

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efk100-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
AN0	16	25	A18	36	I	Analog	Analog Input Channels
AN1	15	24	A17	35	I	Analog	
AN2	14	23	A16	34	I	Analog	
AN3	13	22	A14	31	I	Analog	
AN4	12	21	A13	26	I	Analog	
AN5	23	34	B19	49	I	Analog	
AN6	24	35	A24	50	I	Analog	
AN7	27	41	A27	59	I	Analog	
AN8	28	42	B23	60	I	Analog	
AN9	29	43	A28	61	I	Analog	1
AN10	30	44	B24	62	I	Analog	
AN11	10	16	B9	21	I	Analog	
AN12	6	12	B7	16	I	Analog	
AN13	5	11	A8	15	I	Analog	
AN14	4	10	B6	14	I	Analog	
AN15	3	5	A4	5	I	Analog	
AN16	2	4	B2	4	I	Analog	
AN17	1	3	A3	3	I	Analog	
AN18	64	100	A67	144	I	Analog	
AN19	—	9	A7	13	I	Analog	
AN20	—	8	B5	12	I	Analog	
AN21	—	7	A6	11	I	Analog	
AN22	—	6	B3	6	I	Analog	
AN23	—	1	A2	1	I	Analog	
AN24	—	17	A11	22	I	Analog	
AN25	_	18	B10	23	I	Analog	
AN26	—	19	A12	24	I	Analog	
AN27	—	28	B15	39	I	Analog	
AN28	—	29	A20	40	I	Analog	1
AN29	—	38	B21	56	I	Analog	1
AN30	—	39	A26	57	I	Analog]
AN31	—	40	B22	58	I	Analog	1
AN32	—	47	B27	69	I	Analog	1
AN33	—	48	A32	70	I	Analog	1
AN34	_	2	B1	2	I	Analog	1
AN35	—	—	A5	7	I	Analog	1
Legend:	CMOS = C	MOS-comp	atible input	or output		Analog =	Analog input P = Power

TABLE 1-1: ADC PINOUT I/O DESCRIPTIONS

egend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output PPS = Peripheral Pin Select

I = Input

3.1.4 FLOATING POINT UNIT (FPU)

The Floating Point Unit (FPU), Coprocessor (CP1), implements the MIPS Instruction Set Architecture for floating point computation. The implementation supports the ANSI/IEEE Standard 754 (IEEE for Binary Floating Point Arithmetic) for 32-bit and 64-bit floating point data formats. The FPU can be programmed to have thirty-two 32-bit or 64-bit floating point registers used for floating point operations.

The performance is optimized for 32-bit formats. Most instructions have one FPU cycle throughput and four FPU cycle latency. The FPU implements the multiply-add (MADD) and multiply-sub (MSUB) instructions with intermediate rounding after the multiply function. The result is guaranteed to be the same as executing a MUL and an ADD instruction separately, but the instruction latency, instruction fetch, dispatch bandwidth, and the total number of register accesses are improved.

IEEE denormalized input operands and results are supported by hardware for some instructions. IEEE denormalized results are not supported by hardware in general, but a fast flush-to-zero mode is provided to optimize performance. The fast flush-to-zero mode is enabled through the FCCR register, and use of this mode is recommended for best performance when denormalized results are generated.

The FPU has a separate pipeline for floating point instruction execution. This pipeline operates in parallel with the integer core pipeline and does not stall when the integer pipeline stalls. This allows long-running FPU operations, such as divide or square root, to be partially masked by system stalls and/or other integer unit instructions. Arithmetic instructions are always dispatched and completed in order, but loads and stores can complete out of order. The exception model is "precise" at all times.

Table 3-4 contains the floating point instruction latencies and repeat rates for the processor core. In this table, 'Latency' refers to the number of FPU cycles necessary for the first instruction to produce the result needed by the second instruction. The "Repeat Rate" refers to the maximum rate at which an instruction can be executed per FPU cycle.

