

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	97
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efk124-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The System Bus arbitration scheme implements a nonprogrammable, Least Recently Serviced (LRS) priority, which provides Quality Of Service (QOS) for most initiators. However, some initiators can use Fixed High Priority (HIGH) arbitration to guarantee their access to data.

The arbitration scheme for the available initiators is shown in Table 4-5.

Name	ID	QOS
CPU	1	LRS ⁽¹⁾
CPU	2	HIGH ^(1,2)
DMA Read	3	LRS ⁽¹⁾
DMA Read	4	HIGH ^(1,2)
DMA Write	5	LRS ⁽¹⁾
DMA Write	6	HIGH ^(1,2)
USB	7	LRS
Ethernet Read	8	LRS
Ethernet Write	9	LRS
CAN1	10	LRS
CAN2	11	LRS
SQI1	12	LRS
Flash Controller	13	HIGH ⁽²⁾
Crypto	14	LRS

TABLE 4-5: INITIATOR ID AND QOS

- Note 1: When accessing SRAM, the DMAPRI bit (CFGCON<25>) and the CPUPRI bit (CFGCON<24>) provide arbitration control for the DMA and CPU (when servicing an interrupt (i.e., EXL = 1)), respectively, by selecting the use of LRS or HIGH When using HIGH, the DMA and CPU get arbitration preference over all initiators using LRS.
 - 2: Using HIGH arbitration can have serious negative effects on other initiators. Therefore, it is recommended to not enable this type of arbitration for an initiator that uses significant system bandwidth. HIGH arbitration is intended to be used for low bandwidth applications that require low latency, such as LCC graphics applications.

4.3 Permission Access and System Bus Registers

The System Bus on PIC32MZ EF family of microcontrollers provides access control capabilities for the transaction initiators on the System Bus.

The System Bus divides the entire memory space into fourteen target regions and permits access to each target by initiators via permission groups. Four Permission Groups (0 through 3) can be assigned to each initiator. Each permission group is independent of the others and can have exclusive or shared access to a region.

Using the CFGPG register (see Register 34-10 in Section 34.0 "Special Features"), Boot firmware can assign a permission group to each initiator, which can make requests on the System Bus.

The available targets and their regions, as well as the associated control registers to assign protection, are described and listed in Table 4-6.

Register 4-2 through Register 4-10 are used for setting and controlling access permission groups and regions.

To change these registers, they must be unlocked in hardware. The register lock is controlled by the PGLOCK Configuration bit (CFGCON<11>). Setting PGLOCK prevents writes to the control registers; clearing PGLOCK allows writes.

To set or clear the PGLOCK bit, an unlock sequence must be executed. Refer to Section 42. "Oscillators with Enhanced PLL" in the *"PIC32 Family Reference Manual"* for details.

6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Resets" (DS60001118) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The device Reset sources are as follows:

- Power-on Reset (POR)
- Master Clear Reset pin (MCLR)
- Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)
- Deadman Timer Reset (DMTR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0							
31:24	—	—	—	—	—	—	—	—	
22:46	U-0	U-0							
23.10	—	—	—	—	—		—	—	
15.0	U-0	U-0	U-0	U-0	U-0 U-0		R-0 R-0		
10.0	—	—	—	—	—	05	SRIPL<2:0> ⁽¹⁾		
7.0	R-0	R-0							
7:0				SIRC	Q<7:0>				

REGISTER 7-3: INTSTAT: INTERRUPT STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-11 Unimplemented: Read as '0'

bit 10-8 SRIPL<2:0>: Requested Priority Level bits for Single Vector Mode bits⁽¹⁾ 111-000 = The priority level of the latest interrupt presented to the CPU

- bit 7-6 Unimplemented: Read as '0'
- bit 7-0 SIRQ<7:0>: Last Interrupt Request Serviced Status bits 11111111-00000000 = The last interrupt request number serviced by the CPU
- Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0								
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
31.24		IPTMR<31:24>														
22.16	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
23.10				IPTMF	?<23:16>											
15.0	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0															
15.0	IPTMR<15:8>															
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
7:0				IPTM	R<7:0>											

