' = 0-13)

Refer to Table 4-6 for the list of available targets and their descriptions.

- 1 = Target is reporting a Permission Group (PG) violation
- 0 = Target is not reporting a PG violation

Note: All errors are cleared at the source (i.e., SBTxELOG1, SBTxELOG2, SBTxECLRS, or SBTxECLRM registers).

REGISTER 5-1: NVMCON: FLASH PROGRAMMING CONTROL REGISTER (CONTINUED)

bit 6 **BFSWAP:** Boot Flash Bank Alias Swap Control bit

This bit is only writable when WREN = 0 and the unlock sequence has been performed.

- 1 = Boot Flash Bank 2 is mapped to the lower boot alias and boot Flash Bank 1 is mapped to the upper boot alias
- 0 = Boot Flash Bank 1 is mapped to the lower boot alias and boot Flash Bank 2 is mapped to the upper boot alias
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **NVMOP<3:0>:** NVM Operation bits

These bits are only writable when WREN = 0.

1111 = Reserved

1000 = Reserved

- 0111 = Program erase operation: erase all of program Flash memory (all pages must be unprotected, PWP<23:0> = 0x000000)
- 0110 = Upper program Flash memory erase operation: erases only the upper mapped region of program Flash (all pages in that region must be unprotected)
- 0101 = Lower program Flash memory erase operation: erases only the lower mapped region of program Flash (all pages in that region must be unprotected)
- 0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
- 0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected
- 0010 = Quad Word (128-bit) program operation: programs the 128-bit Flash word selected by NVMADDR, if it is not write-protected
- 0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected⁽²⁾ 0000 = No operation
- Note 1: These bits are only reset by a Power-on Reset (POR) and are not affected by other reset sources.
 - 2: This operation results in a "no operation" (NOP) when the Dynamic Flash ECC Configuration bits = 00 (FECCCON<1:0> (DVCFG0<9:8>)), which enables ECC at all times. For all other FECCCON<1:0> bit settings, this command will execute, but will not write the ECC bits for the word and can cause DED errors if dynamic Flash ECC is enabled (FECCCON<1:0> = 01). Refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) for information regarding ECC and Flash programming.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—		—	—
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
15:8	LBWPULOCK	—	—	LBWP4 ⁽¹⁾	LBWP3 ⁽¹⁾	LBWP2 ⁽¹⁾	LBWP1 ⁽¹⁾	LBWP0 ⁽¹⁾
7:0	R/W-1	r-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	UBWPULOCK	_	_	UBWP4 ⁽¹⁾	UBWP3 ⁽¹⁾	UBWP2 ⁽¹⁾	UBWP1 ⁽¹⁾	UBWP0 ⁽¹⁾

REGISTER 5-8: NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER

Legend:		r = Reserved		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

	•
bit 15	LBWPULOCK: Lower Boot Alias Write-protect Unlock bit
	1 = LBWPx bits are not locked and can be modified
	0 = LBWPx bits are locked and cannot be modified
	This bit is only clearable and cannot be set except by any reset.
bit 14-13	Unimplemented: Read as '0'
bit 12	LBWP4: Lower Boot Alias Page 4 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF enabled 0 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF disabled
bit 11	LBWP3: Lower Boot Alias Page 3 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF enabled 0 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF disabled
bit 10	LBWP2: Lower Boot Alias Page 2 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF enabled 0 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF disabled
bit 9	LBWP1: Lower Boot Alias Page 1 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF enabled 0 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF disabled
bit 8	LBWP0: Lower Boot Alias Page 0 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF enabled 0 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF disabled
bit 7	UBWPULOCK: Upper Boot Alias Write-protect Unlock bit
	 1 = UBWPx bits are not locked and can be modified 0 = UBWPx bits are locked and cannot be modified This bit is only user-clearable and cannot be set except by any reset.
bit 6	Reserved: This bit is reserved for use by development tools
bit 5	Unimplemented: Read as '0'
Note 1:	These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)

- bit 2
 TSYNC: Timer External Clock Input Synchronization Selection bit

 When TCS = 1:
 1 = External clock input is synchronized

 0 = External clock input is not synchronized
 When TCS = 0:

 When TCS = 0:
 This bit is ignored.

 bit 1
 TCS: Timer Clock Source Select bit
- 1 = External clock from T1CKI pin 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	—	—	—	INIT2SCHECK	INIT2CO	UNT<1:0>	INIT2TY	PE<1:0>	
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	INIT2CMD3<7:0> ⁽¹⁾								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	INIT2CMD2<7:0> ⁽¹⁾								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				INIT2CMD1<	7:0> ⁽¹⁾				