TABLE 3-4: FPU INSTRUCTION LATENCIES AND REPEAT RATES

Op code	Latency (FPU Cycles)	Repeat Rate (FPU Cycles)
ABS.[S,D], NEG.[S,D], ADD.[S,D], SUB.[S,D], C.cond.[S,D], MUL.S	4	1
MADD.S, MSUB.S, NMADD.S, NMSUB.S, CABS.cond.[S,D]	4	1
CVT.D.S, CVT.PS.PW, CVT.[S,D].[W,L]	4	1
CVT.S.D, CVT.[W,L].[S,D], CEIL.[W,L].[S,D], FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D], TRUNC.[W,L].[S,D]	4	1
MOV.[S,D], MOVF.[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[S,D]	4	1
MUL.D	5	2
MADD.D, MSUB.D, NMADD.D, NMSUB.D	5	2
RECIP.S	13	10
RECIP.D	26	21
RSQRT.S	17	14
RSQRT.D	36	31
DIV.S, SQRT.S	17	14
DIV.D, SQRT.D	32	29
MTC1, DMTC1, LWC1, LDC1, LDXC1, LUXC1, LWXC1	4	1
MFC1, DMFC1, SWC1, SDC1, SDXC1, SUXC1, SWXC1	1	1

Legend: S = Single (32-bit) D = Double (64-bit)W = Word (32-bit) L = Long word (64-bit)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	r-1 R-0		R-0	R-1	R-1	R-1	R-1	R-0	
31:24	_		MMU Size<5:0>						
00.40	R-1	R-0	R-0	R-1	R-1	R-0	R-1	R-1	
23:16	IS<1	:0>		IL<2:0>		IA<2:0>			
45.0	R-0	R-0	R-0	R-0	R-1	R-1	R-0	R-1	
15:8		DS<2:0>			DL<2:0>		DA<	:2:1>	
7.0	R-1	U-0	U-0	R-1	R-1	R-0	R-1	R-1	
7:0	DA<0> —		—	PC	WR	CA	EP	FP	

REGISTER 3-2: CONFIG1: CONFIGURATION REGISTER 1; CP0 REGISTER 16, SELECT 1

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	vit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 **Reserved:** This bit is hardwired to a '1' to indicate the presence of the Config2 register.

t	oit 30-25	MMU Size<5:0>: Contains the number of TLB entries minus 1
		001111 = 16 TLB entries
k	oit 24-22	IS<2:0>: Instruction Cache Sets bits
		010 = Contains 256 instruction cache sets per way
Ł	oit 21-19	IL<2:0>: Instruction-Cache Line bits
		011 = Contains instruction cache line size of 16 bytes
Ł	oit 18-16	IA<2:0: Instruction-Cache Associativity bits
		011 = Contains 4-way instruction cache associativity
Ł	oit 15-13	DS<2:0>: Data-Cache Sets bits
		000 = Contains 64 data cache sets per way
Ł	oit 12-10	DL<2:0>: Data-Cache Line bits
		011 = Contains data cache line size of 16 bytes
Ł	oit 9-7	DA<2:0>: Data-Cache Associativity bits
		011 = Contains the 4-way set associativity for the data cache
t	oit 6-5	Unimplemented: Read as '0'
Ł	oit 4	PC: Performance Counter bit
		1 = The processor core contains Performance Counters
k	oit 3	WR: Watch Register Presence bit
		1 = No Watch registers are present
k	oit 2	CA: Code Compression Implemented bit
		0 = No MIPS16e [®] present
t	oit 1	EP: EJTAG Present bit
		1 = Core implements EJTAG
Ł	oit 0	FP: Floating Point Unit bit
		1 = Floating Point Unit is present