IPTMR: INTERRUPT PROXIMITY TIMER REGISTER REGISTER 7-4:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IPTMR<31:0>: Interrupt Proximity Timer Reload bits Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

9.0 PREFETCH MODULE

Note:	This data sheet summarizes the features of the PIC32MZ EF family of devices. It is												
	not intended to be a comprehensive refer-												
	ence source. To complement the informa-												
	tion in this data sheet, refer to Section 41.												
	"Prefetch Module for Devices with L1												
	CPU Cache" (DS60001183) in the "PIC32												
	Family Reference Manual", which is avail-												
	able from the Microchip web site												
	(www.microchip.com/PIC32).												

The Prefetch module is a performance enhancing module that is included in the PIC32MZ EF family of devices. When running at high-clock rates, Wait states must be inserted into Program Flash Memory (PFM) read transactions to meet the access time of the PFM. Wait states can be hidden to the core by prefetching and storing instructions in a temporary holding area that the CPU can access quickly. Although the data path to the CPU is 32 bits wide, the data path to the PFM is 128 bits wide. This wide data path provides the same bandwidth to the CPU as a 32-bit path running at four times the frequency.

The Prefetch module holds a subset of PFM in temporary holding spaces known as lines. Each line contains a tag and data field. Normally, the lines hold a copy of what is currently in memory to make instructions or data available to the CPU without Flash Wait states.

The following are key features of the Prefetch module:

- 4x16 byte fully-associative lines
- One line for CPU instructions
- · One line for CPU data
- Two lines for peripheral data
- 16-byte parallel memory fetch
- Configurable predictive prefetch
- Error detection and correction

A simplified block diagram of the Prefetch module is shown in Figure 9-1.

FIGURE 9-1: PREFETCH MODULE BLOCK DIAGRAM

TAE	BLE 11-	1:	USB REGISTER MAP 1 (CONTINUED)																
ddress E_#)	ster me	ange									Bits								sets
Virtual A (BF8	Regi Nai	Bit Ra	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Re
24.20	USB	31:16		Indexed by the same bits in USBIE2CSR2															0000
3128	E2CSR2	15:0		00															0000
312C	USB	31:16		Indexed by the same bits in USBIE2CSR3															0000
	E2CSR3	15:0		000 Indexed by the same bits in URUE20000 00															0000
3130	USB E3CSR0	31:16		Indexed by the same bits in USBIE3CSR0 000 00															0000
		31.16																	0000
3134	E3CSR1	15:0		Indexed by the same bits in USBIE3CSR1 000															0000
	USB	31:16		Indexed by the same bits in USBIE3CSR2															
3138	E3CSR2	15:0							Ind	exed by the	same bits in l	JSBIE3CSR2							0000
3130	USB	31:16		Indexed by the same bits in USBIE3CSR3															
0100	E3CSR3	15:0							ind	exect by the		JOBIECCON							0000
3140	USB E4CSB0	31:16							Ind	exed by the	same bits in l	JSBIE4CSR0							0000
	E4CSR0	15:0	-																0000
3144	USB E4CSR1	31:16							Ind	exed by the	same bits in l	JSBIE4CSR1							0000
	LICP	31.16																	0000
3148	E4CSR2	15:0							Ind	exed by the	same bits in l	JSBIE4CSR2							0000
	USB	31:16																	0000
314C	E4CSR3	15:0							Ind	exed by the	same bits in l	JSBIE4CSR3							0000
3150	USB	31:16							Ind	exed by the	same hits in I	ISBIE5CSR0							0000
0100	E5CSR0	15:0							ind			JOBIECCOINC							0000
3154	USB	31:16							Ind	exed by the	same bits in l	JSBIE5CSR1							0000
	EDCORI	15:0	-																0000
3158	USB E5CSR2	15.0							Ind	exed by the	same bits in l	JSBIE5CSR2							0000
		31.16																	0000
315C	E5CSR3	15:0							Ind	exed by the	same bits in l	JSBIE5CSR3							0000
	USB	31:16										001500000							0000
3160	E6CSR0	15:0							Ind	exed by the	same bits in l	JSBIE6CSR0							0000
3164	USB	31:16							Ind	aved by the	samo hits in l	ISBIE6CSR1							0000
5104	E6CSR1	15:0							intu										0000
3168	USB	31:16							Ind	exed by the	same bits in l	JSBIE6CSR2							0000
-	EBUSR2	15:0																	0000
316C	USB E6CSR3	31:16							Ind	exed by the	same bits in l	JSBIE6CSR3							0000
Leger		= unkn/	own value on	Reset: un	implemente	d read as 'O	' Reset valu	es are show	n in hevadeci	mal									0000
Note	1: D	evice m	ode.		piomente	., 1000 00 0	. 1.0001 valu												