REGISTER 20-26: SQI1XCON4: SQI XIP CONTROL REGISTER 4

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28 INIT2SCHECK: Flash Initialization 2 Command Status Check bit 1 = Check the status after executing the INIT2 command 0 = Do not check the status
- bit 27-26 INIT2COUNT<1:0>: Flash Initialization 2 Command Count bits
 - 11 = INIT2CMD1, INIT2CMD2, and INIT2CMD3 are sent
 - 10 = INIT2CMD1 and INIT2CMD2 are sent, but INIT2CMD3 is still pending
 - 01 = INIT2CMD1 is sent, but INIT2CMD2 and INIT2CMD3 are still pending
 - 00 = No commands are sent
- bit 25-24 INIT2TYPE<1:0>: Flash Initialization 2 Command Type bits
 - 11 = Reserved
 - 10 = INIT2 commands are sent in Quad Lane mode
 - 01 = INIT2 commands are sent in Dual Lane mode
 - 00 = INIT2 commands are sent in Single Lane mode
- bit 24-16 **INIT2CMD3<7:0>:** Flash Initialization Command 3 bits⁽¹⁾ Third command of the Flash initialization.
- bit 15-8 **INIT2CMD2<7:0>:** Flash Initialization Command 2 bits⁽¹⁾ Second command of the Flash initialization.
- bit 7-0 **INIT2CMD1<7:0>:** Flash Initialization Command 1 bits⁽¹⁾ First command of the Flash initialization.
- **Note 1:** INIT2CMD1 can be WEN and INIT2CMD2 can be SECTOR UNPROTECT.

Note: Some Flash devices require Write Enable and Sector Unprotect commands before read/write operations and this register is useful in working with those Flash types (XIP mode only)

23.0 PARALLEL MASTER PORT (PMP)

Note:	This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive refer- ence source. To complement the informa- tion in this data sheet, refer to Section 13 .
	"Parallel Master Port (PMP)" (DS60001128) in the "PIC32 Family Ref- erence Manual", which is available from the Microchip web site (www.micro- chip.com/PIC32).

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. The following are key features of the PMP module:

- 8-bit,16-bit interface
- Up to 16 programmable address lines
- Up to two Chip Select lines
- Programmable strobe options:
 - Individual read and write strobes, or
 - Read/write strobe with enable strobe
- Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- Parallel Slave Port support:
 - Legacy addressable
 - Address support
 - 4-byte deep auto-incrementing buffer
- Programmable Wait states
- Operate during Sleep and Idle modes
- Separate configurable read/write registers or dual buffers for Master mode
- Fast bit manipulation using CLR, SET, and INV registers

Note: On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04-04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
31:24		YEAR1	0<3:0>		YEAR01<3:0>				
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16		MONTH	10<3:0>		MONTH01<3:0>				
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8		DAY10	<3:0>		DAY01<3:0>				
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
7:0				—	WDAY01<3:0>				
Legend:									
R = Read	able bit		W = Writable	e bit	U = Unimplemented bit read as '0'				

'0' = Bit is cleared

x = Bit is unknown

REGISTER 25-4: RTCDATE: REAL-TIME CLOCK DATE VALUE REGISTER

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10 digits

'1' = Bit is set

bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1 digit

bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10 digits; contains a value from 0 to 1

bit 19-16 **MONTH01<3:0>:** Binary-Coded Decimal Value of Months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

-n = Value at POR

bit 3-0 WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits,1 digit; contains a value from 0 to 6