TABLE 4-4: INITIATORS TO TARGETS ACCESS ASSOCIATION

Torgot	Initiator ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Target #	Name	CPU		DMA	DMA Read		DMA Write		Ethernet Read	Ethernet Write	CAN1	CAN2	SQI1	Flash Controller	Crypto
1	Flash Memory: Program Flash Boot Flash Prefetch Module		x x					x	x		х	х			х
2	RAM Bank 1 Memory		Х		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х
3	RAM Bank 2 Memory		Х		Х	2	Х	Х	Х	Х	Х	Х	Х	Х	Х
4	External Memory via EBI and EBI Module		Х		Х	2	Х	Х	Х	Х	Х	Х	Х		Х
5	Peripheral Set 1: System Control, Flash Control, DMT, RTCC, CVR, PPS Input, PPS Output, Interrupts, DMA, WDT		x												
6	Peripheral Set 2: SPI1-SPI6 I2C1-I2C5 UART1-UART6 PMP		х		x	:	x								
7	Peripheral Set 3: Timer1-Timer9 IC1-IC9 OC1-OC9 ADC Comparator 1 Comparator 2		x		x	:	x								
8	Peripheral Set 4: PORTA-PORTK		Х		Х	2	х								
9	Peripheral Set 5: CAN1 CAN2 Ethernet Controller	x													
10	Peripheral Set 6: USB		Х												
11	External Memory via SQI1 and SQI1 Module		Х												
12	Peripheral Set 7: Crypto Engine		х												
13	Peripheral Set 8: RNG Module		х												

TABLE 4-14: SYSTEM BUS TARGET 6 REGISTER MAP

ess		â									Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9820	SBT6ELOG1	31:16	MULTI		—	—		CODE	<3:0>						—		_		0000
9020	SBIOLLOGI	15:0				INI	TID<7:0>					REGIO	N<3:0>		—	С	MD<2:0>		0000
9824	SBT6ELOG2	31:16	_	—	—	—	—	_	_	_	—	—	_	_	—	-	—	-	0000
9024	SBIOLLOGZ	15:0	_	—	—	—	—	_	_	_	—	—	_	_	—	-	GROU	P<1:0>	0000
9828	SBT6ECON	31:16	_	—	—	—	—	_	_	ERRP	—	—	_	_	—	-	—	-	0000
9020	SBIOLCON	15:0	—	_	—	—	—	_	_	_	_	_	—	_	—	_	—	_	0000
9830	SBT6ECLRS	31:16	—	—	—	—	—	_	_	_	_	—	—	_	—	_	—	-	0000
3030	SDIGECERS	15:0	—	—	—	—	—	_	_	_	_	—	—	_	—	_	—	CLEAR	0000
9838	SBT6ECLRM	31:16	—	—	—	—	—	_	_	_	_	—	—	_	—	_	—	-	0000
3000	SBIOLOCIUM	15:0	—	—	—	—	—	_	_	_	—	_	—	_	—	_	—	CLEAR	0000
9840	SBT6REG0	31:16								BA	SE<21:6>								xxxx
0040	OBTORCEOU	15:0			BA	SE<5:0>			PRI	_			SIZE<4:0:	>		_	—	_	xxxx
9850	SBT6RD0	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
0000	CETOREO	15:0	_	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9858	SBT6WR0	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
0000	eb romite	15:0	_	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9860	SBT6REG1	31:16								BA	BASE<21:6>							xxxx	
0000	OBTOREOT	15:0			BA	SE<5:0>			PRI	—			SIZE<4:0:	>		—	—	—	xxxx
9870	SBT6RD1	31:16	—	—	—	—	—	_	_	_	—	_	_	_	—		—	-	xxxx
	5010101	15:0	_	_	—	—	—	_	—	—	_	—	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9878	SBT6WR1	31:16	_	_	—	—	—	_	—	—	_	—	_	_	—	—	—	—	xxxx
0010	02.000	15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

REGISTER 4-3: SBTxELOG1: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 1 ('x' = 0-13) (CONTINUED)

- bit 7-4 REGION<3:0>: Requested Region Number bits
 - 1111 0000 = Target's region that reported a permission group violation
- bit 3 Unimplemented: Read as '0'
- bit 2-0 CMD<2:0>: Transaction Command of the Requester bits
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Write (a non-posted write)
 - 100 = Reserved
 - 011 = Read (a locked read caused by a Read-Modify-Write transaction)
 - 010 = Read
 - 001 = Write
 - 000 = Idle