1: 2: 3: 4:

Device mode.
 Host mode.
 Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0).
 Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).

REGISTER 11-28: USBLPMR1: USB LINK POWER MANAGEMENT CONTROL REGISTER 1 (CONTINUED)

bit 16 LPMXMT: LPM Transition to the L1 State bit

When in Device mode:

1 = USB module will transition to the L1 state upon the receipt of the next LPM transaction. LPMEN must be set to '0b11 . Both LPMXMT and LPMEN must be set in the same cycle.

0 = Maintain current state

When LPMXMT and LPMEN are set, the USB module can respond in the following ways:

- If no data is pending (all TX FIFOs are empty), the USB module will respond with an ACK. The bit will self clear and a software interrupt will be generated.
- If data is pending (data resides in at least one TX FIFO), the USB module will respond with a NYET. In this case, the bit will not self clear however a software interrupt will be generated.

When in Host mode:

- 1 = USB module will transmit an LPM transaction. This bit is self clearing, and will be immediately cleared upon receipt of any Token or three time-outs have occurred.
 Maintain surrant state
- 0 = Maintain current state
- bit 15-12 ENDPOINT<3:0>: LPM Token Packet Endpoint bits
- This is the endpoint in the token packet of the LPM transaction.
- bit 11-9 Unimplemented: Read as '0'
- bit 8 RMTWAK: Remote Wake-up Enable bit

This bit is applied on a temporary basis only and is only applied to the current suspend state.

- 1 = Remote wake-up is enabled
- 0 = Remote wake-up is disabled
- bit 7-4 HIRD<3:0>: Host Initiated Resume Duration bits

The minimum time the host will drive resume on the bus. The value in this register corresponds to an actual resume time of:

Resume Time = 50 μ s + HIRD * 75 μ s. The resulting range is 50 μ s to 1200 μ s.

bit 3-0 LNKSTATE<3:0>: Link State bits

This value is provided by the host to the peripheral to indicate what state the peripheral must transition to after the receipt and acceptance of a LPM transaction. The only valid value for this register is '1' for Sleep State (L1). All other values are reserved.