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

26.1 Crypto Engine Control Registers

TABLE 26-2: CRYPTO ENGINE REGISTER MAP

ess				Bits						<i>"</i>									
Virtual Addr (BF8E_#)	Register Name	Bit Range	31/15	/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0							All Reset								
5000		31:16				REVISIO	ON<7:0>							VERSI	ON<7:0>				0000
5000	CEVER	15:0								IC	<15:0>								0000
5004	CECON	31:16		—	—	—	—	—	_	—	_		-		—	_	_	—	0000
3004	CECCIN	15:0		—	—	—	—	—	—	—	SWAPOEN	SWRST	SWAPEN		—	BDPCHST	BDPPLEN	DMAEN	0000
5008	CEBDADDR	31:16								BDPA									0000
0000	OLDBRODER	15:0		0000															
500C	CEBDPADDR	31:16																	
		15:0		0000															
5010	CESTAT	31:16	ER	RMODE<2	2:0>	E	RROP<2:0	0>	ERRPHA	ASE<1:0>	—	—		BDSTA	TE<3:0>		START	ACTIVE	0000
		15:0		1				i		BDC	FRL<15:0>					i	i		0000
5014	CEINTSRC	31:16	_		—	-	—	-		—	_	_			—	—	—		0000
		15:0	_	_	-	-	—	-		—		_	—	_	AREIF	PKTIF	CBDIF	PENDIF	0000
5018	CEINTEN	31:16	_									_			-	-	-	-	0000
		15:0					_			_			_		AREIE	PKTE	CBDIE		0000
501C	CEPOLLCON	31:16		—	—	_		_			-		—		—	_		—	0000
		15:0								BDPPL	.CON<15:0>								0000
5020	CEHDLEN	31:16								_	0000								
		15:0					_			_				HDRLE	=N<7:0>				0000
5024	CETRLLEN	31:16	_	_	_		_	_		_	_	_	_			_	_	-	0000
		15:0	_	TRLRLEN<7:0> 0000															

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R/W-0							
31:24	DIFF31 ⁽¹⁾	SIGN31 ⁽¹⁾	DIFF30 ⁽¹⁾	SIGN30 ⁽¹⁾	DIFF29 ⁽¹⁾	SIGN29 ⁽¹⁾	DIFF28 ⁽¹⁾	SIGN28 ⁽¹⁾
	R/W-0							
23:16	DIFF27 ⁽¹⁾	SIGN27 ⁽¹⁾	DIFF26 ⁽¹⁾	SIGN26 ⁽¹⁾	DIFF25 ⁽¹⁾	SIGN25 ⁽¹⁾	DIFF24 ⁽¹⁾	SIGN24 ⁽¹⁾
45-0	R/W-0							
15:8	DIFF23 ⁽¹⁾	SIGN23 ⁽¹⁾	DIFF22 ⁽¹⁾	SIGN22 ⁽¹⁾	DIFF21 ⁽¹⁾	SIGN21 ⁽¹⁾	DIFF20 ⁽¹⁾	SIGN20 ⁽¹⁾
7:0	R/W-0							
	DIFF19 ⁽¹⁾	SIGN19 ⁽¹⁾	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16

REGISTER 28-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	DIFF31: AN31 Mode bit ⁽¹⁾
	1 = AN31 is using Differential mode
	0 = AN31 is using Single-ended mode
bit 30	SIGN31: AN31 Signed Data Mode bit ⁽¹⁾
	1 = AN31 is using Signed Data mode
	0 = AN31 is using Unsigned Data mode
bit 29	DIFF30: AN30 Mode bit ⁽¹⁾
	1 = AN30 is using Differential mode
	0 = AN30 is using Single-ended mode
bit 28	SIGN30: AN30 Signed Data Mode bit ⁽¹⁾
	1 = AN30 is using Signed Data mode
	0 = AN30 is using Unsigned Data mode
bit 27	DIFF29: AN29 Mode bit ⁽¹⁾
	1 = AN29 is using Differential mode
	0 = AN29 is using Single-ended mode
	(4)
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode
bit 26 bit 25	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾
bit 26 bit 25	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode
bit 26 bit 25	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode
bit 26 bit 25 bit 24	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾
bit 26 bit 25 bit 24	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode
bit 26 bit 25 bit 24	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode
bit 25 bit 24 bit 23	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾
bit 25 bit 24 bit 23	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode
bit 25 bit 24 bit 23	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode 0 = AN28 is using Unsigned Data mode 0 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode
bit 25 bit 25 bit 24 bit 23 bit 22	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode SIGN27: AN27 Signed Data Mode bit ⁽¹⁾
bit 25 bit 24 bit 23 bit 22	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode SIGN27: AN27 Signed Data Mode bit ⁽¹⁾ 1 = AN27 is using Signed Data mode
bit 25 bit 24 bit 23 bit 22	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode SIGN27: AN27 Signed Data Mode bit ⁽¹⁾ 1 = AN27 is using Signed Data mode 0 = AN27 is using Signed Data mode 0 = AN27 is using Signed Data mode 0 = AN27 is using Unsigned Data mode 0 = AN27 is using Unsigned Data mode

Note 1: This bit is not available on 64-pin devices.