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	PWPULOCK	—	_	—	—	_	_	_			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	PWP<23:16>										
45.0	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8				PWP<	15:8>						
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	PWP<7:0>										

REGISTER 5-7: NVMPWP: PROGRAM FLASH WRITE-PROTECT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 PWPULOCK: Program Flash Memory Page Write-protect Unlock bit

1 = Register is not locked and can be modified

0 = Register is locked and cannot be modified

This bit is only clearable and cannot be set except by any reset.

bit 30-24 Unimplemented: Read as '0'

bit 23-0 PWP<23:0>: Flash Program Write-protect (Page) Address bits

Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

		1				. (-,			Bits								
ess				1	1					1	DIIS		1	1	1	1	1	1	
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3170	USB E7CSR0	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE7CSR0			•				0000
3174	USB E7CSR1	31:16 15:0		Indexed by the same bits in USBIE7CSR1															
3178	USB E7CSR2	31:16 15:0		Indexed by the same bits in USBIE7CSR2															
317C	USB E7CSR3	31:16 15:0		Indexed by the same bits in USBIE7CSR3															
3200	USB DMAINT	31:16 15:0																	
3204	USB DMA1C	31:16 15:0																	
3208	USB DMA1A	31:16 15:0			1			Dimbrid		DMA	ADDR<31:16	>	- 10.07		Dimit	5	Dim Dir	DINICEI	0000
320C	USB DMA1N	31:16 15:0								DMAG	COUNT<31:16 COUNT<15:0	i>							0000
		31:16	_	_	_	_	_			DIVIA		>		_				_	0000
3214	USB DMA2C	15:0	_	_		_		DMABRS	 GTM<1:0>	DMAERR	_		EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
3218	USB DMA2A	31:16									ADDR<31:16								0000
		15:0									ADDR<15:0>								0000
321C	USB DMA2N	31:16 15:0									COUNT<31:16 COUNT<15:0								0000
0004	USB	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	0000
3224	DMA3C	15:0	_	_		_		DMABRS	STM<1:0>	DMAERR		DMA	EP<3:0>	•	DMAIE	DMAMODE	DMADIR	DMAEN	0000
3228	USB	31:16									ADDR<31:16								0000
	DMA3A	15:0									ADDR<15:0>								0000
322C	USB DMA3N	31:16 15:0									COUNT<31:16 COUNT<15:0								0000
3234	USB	31:16	_	_	_	_	_	_	_	_	_		_	_	_	_	—	_	0000
0204	DMA4C	15:0	—	_	—	—	—	DMABRS	STM<1:0>	DMAERR			EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
3238	USB DMA4A	31:16									ADDR<31:16								0000
		15:0	DMAADDR<15:0> 0000 DMACOUNT<31:16> 0000																
323C	USB DMA4N	31:16 15:0									COUNT<31:10 COUNT<15:0								0000
	USB	31:16	_	_	_	_	_	_	_				_	_	_	_	_	_	0000
3244	DMA5C	15:0	_	_	_	_	_		STM<1:0>	DMAERR		DMA	EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
Leger		1		DMADRSTM <t.u> DMACRR DMACP<3.U> DMACP<3.U> DMALE DMAMODE DMADR DMACR DMACR DMACP</t.u>															

Legend: Note x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Device mode.

1:

2: Host mode.

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7). 3: 4:

	-11 11-1.							
Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_		_		_	-
00.40	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS
23:16	EP7TXIF	EP6TXIF	EP5TXIF	EP4TXIF	EP3TXIF	EP2TXIF	EP1TXIF	EP0IF
	R/W-0	R/W-0	R/W-1	R-0, HS	R-0	R/W-0	R-0, HC	R/W-0
15:8	ISOUPD	SOFTCONN	HSEN	HSMODE	RESET	RESUME	SUSPMODE	SUSPEN
	_	—						
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0					FUNC<6:0>			
				—	_	—	—	

REGISTER 11-1: USBCSR0: USB CONTROL STATUS REGISTER 0

Legend:	HS = Hardware Set	HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-17 EP7TXIF:EP1TXIF: Endpoint 'n' TX Interrupt Flag bit