SS										Bits									
Virtual Addre (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600		31:16	—	—	—	—	—	_	—	_	—	—	_	—	—	—	—	—	0000
0000	ANGLEG	15:0	ANSG15	—	—	_	-	_	ANSG9	ANSG8	ANSG7	ANSG6	_	—	_	—	_	—	83C0
0610	TRISG	31:16	—	—	—	—	—	—		—	—	—	—	—	—	—	-	—	0000
0010	11400	15:0	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	—	—	—	—	TRISG1	TRISG0	F3C3
0620	PORTG	31:16	-	—	—	—	-	_	-	_	—	—	—	—	—	—	-	—	0000
0020		15:0	RG15	RG14	RG13	RG12	—	—	RG9	RG8	RG7	RG6	—	—	—	—	RG1	RG0	XXXX
0630	LATG	31:16	—		—		_			—		—		—	—	—			0000
	_	15:0	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	—	—	—	—	LATG1	LATG0	XXXX
0640	ODCG	31:16	—	—	—	—	_	_	—	—	_	—	-	_	_	-	—	—	0000
		15:0	ODCG15	ODCG14	ODCG13	ODCG12		_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	_	-	ODCG1	ODCG0	0000
0650	CNPUG	31:16					_	_					_	_	_	_			0000
		15:0	CNPUG15	CNPUG14	CNPUG13	CNPUG12	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6				_	CNPUGI	CNPUGU	0000
0660	CNPDG	15:0													_				0000
		31.16																	0000
0670	CNCONG	15:0	ON	_	_	_	EDGE	_	_	_	_	_	_	_	_	_	_	_	0000
		31:16	_	_	_		_	_	_	_	_	_		_	_	_	_	_	0000
0680	CNENG	15:0	CNENG15	CNENG14	CNENG13	CNENG12	_	_	CNENG9	CNENG8	CNENG7	CNENG6		_	_	_	CNENG1	CNENG0	0000
		31:16	_	_			_	_	_	_	_	—		_			_	_	0000
0690	CNSTATG	15:0	CN STATG15	CN STATG14	CN STATG13	CN STATG12			CN STATG9	CN STATG8	CN STATG7	CN STATG6	—	_	—	—	CN STATG1	CN STATG0	0000
	011150	31:16	_	—	_	—	_	_	_	_	—	_	_	_	_	_	-	_	0000
06A0	CNNEG	15:0	CNNEG15	CNNEG14	CNNEG13	CNNEG12	-	_	CNNEG9	CNNEG8	CNNEG7	CNNEG6	—	_	_	_	CNNEG1	CNNEG0	0000
0000		31:16	_	—	_	—	_	_	_	_	—	—	_	_	_	—	_	—	0000
0660	CINFG	15:0	CNFG15	CNFG14	CNFG13	CNFG12	_	_	CNFG9	CNFG8	CNFG7	CNFG6		—	—	—	CNFG1	CNFG0	0000
0600	SRCONOG	31:16	_	—	—	—	_	—	_	_	_	—	_	—	—	_	-	_	0000
0000	SILCONUG	15:0	—	SR0G14	SR0G13	SR0G12	—	_	SR0G9	—	—	SR0G6	—	—	—	—	-	—	0000
06D0	SRCON1G	31:16	—	—	—	—	_	—	—	_	—	—	_	—	—	—	-	—	0000
5000	0.000010	15:0	_	SR1G14	SR1G13	SR1G12	_	_	SR1G9	_	—	SR1G6	—	—	—	—	—	—	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

19.0 SERIAL PERIPHERAL INTERFACE (SPI) AND INTER-IC SOUND (I²S)

Note:	This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive refer-
	ence source. To complement the informa-
	tion in this data sheet, refer to Section 23.
	"Serial Peripheral Interface (SPI)"
	(DS60001106) in the "PIC32 Family Refer-
	ence Manual", which is available from the
	Microchip web site (www.microchip.com/
	PIC32).

The SPI/I²S module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices, as well as digital audio devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters, and so on. The SPI/I²S module is compatible with Motorola[®] SPI and SIOP interfaces.

The following are key features of the SPI module:

- Master and Slave modes support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- Operation during Sleep and Idle modes
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

