

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efk100t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
			•		PO	RTA	·
RA0	_	17	A11	22	I/O	ST	PORTA is a bidirectional I/O port
RA1	—	38	B21	56	I/O	ST	
RA2	—	59	A41	85	I/O	ST	
RA3	—	60	B34	86	I/O	ST	
RA4	—	61	A42	87	I/O	ST	
RA5	—	2	B1	2	I/O	ST	
RA6	—	89	A61	129	I/O	ST	
RA7	—	90	B51	130	I/O	ST	
RA9	—	28	B15	39	I/O	ST	
RA10	_	29	A20	40	I/O	ST]
RA14	_	66	B37	95	I/O	ST	
RA15	_	67	A45	96	I/O	ST	
					PO	RTB	
RB0	16	25	A18	36	I/O	ST	PORTB is a bidirectional I/O port
RB1	15	24	A17	35	I/O	ST	
RB2	14	23	A16	34	I/O	ST	
RB3	13	22	A14	31	I/O	ST	
RB4	12	21	A13	26	I/O	ST	
RB5	11	20	B11	25	I/O	ST	
RB6	17	26	B14	37	I/O	ST	
RB7	18	27	A19	38	I/O	ST	
RB8	21	32	B18	47	I/O	ST	
RB9	22	33	A23	48	I/O	ST	
RB10	23	34	B19	49	I/O	ST	_
RB11	24	35	A24	50	I/O	ST	_
RB12	27	41	A27	59	I/O	ST	_
RB13	28	42	B23	60	I/O	ST	-
RB14	29	43	A28	61	I/O	ST	-
RB15	30	44	B24	62	I/O	ST	
D O1		-				RTC	
RC1	—	6	B3	6	I/O	ST	PORTC is a bidirectional I/O port
RC2		7	A6	11	I/O	ST	4
RC3		8	B5	12	I/O	ST	4
RC4	-	9	A7	13	I/O	ST	4
RC12	31	49	B28	71	I/O	ST	4
RC13	47	72	B41	105	I/O	ST	4
RC14	48	73	A49	106	I/O	ST	4
RC15 Legend:	32	50 MOS-comp	A33	72	I/O	ST	Analog input P = Power

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select I = Input

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24 U-0		U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	—	—	—	—	—	—	—					
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	—	—	—		—	—	—						
45.0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0					
15:8	—	—	T13PGV	T12PGV	T11PGV	T10PGV	T9PGV	T8PGV					
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
7:0	T7PGV	T6PGV	T5PGV	T4PGV	T3PGV	T2PGV	T1PGV	T0PGV					

REGISTER 4-2: SBFLAG: SYSTEM BUS STATUS FLAG REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-14 Unimplemented: Read as '0'

bit 13-0 **TxPGV:** Target 'x' Permission Group Violation Status bits ('x' = 0-13)

Refer to Table 4-6 for the list of available targets and their descriptions.

- 1 = Target is reporting a Permission Group (PG) violation
- 0 = Target is not reporting a PG violation

Note: All errors are cleared at the source (i.e., SBTxELOG1, SBTxELOG2, SBTxECLRS, or SBTxECLRM registers).