- 1 = Endpoint has a transmit interrupt to be serviced
- 0 = No interrupt event
- bit 16 EP0IF: Endpoint 0 Interrupt bit
 - 1 = Endpoint 0 has an interrupt to be serviced
 - 0 = No interrupt event

All EPxTX and EP0 bits are cleared when the byte is read. Therefore, these bits must be read independently from the remaining bits in this register to avoid accidental clearing.

bit 15 **ISOUPD:** ISO Update bit (*Device mode only; unimplemented in Host mode*)

- 1 = USB module will wait for a SOF token from the time TXPKTRDY is set before sending the packet
- 0 = No change in behavior

This bit only affects endpoints performing isochronous transfers when in *Device mode*. This bit is unimplemented in *Host mode*.

bit 14 SOFTCONN: Soft Connect/Disconnect Feature Selection bit

- 1 = The USB D+/D- lines are enabled and active
- 0 = The USB D+/D- lines are disabled and are tri-stated

This bit is only available in *Device mode*.

- bit 13 HSEN: Hi-Speed Enable bit
 - 1 = The USB module will negotiate for Hi-Speed mode when the device is reset by the hub
 - 0 = Module only operates in Full-Speed mode
- bit 12 **HSMODE:** Hi-Speed Mode Status bit
 - 1 = Hi-Speed mode successfully negotiated during USB reset
 - 0 = Module is not in Hi-Speed mode

In *Device mode*, this bit becomes valid when a USB reset completes. In *Host mode*, it becomes valid when the RESET bit is cleared.

bit 11 **RESET:** Module Reset Status bit

- 1 = Reset signaling is present on the bus
- 0 = Normal module operation

In Device mode, this bit is read-only. In Host mode, this bit is read/write.

REGISTER 11-11: USBIENCSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 1-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
31:24		RXFIFC)SZ<3:0>			TXFIFO	SZ<3:0>	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0				RXINTE	RV<7:0>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	SPEEI	D<1:0>	PROTO	COL<1:0>		TEP	<3:0>	

Leaend:

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 RXFIFOSZ<3:0>: Receive FIFO Size bits

	1111 = Reserved 1110 = Reserved 1101 = 8192 bytes
	1101 = 4096 bytes
	•
	•
	•
	0011 = 8 bytes 0010 = Reserved 0001 = Reserved 0000 = Reserved or endpoint has not been configured
	This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic FIFO sizing is used.
bit 27-24	TXFIFOSZ<3:0>: Transmit FIFO Size bits 1111 = Reserved 1110 = Reserved 1101 = 8192 bytes 1100 = 4096 bytes
	•
	•
	•
	0011 = 8 bytes 0010 = Reserved 0001 = Reserved 0000 = Reserved or endpoint has not been configured

This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic

FIFO sizing is used.

bit 23-16 Unimplemented: Read as '0'

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	_	—	—	—	_	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	—	—	
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	—	—	—	_	DEVSE	EL<1:0>	MODEBY	TES<1:0>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				MODECO	DE<7:0>				

REGISTER 20-2: SQI1XCON2: SQI XIP CONTROL REGISTER 2

Legend:

- 3					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-12 Unimplemented: Read as '0'

bit 11-10 **DEVSEL<1:0>:** Device Select bits

- 11 = Reserved
- 10 = Reserved
- 01 = Device 1 is selected
- 00 = Device 0 is selected

bit 9-8 MODEBYTES<1:0>: Mode Byte Cycle Enable bits

- 11 = Three cycles
- 10 =Two cycles
- 01 = One cycle
- 00 = Zero cycles

bit 7-0 MODECODE<7:0>: Mode Code Value bits

These bits contain the 8-bit code value for the mode bits.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	—	_	_	INIT1SCHECK	INIT1CO	UNT<1:0>	INIT1TY	PE<1:0>	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	INIT1CMD3<7:0> ⁽¹⁾								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8				INIT1CMD2<	7:0> ⁽¹⁾				
1.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	INIT1CMD1<7:0> ⁽¹⁾								