REGISTER 28-15: ADCCMPx: ADC DIGITAL COMPARATOR 'x' LIMIT VALUE REGISTER ('x' = 1 THROUGH 6)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	DCMPHI<15:8> ^(1,2,3)										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	DCMPHI<7:0> ^(1,2,3)										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	DCMPLO<15:8> ^(1,2,3)										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		DCMPLO<7:0> ^(1,2,3)									

Logond

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

DCMPHI<15:0>: Digital Comparator 'x' High Limit Value bits^(1,2,3) bit 31-16 These bits store the high limit value, which is used by digital comparator for comparisons with ADC converted data.

- DCMPLO<15:0>: Digital Comparator 'x' Low Limit Value bits^(1,2,3) bit 15-0 These bits store the low limit value, which is used by digital comparator for comparisons with ADC converted data.
- Changing theses bits while the Digital Comparator is enabled (ENDCMP = 1) can result in unpredictable Note 1: behavior.
 - 2: The format of the limit values should match the format of the ADC converted value in terms of sign and fractional settings.
 - 3: For Digital Comparator 0 used in CVD mode, the DCMPHI<15:0> and DCMPLO<15:0> bits must always be specified in signed format, as the CVD output data is differential and is always signed.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC		
31:24	AFEN	DATA16EN	DFMODE	C	VRSAM<2:0	AFGIEN	AFRDY			
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	_	—	CHNLID<4:0>						
15.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC							
10.6	FLTRDATA<15:8>									
7.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC							
7:0	FLTRDATA<7:0>									

REGISTER 28-16: ADCFLTRx: ADC DIGITAL FILTER 'x' REGISTER ('x' = 1 THROUGH 6)

Legend:	HS = Hardware Set	HC = Hardware Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared x = Bit is unknown

bit 31 **AFEN:** Digital Filter 'x' Enable bit

- 1 = Digital filter is enabled
- 0 = Digital filter is disabled and the AFRDY status bit is cleared
- bit 30 DATA16EN: Filter Significant Data Length bit
 - 1 = AII 16 bits of the filter output data are significant
 - 0 =Only the first 12 bits are significant, followed by four zeros
 - **Note:** This bit is significant only if DFMODE = 1 (Averaging Mode) and FRACT (ADCCON1<23>) = 1 (Fractional Output Mode).

bit **DFMODE:** ADC Filter Mode bit

- 1 = Filter 'x' works in Averaging mode
- 0 = Filter 'x' works in Oversampling Filter mode (default)

bit 28-26 **OVRSAM<2:0>:** Oversampling Filter Ratio bits

If DFMODE is '0':

- 111 = 128 samples (shift sum 3 bits to right, output data is in 15.1 format)
- 110 = 32 samples (shift sum 2 bits to right, output data is in 14.1 format)
- 101 = 8 samples (shift sum 1 bit to right, output data is in 13.1 format)
- 100 = 2 samples (shift sum 0 bits to right, output data is in 12.1 format)
- 011 = 256 samples (shift sum 4 bits to right, output data is 16 bits)
- 010 = 64 samples (shift sum 3 bits to right, output data is 15 bits)
- 001 = 16 samples (shift sum 2 bits to right, output data is 14 bits)
- 000 = 4 samples (shift sum 1 bit to right, output data is 13 bits)

If DFMODE is '1':

- 111 = 256 samples (256 samples to be averaged)
- 110 = 128 samples (128 samples to be averaged)
- 101 = 64 samples (64 samples to be averaged)
- 100 = 32 samples (32 samples to be averaged)
- 011 = 16 samples (16 samples to be averaged)
- 010 = 8 samples (8 samples to be averaged)
- 001 = 4 samples (4 samples to be averaged)
- 000 = 2 samples (2 samples to be averaged)
- bit 25 **AFGIEN:** Digital Filter 'x' Interrupt Enable bit
 - 1 = Digital filter interrupt is enabled and is generated by the AFRDY status bit
 - 0 = Digital filter is disabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0							
31:24		—	—	—	—	—	—	—
00.40	U-0							
23:16	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	R-0, HS, HC				
15:8	—	—	—	EIRDY44 ⁽²⁾	EIRDY43(2)	EIRDY42 ⁽²⁾	EIRDY41 ⁽²⁾	EIRDY40 ⁽²⁾
7.0	R-0, HS, HC							
7:0	EIRDY39 ⁽²⁾	EIRDY38 ⁽²⁾	EIRDY37 ⁽²⁾	EIRDY36 ⁽²⁾	EIRDY35 ⁽²⁾	EIRDY34 ⁽¹⁾	EIRDY33 ⁽¹⁾	EIRDY32 ⁽¹⁾

REGISTER 28-31: ADCEISTAT2: ADC EARLY INTERRUPT STATUS REGISTER 2

Legend:	: HS = Hardware Set HC = Hardware Cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-13 Unimplemented: Read as '0'

bit 31-0 **EIRDY44:EIRDY32:** Early Interrupt for Corresponding Analog Input Ready bits

- 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN2 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCCIS<2:0> bits in the ADCCON2 register.
- 0 =Interrupts are disabled

Note 1: This bit is not available on 64-pin devices.