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress f)	N -	Ð								Bi	s								Ś
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	055077(2)	31:16	_	_	_	_		_	—	_	_	_	_	_	_	_	VOFF.	:17:16>	0000
0674	OFF077 ⁽²⁾	15:0			•			•	•	VOFF<15:1>			•			•	•	—	0000
0670	OFF078 ⁽²⁾	31:16	_	_	_	_	—	—	_	_	_	_	-	_	_	_	VOFF.	:17:16>	0000
0070		15:0								VOFF<15:1>								—	0000
0670	OFF079 ⁽²⁾	31:16	_	—	—	_	_	—	—	_	_	-	—	_	_	_	VOFF.	:17:16>	0000
0070	011073.7	15:0							-	VOFF<15:1>			-			-	-	—	0000
0880	OFF080 ⁽²⁾	31:16	—	—	—	—	_	—	—	—	_	—	—	—	—		VOFF.	:17:16>	0000
0000	011000	15:0								VOFF<15:1>								—	0000
0684	OFF081 ⁽²⁾	31:16	—	—	_	—	—	—		—	—	—	—	—	—	—	VOFF.	:17:16>	0000
0004	011001	15:0								VOFF<15:1>			•					—	0000
0688	OFF082 ⁽²⁾	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	—	VOFF.	:17:16>	0000
0000	011002	15:0								VOFF<15:1>								—	0000
0680	OFF083 ⁽²⁾	31:16	—	—	—	—	_	—	_	—	_	—	—	—	—		VOFF.	:17:16>	0000
0000	011000	15:0								VOFF<15:1>								—	0000
0690	OFF084 ⁽²⁾	31:16	—	—	_	—	—	—		—	—	—	—	—	—	—	VOFF.	:17:16>	0000
0000	011004	15:0								VOFF<15:1>								—	0000
0694	OFF085 ⁽²⁾	31:16	—	—	—	—	_	—	—		_	—	—	—	—	—	VOFF.	:17:16>	0000
0004	011000	15:0								VOFF<15:1>			-						0000
0698	OFF086 ⁽²⁾	31:16	—	—	—	—	_	—	—		_	—	—	—	—	—	VOFF.	:17:16>	0000
	0.1000	15:0								VOFF<15:1>								—	0000
0690	OFF087 ⁽²⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF.	:17:16>	0000
	0.1.001	15:0								VOFF<15:1>			-						0000
0640	OFF088 ⁽²⁾	31:16	_	—	-	—	_	—	—	—	_	—	-	—	—	—	VOFF.	:17:16>	0000
00,10	0.1000	15:0								VOFF<15:1>								—	0000
06A4	OFF089 ⁽²⁾	31:16	—	—	—	—	—	—	—	—	-	—	-	—	—	—	VOFF.	:17:16>	0000
		15:0								VOFF<15:1>								_	0000
06A8	OFF090 ⁽²⁾	31:16	_	—	—	—	—	—	—	_	_	—	—	—	—	_	VOFF.	:17:16>	0000
00/10	0.7000	15:0								VOFF<15:1>								_	0000
0640	OFF091 ⁽²⁾	31:16	_	—	-	—	—	—	—	—	_	—	—	—	—	—	VOFF.	:17:16>	0000
	011001	15:0								VOFF<15:1>								_	0000

DS60001320D-page 136

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the
	features of the PIC32MZ EF family of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 42. "Oscillators
	with Enhanced PLL" (DS60001250) in
	the "PIC32 Family Reference Manual",
	which is available from the Microchip
	web site (www.microchip.com/PIC32).

The PIC32MZ EF oscillator system has the following modules and features:

- A total of five external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown with dedicated Back-up FRC (BFRC)
- Dedicated On-Chip PLL for USB peripheral
- Flexible reference clock output
- Multiple clock branches for peripherals for better performance flexibility
- · Clock switch/slew control with output divider

A block diagram of the oscillator system is shown in Figure 8-1. The clock distribution is provided in Table 8-1.

Note: Devices that support 252 MHz operation should be configured for SYSCLK <= 200 MHz operation. Adjust the dividers of the PBCLKs, and then increase the SYSCLK to the desired speed.