REGISTER 20-25: SQI1XCON3: SQI XIP CONTROL REGISTER 3

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-29 Unimplemented: Read as '0'

- bit 28 INIT1SCHECK: Flash Initialization 1 Command Status Check bit
 - 1 = Check the status after executing the INIT1 command
 - 0 = Do not check the status
- bit 27-26 INIT1COUNT<1:0>: Flash Initialization 1 Command Count bits
 - 11 = INIT1CMD1, INIT1CMD2, and INIT1CMD3 are sent
 - 10 = INIT1CMD1 and INIT1CMD2 are sent, but INIT1CMD3 is still pending
 - 01 = INIT1CMD1 is sent, but INIT1CMD2 and INIT1CMD3 are still pending
 - 00 = No commands are sent
- bit 25-24 INIT1TYPE<1:0>: Flash Initialization 1 Command Type bits
 - 11 = Reserved
 - 10 = INIT1 commands are sent in Quad Lane mode
 - 01 = INIT1 commands are sent in Dual Lane mode
 - 00 = INIT1 commands are sent in Single Lane mode
- bit 24-16 **INIT1CMD3<7:0>:** Flash Initialization Command 3 bits⁽¹⁾ Third command of the Flash initialization.
- bit 15-8 **INIT1CMD2<7:0>:** Flash Initialization Command 2 bits⁽¹⁾ Second command of the Flash initialization.
- bit 7-0 **INIT1CMD1<7:0>:** Flash Initialization Command 1 bits⁽¹⁾ First command of the Flash initialization.
- **Note 1:** INIT1CMD1 can be WEN and INIT1CMD2 can be SECTOR UNPROTECT.

Note: Some Flash devices require Write Enable and Sector Unprotect commands before read/write operations and this register is useful in working with those Flash types (XIP mode only)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
31:24	—	—	_	_	—	_	_	ADM_EN	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	ADDR<7:0>								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1	
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	
7:0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0	
	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	

REGISTER 22-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

5				
= Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled

bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

- bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits
 - 11 = Reserved, do not use
 - 10 = Interrupt is generated and asserted while the transmit buffer is empty
 - 01 = Interrupt is generated and asserted when all characters have been transmitted
 - 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space
- bit 13 UTXINV: Transmit Polarity Inversion bit
 - If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):
 - 1 = UxTX Idle state is '0'
 - 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'
- bit 12 URXEN: Receiver Enable bit
 - 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset
- bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register is Empty bit (read-only)
 - 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04-04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24				BDPADDR	<31:24>					
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:16	BDPADDR<23:16>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	BDPADDR<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				BDPADD	R<7:0>					

REGISTER 26-3: CEBDADDR: CRYPTO ENGINE BUFFER DESCRIPTOR REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BDPADDR<31:0>:** Current Buffer Descriptor Process Address Status bits These bits contain the current descriptor address that is being processed by the Buffer Descriptor Processor (BDP).

REGISTER 26-4: CEBDPADDR: CRYPTO ENGINE BUFFER DESCRIPTOR PROCESSOR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	BASEADDR<31:24>							
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	BASEADDR<23:16>							
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	BASEADDR<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				BASEADE)R<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BASEADDR<31:0>: Buffer Descriptor Base Address bits

These bits contain the physical address of the first Buffer Descriptor in the Buffer Descriptor chain. When enabled, the Crypto DMA begins fetching Buffer Descriptors from this address.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	-			TRGSRC7<4:0>				
22:46	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_			TRGSRC6<4:0>				
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	-				Т	RGSRC5<4:0)>	
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_				Т	RGSRC4<4:0)>	

REGISTER 28-18: ADCTRG2: ADC TRIGGER SOURCE 2 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 TRGSRC7<4:0>: Trigger Source for Conversion of Analog Input AN7 Select bits

```
11111 = Reserved

.

01101 = Reserved

01100 = Comparator 2 (COUT)

01011 = Comparator 1 (COUT)

01010 = OCMP5

01001 = OCMP3

01000 = OCMP1

00111 = TMR5 match

00101 = TMR1 match

00101 = TMR1 match

00100 = INT0 External interrupt

00011 = STRIG

00010 = Global level software trigger (GLSWTRG)

00001 = Global software edge Trigger (GSWTRG)

00000 = No Trigger
```

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSS*x* registers.