FIGURE 19-1: SPI/I²S MODULE BLOCK DIAGRAM

23.1 PMP Control Registers

TABLE 23-1: PARALLEL MASTER PORT REGISTER MAP

ss										В	its								
Virtual Addre (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E000	PMCON	31:16	—	—	—		—	—	—	—	RDSTART	·	—		—	—	DUALBUF	—	0000
2000	TWOON	15:0	ON	—	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
E010	PMMODE	31:16	—	—	—	_	—		—	—		—	—	—	—	—	_	—	0000
LOIO	TIMMODE	15:0	BUSY	IRQM	l<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>	WAITI	B<1:0>		WAIT	/<3:0>		WAITE	=<1:0>	0000
		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
E020	PMADDR	15.0	CS2	2 CS1 ADDR<13:0>												0000			
		10.0	ADDR15	ADDR14								.<10.02	-			-			0000
F030	PMDOUT	31:16	—	—	—	—	_	-	—	—	—	—	—	-	—	—	_	-	0000
L030		15:0								DATAOL	JT<15:0>								0000
E040	PMDIN	31:16		—	—	—		—	—		—	—	—	—	—	—	—	_	0000
		15:0			-					DATAII	N<15:0>		-			-			0000
F050	PMAFN	31:16	—	—	—	—		—	—	—	—	—	—	—		—	—	—	0000
2000		15:0	PTEN<15:0> 0000																
F060	PMSTAT	31:16	—	—	—	-	—	—	—	—	—	—	-	—	—	—	—	—	0000
		15:0	IBF	IBOV	—	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E	008F
		31:16	—	—	—	_	—	—	—	—	_	—	—	—	—	—	—		0000
E070	PMWADDR	15.0	WCS2	WCS1	—	_		—	_		—	—	—	—	—	—	_	—	0000
		10.0	WADDR15	WADDR14							WADD	R<13:0>							0000
		31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
E080	PMRADDR	15.0	RCS2	RCS1	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15.0	RADDR15	RADDR14							RADD	R<13:0>							0000
E000		31:16	31:16	—	-	_	_	_	_	_	-	_	-	-	—	—	-	-	0000
L090		15:0	15:0							R	DATAIN<15	:0>							0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	—	—	—	—	—	—			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	RCS2 ⁽¹⁾	RCS1 ⁽³⁾			חחע	1.10.0					
	RADDR15 ⁽²⁾	RADDR14 ⁽⁴⁾		KAUUK<13:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	RADDR<7:0>										

REGISTER 23-9: PMRADDR: PARALLEL PORT READ ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

RCS2: Chip Select 2 bit ⁽¹⁾
1 = Chip Select 2 is active
0 = Chip Select 2 is inactive (RADDR15 function is selected)
RADDR<15>: Target Address bit 15 ⁽²⁾
RCS1: Chip Select 1 bit ⁽³⁾

- 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive (RADDR14 function is selected)
- bit 14 RADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 RADDR<13:0>: Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01 .
 - 2: When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - 3: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - 4: When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01 \therefore

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

31:24 U-0 I///>Start <ttr> 15:8 BDPPLCON<15:8> BDPPLCON<7:0> </ttr>	Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
U-0 II-0 II-0<	31:24	—	—	—	—	—	—	—	—			
Z3:16	00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
R/W-0 R/W-0 <th< td=""><td>23:16</td><td>—</td><td>—</td><td>—</td><td>—</td><td>—</td><td>—</td><td>—</td><td>—</td></th<>	23:16	—	—	—	—	—	—	—	—			
15:8 BDPPLCON<15:8> 7:0 R/W-0 <	45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	15:8	BDPPLCON<15:8>										
7:0 BDPPLCON<7:0>	7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	7:0		BDPPLCON<7:0>									

REGISTER 26-8: CEPOLLCON: CRYPTO ENGINE POLL CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 BDPPLCON<15:0>: Buffer Descriptor Processor Poll Control bits These bits determine the number of SYSCLK cycles that the Crypto DMA would wait before refetching the descriptor control word if the Buffer Descriptor fetched was disabled.