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

ŝ											Bits												
(BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Recete				
	USB	31:16	_			RX	HUBPRT<6	:0>			MULTTRAN			RXHU	BADD<6:0>				00				
09C	E3RXA	15:0		_	—	_	_		_	_	_			RXFA	DDR<6:0>				00				
0A0	US	31:16	1			ТХ	HUBPRT<6	:0>	-	-	MULTTRAN			TXHU	BADD<6:0>				0 0				
	BE4TXA	15:0	-	_	—	—	—	—	—	—	—				DDR<6:0>				00				
0A4	USB	31:16	_			RX	HUBPRT<6	:0>		1	MULTTRAN				BADD<6:0>				00				
	E4RXA	15:0	_	-	-	—	—		-	-	—				DDR<6:0>				00				
0A8	USB	31:16	—				HUBPRT<6			-	MULTTRAN				BADD<6:0>				00				
	E5TXA	15:0	_	-	—	-	—	_	-	-	—				DDR<6:0>				00				
DAC	USB E5RXA	31:16	_			RX	HUBPRT<6	:0>			MULTTRAN				BADD<6:0>				00				
		15:0			—		-		_	-	-				DDR<6:0>				00				
0В0	USB E6TXA	31:16					HUBPRT<6:			1	MULTTRAN				BADD<6:0>				00				
		15:0	_	_	-		HUBPRT<6	-	_	—					DDR<6:0>				00				
0B4	USB E6RXA	31:16 15:0	_	<u> </u>		r	HUBPRIS				MULTTRAN				BADD<6:0>				00				
		31:16			—	— 	HUBPRT<6	-	_	—	— MULTTRAN	RXFADDR<6:0>						00					
0B8	USB E7TXA	15:0			_			.0>		_	MULTIRAN							TXFADDR<6:0>					00
		31:16				RX	HUBPRT<6	·0>		_	MULTTRAN												
0BC	USB E7RXA	15:0			_	_	_		_	_								RXFADDR<6:0>				00	
	USB	31:16																	00				
100	E0CSR0	15:0							Inde	exed by the	same bits in U	SBIE0CSR0							00				
3108	USB	31:16							Ind	avad by the	oomo hito in Ll								00				
108	E0CSR2	15:0							Inde	exed by the	same bits in U	SBIEUCSKZ							00				
10C	USB	31:16							Inde	aved by the	same bits in U	SBIEOCSR3							00				
100	E0CSR3	15:0							Inde	sked by the	Same bits in O	SDIE0001(3							00				
3110	USB	31:16							Inde	exed by the	same bits in U	SBIE1CSR0							00				
/0	E1CSR0	15:0								5,00 5) 110		00.2.100.10							00				
3114	USB	31:16							Inde	exed by the	same bits in U	SBIE1CSR1							00				
	E1CSR1	15:0																	00				
3118	USB	31:16							Inde	exed by the	same bits in U	SBIE1CSR2							00				
	E1CSR2	15:0								,									00				
11C	USB E1CSR3	31:16							Inde	exed by the	same bits in U	SBIE1CSR3							00				
		15:0		000																			
120	USB E2CSR0	31:16	Indexed by the same bits in USBIE2CSR0																				
		15:0																	000				
3124	USB E2CSR1	31:16							Inde	exed by the	same bits in U	SBIE2CSR1							000				
		15:0		Reset; — = un															000				

2: 3: 4:

Host mode.

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24										
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	RXFIFOAD<7:0>									
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.0		_	_		TΣ	(FIFOAD<12:	8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				TXFIFO	AD<7:0>					

REGISTER 11-14: USBFIFOA: USB FIFO ADDRESS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-16 **RXFIFOAD<12:0>:** Receive Endpoint FIFO Address bits

Start address of the endpoint FIFO in units of 8 bytes as follows:

111111111111 = 0xFFF8

- •
- •

bit 15-13 Unimplemented: Read as '0'

bit 12-0 TXFIFOAD<12:0>: Transmit Endpoint FIFO Address bits

Start address of the endpoint FIFO in units of 8 bytes as follows:

1111111111111 = 0xFFF8

•

•

•

SSS										B	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4444	IC4R	31:16	—	—	-	—	-	—	—	—	—	-	—	—	—	-	-	—	0000
1444	IC4R	15:0		_	—	_		_	_	_	_	—	—	—		IC4R	<3:0>		0000
1448	IC5R	31:16		—	—	_		—	—		—	_	_	_	_	_	_		0000
1440	10.51	15:0		—	—	—		—	—	—	_	_	—	—		IC5R	<3:0>		0000
144C	IC6R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1440	ICOIX	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC6R	<3:0>		0000
1450	IC7R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1430	10/10	15:0	_	_	—	—	_	_	—	_	_	—	_	—		IC7R	<3:0>		0000
1454	IC8R	31:16	-	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1-0-1	10011	15:0	-	—	—	—	—	—	—	—	—	—	—	—		IC8R	<3:0>		0000
1458	IC9R	31:16	-	—	—	—	_	—	—	_	_	—	_	—	—	—	—	—	0000
		15:0	-	—		—	_	_	—	—	_			_		IC9R	<3:0>		0000
1460	OCFAR	31:16	_	—		—	—	—	—	_	—	—	—	—	—	—	—	—	0000
		15:0	_	—		—		—	—		_	—	—	—		OCFA	R<3:0>		0000
1468	U1RXR	31:16	_	—	_	—	_	—	—	—	_	_		_		—	—	—	0000
		15:0	_	—	_	—	_	—	—	—	_	_		_		U1RXI	R<3:0>		0000
146C	U1CTSR	31:16	_			—	_	—	—	—	_			—	—	—	—	—	0000
		15:0	—	—	_	—	_	—	—	—	—	—	—	—		U1CTS			0000
1470	U2RXR	31:16	_	—		_	_	—	—	—	_	—	_	—	—	—	—	—	0000
		15:0	_	—	-	—	—	—	—	_	_	—	—	—		U2RXI			0000
1474	U2CTSR	31:16	_	_			_	_	_		_			_	_		—	—	0000
		15:0	_	_	-	_	_	_	_	_	_	_	_	_		U2CTS			0000
1478	U3RXR	31:16	_		-	_	_		_	_	_	—		_	—		—	—	0000
		15:0		_		_		_	_	_	_	_		_		U3RXI			0000
147C	U3CTSR	31:16	_	_		_	_	_	_	_	_			_	—		—	—	0000
		15:0		_		_		_	_	_	_	_	_	_		U3CTS	R<3:0>		0000
1480	U4RXR	31:16		—	_	_	_	—	_		_	_	_	_	_			_	0000
		15:0		—		_	_	—	—		_	_	_	_		U4RXI			0000
1484	U4CTSR	31:16		—		_	_	—	—		_	_	_	_		-	—	_	0000
		15:0		—	—	—	-	—	—	—	—		_	—		U4CTS	R<3:0>		0000

TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on devices without a CAN module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24	—	—	—	_	—	—	—	_						
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16	—	—	—	—	—	—	—	—						
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8	—	—	—	_	DEVSE	EL<1:0>	MODEBYTES<1:0>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				MODECO	DE<7:0>									

REGISTER 20-2: SQI1XCON2: SQI XIP CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-12 Unimplemented: Read as '0'

bit 11-10 **DEVSEL<1:0>:** Device Select bits

- 11 = Reserved
- 10 = Reserved
- 01 = Device 1 is selected
- 00 = Device 0 is selected

bit 9-8 MODEBYTES<1:0>: Mode Byte Cycle Enable bits

- 11 = Three cycles
- 10 =Two cycles
- 01 = One cycle
- 00 = Zero cycles

bit 7-0 MODECODE<7:0>: Mode Code Value bits

These bits contain the 8-bit code value for the mode bits.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	—	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	_	—	—
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	_		TXINTTHR<4:0>			
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_			R	XINTTHR<4:0	>	

REGISTER 20-7: SQI1INTTHR: SQI INTERRUPT THRESHOLD REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8 **TXINTTHR<4:0>:** Transmit Interrupt Threshold bits A transmit interrupt is set when the transmit FIFO has more space than the set number of bytes. For 16-bit mode, the value should be a multiple of 2.