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TRGSRC6<4:0>:** Trigger Source for Conversion of Analog Input AN6 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC5<4:0>:** Trigger Source for Conversion of Analog Input AN5 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC4<4:0>:** Trigger Source for Conversion of Analog Input AN4 Select bits See bits 28-24 for bit value definitions.

			-			-		
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	_	—	_	—
22:46	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23:16	—	WAKFIL	—	—	_	SEG	62PH<2:0> ⁽¹	,4)
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	:	SEG1PH<2:0:	>	Р	RSEG<2:0>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	SJW<1:	0> (3)			BRP<	5:0>		

REGISTER 29-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear	S = Settable bit	
R = Readable bit	W = Writable bit	P = Programmable bit	r = Reserved bit
U = Unimplemented bit	-n = Bit Value at POR: ('0	0', '1', x = Unknown)	

bit 31-23 Unimplemented: Read as '0'

bit 22 WAKFIL: CAN Bus Line Filter Enable bit

1 = Use CAN bus line filter for wake-up

0 = CAN bus line filter is not used for wake-up

bit 21-19 Unimplemented: Read as '0'

bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x Tq
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾
	1 = Freely programmable
	0 = Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾
	1 = Bus line is sampled three times at the sample point
	0 = Bus line is sampled once at the sample point
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾
	111 = Length is 8 x TQ
	•
	•

 $000 = \text{Length is } 1 \times TQ$

- Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
 - **2:** 3 Time bit sampling is not allowed for BRP < 2.
 - **3:** SJW \leq SEG2PH.
 - **4:** The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

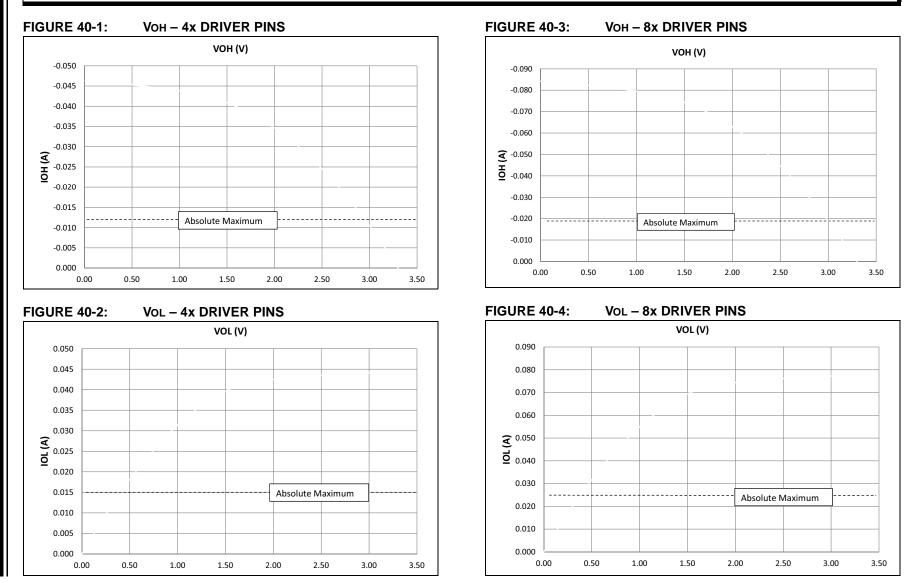
Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

		_			-			
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
31:24	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	_	—	—
23:16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	—	_	_	_	MODIE	CTMRIE	RBIE	TBIE
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
10.0	IVRIF	WAKIF	CERRIF	SERRIF ⁽¹⁾	RBOVIF	_	—	—
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	_	_	_	MODIF	CTMRIF	RBIF	TBIF

REGISTER 29-3: CIINT: CAN INTERRUPT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 31	IVRIE: Invalid Message Received Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 30	WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 29	CERRIE: CAN Bus Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 28	SERRIE: System Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 27	RBOVIE: Receive Buffer Overflow Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 26-20	Unimplemented: Read as '0'
bit 19	MODIE: Mode Change Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 18	CTMRIE: CAN Timestamp Timer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 17	RBIE: Receive Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 16	TBIE: Transmit Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 15	IVRIF: Invalid Message Received Interrupt Flag bit 1 = An invalid messages interrupt has occurred 0 = An invalid message interrupt has not occurred
Note 1:	This bit can only be cleared by turning the CAN module off and on by clearing or setting the ON bit (CiCON<15>).