26.3 Security Association Structure

Table 26-4 shows the Security Association Structure. The Crypto Engine uses the Security Association to determine the settings for processing a Buffer Descriptor Processor. The Security Association contains:

- · Which algorithm to use
- Whether to use engines in parallel (for both authentication and encryption/decryption)
- The size of the key
- Authentication key
- · Encryption/decryption key
- Authentication Initialization Vector (IV)
- Encryption IV

Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
SA_CTRL	31:24	_	—	VERIFY	—	NO_RX	OR_EN	ICVONLY	IRFLAG			
	23:16	LNC	LOADIV	FB	FLAGS	—	—	—	ALGO<6>			
	15:8			ALGO<	:5:0>			ENCTYPE	KEYSIZE<1>			
	7:0	KEYSIZE<0>	M	ULTITASK<2:0	>		CRYPTOA	LGO<3:0>	•			
SA_AUTHKEY1	31:24				AUTHKEY<	31:24>						
	23:16		AUTHKEY<23:16>									
	15:8				AUTHKEY<	:15:8>						
	7:0				AUTHKEY	<7:0>						
SA_AUTHKEY2	31:24				AUTHKEY<	31:24>						
	23:16				AUTHKEY<	23:16>						
	15:8				AUTHKEY<	:15:8>						
	7:0				AUTHKEY	<7:0>						
SA_AUTHKEY3	31:24				AUTHKEY<	31:24>						
	23:16				AUTHKEY<	23:16>						
	15:8				AUTHKEY<	:15:8>						
	7:0				AUTHKEY	<7:0>						
SA_AUTHKEY4	31:24				AUTHKEY<	31:24>						
	23:16	AUTHKEY<23:16>										
	15:8	AUTHKEY<15:8>										
	7:0				AUTHKEY	<7:0>						
SA_AUTHKEY5	31:24	AUTHKEY<31:24>										
	23:16	AUTHKEY<23:16>										
	15:8	AUTHKEY<15:8>										
	7:0				AUTHKEY	<7:0>						
SA_AUTHKEY6	31:24				AUTHKEY<	31:24>						
	23:16	AUTHKEY<23:16>										
	15:8		AUTHKEY<15:8>									
	7:0	AUTHKEY<7:0>										
SA_AUTHKEY7	31:24				AUTHKEY<	31:24>						
	23:16				AUTHKEY<	23:16>						
	15:8				AUTHKEY<	:15:8>						
	7:0				AUTHKEY	<7:0>						
SA_AUTHKEY8	31:24				AUTHKEY<	31:24>						
	23:16				AUTHKEY<	23:16>						
	15:8				AUTHKEY<	:15:8>						
7:0 AUTHKEY<7:0>												
SA_ENCKEY1	31:24				ENCKEY<3	1:24>						
23:16 ENCKEY<23:16>												
	15:8				ENCKEY<	15:8>						
	7:0	ENCKEY<7:0>										
SA_ENCKEY2	EY2 31:24 ENCKEY<31:24>											
	23:16				ENCKEY<2	3:16>						

TABLE 26-4: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE

27.1 RNG Control Registers

TABLE 27-2: RANDOM NUMBER GENERATOR (RNG) REGISTER MAP

ss			Bits																
Virtual Addre (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	RNGVER	31:16								ID<15	:0>								xxxx
0000	KNOVER	15:0		-		VERS	SION<7:0>			-				REVISI	ON<7:0>		-	-	хххх
6004	RNGCON	31:16	_	—	_		—	_	_		—	—	—	—	—	—	—	—	0000
0001		15:0	—	—	—	LOAD	TRNGMODE	CONT	PRNGEN	TRNGEN				PLEN	N<7:0>				0064
6008	RNGPOLY1	31:16								POLYC	81.0>								FFFF
0000		15:0								102130	/1.02								0000
600C	RNGPOLY2	31:16								POLY<3	81.0>								FFFF
	1	15:0																	0000
6010	RNGNUMGEN1	31:16								RNG<3	1:0>								FFFF
00.0		15:0																	FFFF
6014	RNGNUMGEN2	31:16								RNG<3	1.0>								FFFF
		15:0																	FFFF
6018	RNGSEED1	31:16								SEED	81.0>								0000
00.0		15:0								0222 1									0000
601C	BNGSEED2 31:16 SEED-31:05							0000											
0010								0000											
6020	RNGCNT	31:16	_	—	_	_	_	_	-	_	—	—	—	—	—	_	—	—	0000
0020		15:0	—	—	—	—	—	—	—	—	—				RCNT<6:0	>			0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	R/W-0	R/W-0 R/W-0 F		R/W-0	R/W-0		
	—	—	—		TRGSRC7<4:0>					
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	—	—		TRGSRC6<4:0>					
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	—	—	—		TRGSRC5<4:0>					
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	_	_	TRGSRC4<4:0>						