bit 7-5 Unimplemented: Read as '0'

bit 4-0 RXINTTHR<4:0>: Receive Interrupt Threshold bits

A receive interrupt is set when the receive FIFO count is larger than or equal to the set number of bytes. For 16-bit mode, the value should be multiple of 2.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	TXDATA<31:24>									
22.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	TXDATA<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8				TXDATA	<15:8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				TXDATA	<7:0>					

REGISTER 20-10: SQI1TXDATA: SQI TRANSMIT DATA BUFFER REGISTER

L	_egend:			
F	R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-	n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 TXDATA<31:0>: Transmit Command Data bits

Data is loaded into this register before being transmitted. Prior to the data transfer, the data in TXDATA is loaded into the shift register (SFDR).

Multiple writes to TXDATA can occur while a transfer is in progress. There can be a maximum of eight commands that can be queued.

REGISTER 20-11: SQI1RXDATA: SQI RECEIVE DATA BUFFER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24				RXDATA<	:31:24>					
22.10	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:16	RXDATA<23:16>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	RXDATA<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				RXDATA	<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RXDATA<31:0>: Receive Data Buffer bits

At the end of a data transfer, the data in the shift register is loaded into the RXDATA register. This register works like a FIFO. The depth of the receive buffer is eight words.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	—	—	_	INIT2SCHECK	INIT2CO	UNT<1:0>	INIT2TY	PE<1:0>	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	INIT2CMD3<7:0> ⁽¹⁾								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	INIT2CMD2<7:0> ⁽¹⁾								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				INIT2CMD1<	7:0> (1)				

REGISTER 20-26: SQI1XCON4: SQI XIP CONTROL REGISTER 4

Legend:

· J · · ·			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28 INIT2SCHECK: Flash Initialization 2 Command Status Check bit 1 = Check the status after executing the INIT2 command 0 = Do not check the status
- bit 27-26 INIT2COUNT<1:0>: Flash Initialization 2 Command Count bits
 - 11 = INIT2CMD1, INIT2CMD2, and INIT2CMD3 are sent
 - 10 = INIT2CMD1 and INIT2CMD2 are sent, but INIT2CMD3 is still pending
 - 01 = INIT2CMD1 is sent, but INIT2CMD2 and INIT2CMD3 are still pending
 - 00 = No commands are sent
- bit 25-24 INIT2TYPE<1:0>: Flash Initialization 2 Command Type bits
 - 11 = Reserved
 - 10 = INIT2 commands are sent in Quad Lane mode
 - 01 = INIT2 commands are sent in Dual Lane mode
 - 00 = INIT2 commands are sent in Single Lane mode
- bit 24-16 **INIT2CMD3<7:0>:** Flash Initialization Command 3 bits⁽¹⁾ Third command of the Flash initialization.
- bit 15-8 **INIT2CMD2<7:0>:** Flash Initialization Command 2 bits⁽¹⁾ Second command of the Flash initialization.
- bit 7-0 **INIT2CMD1<7:0>:** Flash Initialization Command 1 bits⁽¹⁾ First command of the Flash initialization.
- **Note 1:** INIT2CMD1 can be WEN and INIT2CMD2 can be SECTOR UNPROTECT.

Note: Some Flash devices require Write Enable and Sector Unprotect commands before read/write operations and this register is useful in working with those Flash types (XIP mode only)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24		HR10	<3:0>			HR01	<3:0>			
22.46	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16	MIN10<3:0>				MIN01<3:0>					
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8		SEC10<3:0>				SEC01<3:0>				
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0	—	—	—	_	—	—	_	—		
Legend:										
R = Readable bit			W = Writable	e bit	U = Unimple	emented bit, re	ead as '0'			