2: This bit is not available on 64-pin and 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-0	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	—	—	—	—	—	—	—	—
22:46	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23.10	—	—	—	—	—	—	—	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	—	—	—	—	—	—	—	—
7.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
7:0	_	_	_	_	_	_	_	_

REGISTER 34-1: DEVSIGN0/ADEVSIGN0: DEVICE SIGNATURE WORD 0 REGISTER

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Reserved: Write as '0'

bit 30-0 Reserved: Write as '1'

Note: The DEVSIGN1 through DEVSIGN3 and ADEVSIGN1 through ADEVSIGN3 registers are used for Quad Word programming operation when programming the DEVSIGN0/ADESIGN0 registers, and do not contain any valid information.

REGISTER 34-2: DEVCP0/ADEVCP0: DEVICE CODE-PROTECT 0 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-1	r-1	r-1	R/P	r-1	r-1	r-1	r-1
31:24	—	—	—	СР	—	—	—	—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	—	—	—	—	—	—	—	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	—	—	—	—	—	—	—	—
7:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
					_		_	_

Legend:	r = Reserved bit	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-29 Reserved: Write as '1'

bit 28 **CP:** Code-Protect bit

Prevents boot and program Flash memory from being read or modified by an external programming device. 1 = Protection is disabled

0 = Protection is enabled

bit 27-0 Reserved: Write as '1'

Note: The DEVCP1 through DEVCP3 and ADEVCP1 through ADEVCP3 registers are used for Quad Word programming operation when programming the DEVCP0/ADEVCP0 registers, and do not contain any valid information.

TABLE 37-33:	SPIx MODULE SLAVE MODE	CKE = 1) TIMING REQUIREMENTS	(CONTINUED))
--------------	------------------------	----------------	-----------------------	-------------	---

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature -40°C} \leq TA \leq +85°C \mbox{ for Industrial} \\ -40°C \leq TA \leq +125°C \mbox{ for Extended} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	88	_		ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	2.5	_	12	ns	Ι
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	10	—		ns	—
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	12.5	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 20 ns.

4: Assumes 30 pF load on all SPIx pins.

	I TPBCLK2 I TPBCLK2	TPBCLK2	TPBCLK2	TPBCLK2	TPBCLK2	TPBCLK2	TPBCLK2
PBCLK2		 _//	 	 //		/	
PMA <x:0></x:0>	<u> </u>	↓↓ 	Address				
		⊢ PM2 + PM3	·				
PMD <x:0></x:0>		Address<7:0>	>¥	/ \	Data	/	
			י ל	✓ PM	112	< PM13 -►	
PMRD_		↓		I			
PMWR _		 	ا ا	· /	< PM11 -►		, I
	I I	← PM1 →	ļ	I	I		
PMALL/PMALH		<u> </u>					
PMCSx	I I/	<u>}</u> }					
			•	•			·

FIGURE 37-23: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 37-44: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			d Operating otherwise s g temperatu	g Condition stated) ure -40°0 -40°0	ons: 2.1V C ≤ TA ≤ ++ C ≤ TA ≤ +	to 3.6V 85°C for Industrial 125°C for Extended
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
PM11	Twr	PMWR Pulse Width	—	1 TPBCLK2			
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 TPBCLK2	—	_	_
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 TPBCLK2	_		_

Note 1: These parameters are characterized, but not tested in manufacturing.

41.0 PACKAGING INFORMATION

41.1 Package Marking Information

Legend	: XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	ΥY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
		Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator (e_3
		can be found on the outer packaging for this package. \smile
Note:	In the ever	nt the full Microchip part number cannot be marked on one line, it will
	be carried	over to the next line, thus limiting the number of available
	cnaracters	tor customer-specific information.

144-Lead Plastic Low Profile Quad Flatpack (PL) – 20x20x1.40 mm Body, with 2.00 mm Footprint [LQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-044B Sheet 1 of 2