REGISTER 28-18: ADCTRG2: AD C TRIGGER SOURCE 2 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 TRGSRC7<4:0>: Trigger Source for Conversion of Analog Input AN7 Select bits 11111 = Reserved

•
•
•
01101 = Reserved
01100 = Comparator 2 (COUT)
01011 = Comparator 1 (COUT)
01010 = OCMP5
01001 = OCMP3
01000 = OCMP1
00111 = TMR5 match
00110 = TMR3 match
00101 = TMR1 match
00100 = INT0 External interrupt
00011 = STRIG
00010 = Global level software trigger (GLSWTRG)
00001 = Global software edge Trigger (GSWTRG)
00000 = No Trigger

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSS*x* registers.

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 TRGSRC6<4:0>: Trigger Source for Conversion of Analog Input AN6 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 TRGSRC5<4:0>: Trigger Source for Conversion of Analog Input AN5 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 TRGSRC4<4:0>: Trigger Source for Conversion of Analog Input AN4 Select bits See bits 28-24 for bit value definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 25/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
	U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
15:8	_	EXCESS DFR	BPNOBK OFF	NOBK OFF	—	—	LONGPRE	PUREPRE
	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7:0	AUTO PAD ^(1,2)	VLAN PAD ^(1,2)	PAD ENABLE ^(1,3)	CRC ENABLE	DELAYCRC	HUGEFRM	LENGTHCK	FULLDPLX

REGISTER 30-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

- bit 14 EXCESSDER: Excess Defer bit
 - 1 = The MAC will defer to carrier indefinitely as per the Standard
 - 0 = The MAC will abort when the excessive deferral limit is reached
- bit 13 BPNOBKOFF: Backpressure/No Backoff bit
 - 1 = The MAC after incidentally causing a collision during backpressure will immediately retransmit without backoff reducing the chance of further collisions and ensuring transmit packets get sent
 - 0 = The MAC will not remove the backoff
- bit 12 NOBKOFF: No Backoff bit
 - 1 = Following a collision, the MAC will immediately retransmit rather than using the Binary Exponential Backoff algorithm as specified in the Standard
 - 0 = Following a collision, the MAC will use the Binary Exponential Backoff algorithm
- bit 11-10 Unimplemented: Read as '0'
- bit 9 LONGPRE: Long Preamble Enforcement bit
 - 1 = The MAC only allows receive packets which contain preamble fields less than 12 bytes in length
 - 0 = The MAC allows any length preamble as per the Standard
- bit 8 PUREPRE: Pure Preamble Enforcement bit
 - 1 = The MAC will verify the content of the preamble to ensure it contains 0x55 and is error-free. A packet with errors in its preamble is discarded
 - 0 = The MAC does not perform any preamble checking
- bit 7 AUTOPAD: Automatic Detect Pad Enable bit^(1,2)
 - 1 = The MAC will automatically detect the type of frame, either tagged or untagged, by comparing the two octets following the source address with 0x8100 (VLAN Protocol ID) and pad accordingly
 - 0 = The MAC does not perform automatic detection
- Note 1: Table 30-6 provides a description of the pad function based on the configuration of this register.
 - 2: This bit is ignored if the PADENABLE bit is cleared.
 - 3: This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
	MACMAXF<15:8> ⁽¹⁾							
7:0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0
	MACMAXF<7:0> ⁽¹⁾							