0' = Bit is cleared

x = Bit is unknown

REGISTER 25-3: RTCTIME: REAL-TIME CLOCK TIME VALUE REGISTER

'1' = Bit is set

bit 31-28	HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10 digits; contains a value from 0 to 2
bit 27-24	HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1 digit; contains a value from 0 to 9
bit 23-20	MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10 digits; contains a value from 0 to 5
bit 19-16	MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1 digit; contains a value from 0 to 9
bit 15-12	SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10 digits; contains a value from 0 to 5
bit 11-8	SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1 digit; contains a value from 0 to 9

bit 7-0 Unimplemented: Read as '0'

-n = Value at POR

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

26.0 CRYPTO ENGINE

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246) in the "PIC32 Family Reference Manual". which is available from the Microchip web site (www.microchip.com/PIC32).

The Crypto Engine is intended to accelerate applications that need cryptographic functions. By executing these functions in the hardware module, software overhead is reduced and actions, such as encryption, decryption, and authentication can execute much more quickly.

The Crypto Engine uses an internal descriptor-based DMA for efficient programming of the security association data and packet pointers (allowing scatter/ gather data fetching). An intelligent state machine schedules the Crypto Engines based on the protocol selection and packet boundaries. The hardware engines can perform the encryption and authentication in sequence or in parallel.

The following are key features of the Crypto Engine:

- Bulk ciphers and hash engines
- Integrated DMA to off-load processing:
 - Buffer descriptor-based
 - Secure association per buffer descriptor
- Some functions can execute in parallel

Bulk ciphers that are handled by the Crypto Engine include:

- AES:
 - 128-bit, 192-bit, and 256-bit key sizes
 - CBC, ECB, CTR, CFB, and OFB modes
- DES/TDES:
 - CBC, ECB, CFB, and OFB modes

Authentication engines that are available through the Crypto Engine include:

- SHA-1
- SHA-256
- MD-5
- AES-GCM
- HMAC operation (for all authentication engines)

The rate of data that can be processed by the Crypto Engine depends on these factors:

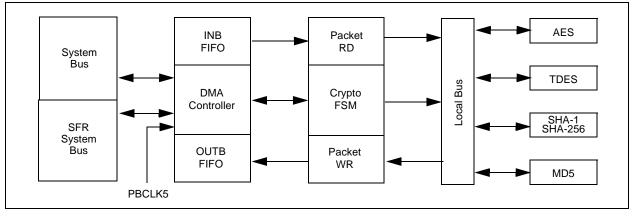

- Which engine is in use
- Whether the engines are used in parallel or in series
- The demands on source and destination memories by other parts of the system (i.e., CPU, DMA, etc.)
- The speed of PBCLK5, which drives the Crypto Engine

Table 26-1 shows typical performance for various engines.

TABLE 26-1: CRYPTO ENGINE PERFORMANCE

Engine/ Algorithm	Performance Factor (Mbps/MHz)	Maximum Mbps (PBCLK5 = 100 MHz)
DES	14.4	1440
TDES	6.6	660
AES-128	9.0	900
AES-192	7.9	790
AES-256	7.2	720
MD5	15.6	1560
SHA-1	13.2	1320
SHA-256	9.3	930

FIGURE 26-1: CRYPTO ENGINE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
51.24		_		—	—			—	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	-	—	
15.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	
15:8	STNADDR6<7:0>								
7.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	
7:0				STNADDR5<	:7:0>				

REGISTER 30-37: EMAC1SA0: ETHERNET CONTROLLER MAC STATION ADDRESS 0 REGISTER

Legend:		P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15-8 **STNADDR6<7:0>:** Station Address Octet 6 bits These bits hold the sixth transmitted octet of the station address.
- bit 7-0 **STNADDR5<7:0>:** Station Address Octet 5 bits These bits hold the fifth transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 FNOSC<2:0>: Oscillator Selection bits
 - 111 = FRC divided by FRCDIV<2:0> bits (FRCDIV)
 - 110 = Reserved
 - 101 = LPRC
 - 100 **= S**OSC
 - 011 = Reserved
 - 010 = Posc (HS, EC)
 - 001 = SPLL
 - 000 = FRC divided by FRCDIV<2:0> bits (FRCDIV)