40.0 AC AND DC CHARACTERISTICS GRAPHS

Note: The graphs provided are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MZ Embedded

Connectivity with Floating Point Unit (EF) Family

B.2 Analog-to-Digital Converter (ADC)

The PIC32MZ EC family features a Pipelined ADC module, while the PIC32MZ EF family of devices has an entirely new 12-bit High-Speed SAR ADC module. Nearly all registers in this new ADC module differ from the registers in PIC32MZ EC devices. Due to this difference, code will not port from PIC32MZ EC devices to PIC32MZ EF devices. Table B-2 lists some of the differences in registers to note to adapt code as quickly as possible.

TABLE B-2:ADC DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature
Clock Selection and O	perating Frequency (TAD)
On PIC32MZ EC devices, there are three possible sources of the ADC clock: FRC, REFCLKO3, and SYSCLK.	On PIC32MZ EF devices, there are four sources for the ADC clock. In addition to the ones for PIC32MZ EC, PBCLK4 is added as a source. Also, the clock source selection is in a different register.
ADCSEL<1:0> (AD1CON1<9:8>)	ADCSEL<1:0> (ADCCON3<31:30>)
11 = FRC	11 = FRC
10 = REFCLKO3	10 = REFCLKO3
01 = SYSCLK	01 = SYSCLK
00 = Reserved	00 = PBCLK4
Scan Trigg	ger Sources
On PIC32MZ EC devices, there are 10 available trigger sources for starting ADC sampling and conversion.	On PIC32MZ EF devices, two new sources have been added. One is a shared trigger source (STRIG). The other is a Global Level Software Trigger (GLSWTRG). With the GLSWTRG, the conversions continue until the bit is cleared in software.
STRGSRC<4:0> (AD1CON1<26:22>)	TRGSRC<4:0> (ADCTRGx <y:z>)</y:z>
11111 = Reserved	11111 = Reserved
•	•
•	•
• 01101 = Reserved	• 01101 = Reserved
01100 = Comparator 2 COUT	01100 = Comparator 2 COUT
01011 = Comparator 1 COUT	01011 = Comparator 1 COUT
01011 = 0CMP5	01011 = OCMP5
01001 = 0CMP3	01001 = OCMP3
01000 = OCMP1	01000 = OCMP1
00111 = TMR5 match	00111 = TMR5 match
00110 = TMR3 match	00110 = TMR3 match
00101 = TMR1 match	00101 = TMR1 match
00100 = INTO	00100 = INTO
00011 = Reserved	00011 = STRIG
00010 = Reserved	00010 = Global Level Software Trigger (GLSWTRG)
00001 = Global Software Trigger (GSWTRG)	00001 = Global Software Trigger (GSWTRG)
00000 = No trigger	00000 = No trigger
Debu	g Mode
On PIC32MZ EC devices, the ADC module continues operating when stopping on a breakpoint during debugging.	On PIC32MZ EF devices, the ADC module will stop during debugging when stopping on a breakpoint.
Electrical Specifications	and Timing Requirements
Refer to the "Electrical Characteristics" chapter in the	On PIC32MZ EF devices, the ADC module sampling and
PIC32MZ EC data sheet for ADC module specifications and timing requirements.	conversion time and other specifications have changed. Refer to 37.0 "Electrical Characteristics" for more information.
ADC Ca	libration
PIC32MZ EC devices require calibration values be copied into the AD1CALx registers before turning on the ADC. These values come from the DEVADCx registers.	