REGISTER 30-28: EMAC1MAXF: ETHERNET CONTROLLER MAC MAXIMUM FRAME LENGTH REGISTER

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15-0 MACMAXF<15:0>: Maximum Frame Length bits⁽¹⁾ These bits reset to 0x05EE, which represents a maximum receive frame of 1518 octets. An untagged maximum size Ethernet frame is 1518 octets. A tagged frame adds four octets for a total of 1522 octets. If a shorter/longer maximum length restriction is desired, program this 16-bit field.
- Note 1: If a proprietary header is allowed, this bit should be adjusted accordingly. For example, if 4-byte headers are prepended to frames, MACMAXF could be set to 1527 octets. This would allow the maximum VLAN tagged frame plus the 4-byte header.
- Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P
	FDMTEN	DMTCNT<4:0> FWDTWINSZ<1:0>						
23:16	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P
	FWDTEN	WINDIS	WDTSPGM	WDTPS<4:0>				
15:8	R/P	R/P	r-1	r-1	r-1	R/P	R/P	R/P
	FCKSM<1:0>		—	—	—	OSCIOFNC	POSCMOD<1:0>	
7:0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P
	IESO	FSOSCEN	D	DMTINTV<2:0>			FNOSC<2:0>	

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 FDMTEN: Deadman Timer enable bit

1 = Deadman Timer is enabled and *cannot* be disabled by software

0 = Deadman Timer is disabled and *can* be enabled by software

bit 30-26 DMTCNT<4:0>: Deadman Timer Count Select bits

bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%
- bit 23 FWDTEN: Watchdog Timer Enable bit
 - 1 = Watchdog Timer is enabled and cannot be disabled by software
 - 0 = Watchdog Timer is not enabled; it can be enabled in software
- bit 22 WINDIS: Watchdog Timer Window Enable bit
 - 1 = Watchdog Timer is in non-Window mode
 - 0 = Watchdog Timer is in Window mode
- bit 21 WDTSPGM: Watchdog Timer Stop During Flash Programming bit
 - 1 = Watchdog Timer stops during Flash programming
 - 0 = Watchdog Timer runs during Flash programming (for read/execute while programming Flash applications)

AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature -40°C dTA d+85°C for Industrial -40°C dTA d+125°C for Extended				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	TSCL	SCKx Output Low Time (Note 3)	TSCK/2			ns	_
SP11	TscH	SCKx Output High Time (Note 3)	Тѕск/2	—		ns	_
SP15	TscK	SPI Clock Speed (Note 5)			25 50 25 50 25	MHz MHz MHz MHz MHz	SPI1, SPI4 through SPI6 SPI2 on RPB3, RPB5 SPI2 on other I/O SPI3 on RPB10, RPB9, RPF0 SPI3 on other I/O
SP20	TscF	SCKx Output Fall Time (Note 4)	—	—	—	ns	See parameter DO32
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_			ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	—		ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after		—	7	ns	VDD > 2.7V
	ISCL2DOV	SCKx Edge	—	—	10	ns	VDD < 2.7V
SP36	TDOV2SC, TDOV2SCL	SDOx Data Output Setup to First SCKx Edge	—	—	7	ns	_
SP40	TDIV2scH,	Setup Time of SDIx Data Input	7		_	ns	VDD > 2.7V
TDIV2scL		to SCKx Edge	10	—	_	ns	Vdd < 2.7V
SP41	TSCH2DIL,	2DIL, Hold Time of SDIx Data Input	7	—	—	ns	VDD > 2.7V
TscL2DIL		to SCKx Edge	10	—	—	ns	Vdd < 2.7V

TABLE 37-31: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 20 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 30 pF load on all SPIx pins.

5: To achieve maximum data rate, VDD must be t 3.3V, the SMP bit (SPIxCON<9>) must be equal to '1', and the operating temperature must be within the range of -40°C to +105°C.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2