REGISTI	ER 34-9: CFGEBIC: EXTERNAL BUS INTERFACE CONTROL PIN CONFIGURATION REGISTER (CONTINUED)	
bit 12	EBIOEEN: EBIOE Pin Enable bit	
	$1 = \overline{\text{EBIOE}}$ pin is enabled for use by the EBI module	
	$0 = \overline{EBIOE}$ pin is available for general use	
bit 11-10	Unimplemented: Read as '0'	
bit 9	EBIBSEN1: EBIBS1 Pin Enable bit	
	1 = EBIBS1 pin is enabled for use by the EBI module 0 = EBIBS1 pin is available for general use	
bit 8	EBIBSEN1: EBIBSO Pin Enable bit	
bit 0	$1 = \overline{\text{EBIBS0}}$ pin is enabled for use by the EBI module	
	0 = EBIBS0 pin is available for general use	
bit 7	EBICSEN3: EBICS3 Pin Enable bit	
	$1 = \overline{EBICS3}$ pin is enabled for use by the EBI module	
	0 = EBICS3 pin is available for general use	
bit 6	EBICSEN2: EBICS2 Pin Enable bit	
	$1 = \overline{\text{EBICS2}}$ pin is enabled for use by the EBI module	
	0 = EBICS2 pin is available for general use	
bit 5	EBICSEN1: EBICS1 Pin Enable bit	
	1 = EBICS1 pin is enabled for use by the EBI module	
	0 = EBICS1 pin is available for general use	
bit 4	EBICSEN0: EBICS0 Pin Enable bit	
	1 = EBICS0 pin is enabled for use by the EBI module	
1	0 = EBICS0 pin is available for general use	
bit 3-2	Unimplemented: Read as '0'	
bit 1	EBIDEN1: EBI Data Upper Byte Pin Enable bit	
	 1 = EBID<15:8> pins are enabled for use by the EBI module 0 = EBID<15:8> pins have reverted to general use 	
bit 0	EBIDENO: EBI Data Lower Byte Pin Enable bit	
DIL U	1 = EBID<7:0> pins are enabled for use by the EBI module	
	0 = EBID < 7:0 > pins have reverted to general use	
	-	
Note:	When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.	

37.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MZ EF electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MZ EF devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Specifications for Extended Temperature devices (-40°C to +125°C) that are different from the specifications in this section are provided in **38.0** "Extended Temperature Electrical Characteristics".

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to VSS when $VDD \ge 2.1V$ (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.1V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	200 mA
Maximum current into VDD pin(s) (Note 2)	200 mA
Maximum current sunk/sourced by any 4x I/O pin (Note 4)	15 mA
Maximum current sunk/sourced by any 8x I/O pin (Note 4)	25 mA
Maximum current sunk/sourced by any 12x I/O pin (Note 4)	
Maximum current sunk by all ports	150 mA
Maximum current sourced by all ports (Note 2)	150 mA

- **Note 1:** Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 37-2).
 - 3: See the pin name tables (Table 2 through Table 4) for the 5V tolerant pins.
 - 4: Characterized, but not tested. Refer to parameters DO10, DO20, and DO20a for the 4x, 8x, and 12x I/O pin lists.

39.0 252 MHz ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MZ EF electrical characteristics for devices running at 252 MHz. Additional information will be provided in future revisions of this document as it becomes available.

The specifications for 252 MHz are identical to those shown in **37.0** "Electrical Characteristics" including absolute maximum ratings, with the exception of the parameters listed in this chapter.

Parameters in this chapter begin with the letter "M", which denotes 252 MHz operation. For example, parameter DC27a in **37.0** "Electrical Characteristics", is the up to 200 MHz operation equivalent for MDC27a.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature				
Crystal/Oscillator Selection for USB					
Any frequency that can be divided down to 4 MHz using UPLLIDIV, including 4, 8, 12, 16, 20, 40, and 48 MHz.	If the USB module is used, the Primary Oscillator is limited to either 12 MHz or 24 MHz. Which frequency is used is selected using the UPLLFSEL (DEVCFG2<30>) bit.				
USB PLL Configuration					
On PIC32MX devices, the PLL for the USB requires an input fre- quency of 4 MHz.	On PIC32MZ EF devices, the HS USB PHY requires an input frequency of 12 MHz or 24 MHz. UPLLIDIV has been replaced with UPLLFSEL.				
UPLLIDIV<2:0> (DEVCFG2<10:8>) 111 = 12x divider 110 = 10x divider 101 = 6x divider 100 = 5x divider 011 = 4x divider 010 = 3x divider 010 = 3x divider 010 = 2x divider	UPLLFSEL (DEVCFG2<30>) 1 = UPLL input clock is 24 MHz 0 = UPLL input clock is 12 MHz				
000 = 1x divider					
	ock Configuration				
On PIC32MX devices, there is one peripheral bus, and the clock for that bus is divided from the SYSCLK using FPBDIV/PBDIV. In addition, the maximum PBCLK frequency is the same as SYSCLK.	On PIC32MZ EF devices, there are eight peripheral buses with their own clocks. FPBDIV is removed, and each PBDIV is in its own register for each PBCLK. The initial PBCLK speed is fixed at reset, and the maximum PBCLK speed is limited to100 MHz for all buses, with the exception of PBCLK7, which is 200 MHz.				
FPBDIV<1:0> (DEVCFG1<5:4>) PBDIV<1:0> (OSCCON<20:19>) 11 = PBCLK is SYSCLK divided by 8 10 = PBCLK is SYSCLK divided by 4 01 = PBCLK is SYSCLK divided by 2 00 = PBCLK is SYSCLK divided by 1	PBDIV<6:0> (PBxDIV<6:0>) 1111111 = PBCLKx is SYSCLK divided by 128 1111110 = PBCLKx is SYSCLK divided by 127 • • • • • • • • • • • • •				
CPU Clock (Configuration				
On PIC32MX devices, the CPU clock is derived from SYSCLK.	On PIC32MZ EF devices, the CPU clock is derived from PBCLK7.				
,	/ Default				
On PIC32MX devices, the default value for FRCDIV was to divide					
the FRC clock by two.	by one.				
FRCDIV<2:0> (OSCCON<26:24>) 111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8 010 = FRC divided by 4 001 = FRC divided by 2 (default) 000 = FRC divided by 1	FRCDIV<2:0> (OSCCON<26:24>) 111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8 010 = FRC divided by 4 001 = FRC divided by 2 000 = FRC divided by 1 (default)				

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES (CONTINUED)

•				
PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature			
ADC Calibration				
On PIC32MX devices, the ADC module can be used immediately, once it is enabled.	PIC32MZ devices require a calibration step prior to operation. This is done by copying the calibration data from DEVADCx to the corresponding ADCxCFG register.			
I/O Pin Analog Function Selection				
On PIC32MX devices, the analog function of an I/O pin was deter- mined by the PCFGx bit in the AD1PCFG register.	On PIC32MZ EF devices, the analog selection function has been moved into a separate register on each I/O port. Note that the sense of the bit is different.			
PCFGx (AD1PCFG <x>) 1 = Analog input pin in Digital mode 0 = Analog input pin in Analog mode</x>	ANSxy (ANSELx <y>) 1 = Analog input pin in Analog mode 0 = Analog input pin in Digital mode</y>			
Electrical Specifications and Timing Requirements				
	On PIC32MZ EF devices, the ADC module sampling and conversion time and other specifications have changed. Refer to 37.0 "Electrical Characteristics " for more information.			

TABLE A-3: ADC DIFFERENCES (CONTINUED)