

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32 [®] M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TQFP
Supplier Device Package	144-TQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efk144-i-ph

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber									
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description					
PMA0	30	44	B24	30	I/O	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)					
PMA1	29	43	A28	Parallel Master Port Address bit 1 Input (Buffered Slave modes) and Output (Master modes)								
PMA2	10	16	B9	21	0	_	Parallel Master Port Address (Demultiplexed Master					
PMA3	6	12	B7	52	0	_	modes)					
PMA4	5	11	A8	68	0	_						
PMA5	4	2	B1	2	0	_	1					
PMA6	16	6	B3	6	0	—						
PMA7	22	33	A23	48	0	_	1					
PMA8	42	65	A44	91	0	_						
PMA9	41	64	B36	90	0	_						
PMA10	21	32	B18	47	0	_						
PMA11	27	41	A27	29	0	_	1					
PMA12	24	7	A6	11	0	_						
PMA13	23	34	B19	28	0	_						
PMA14	45	61	A42	87	0	_						
PMA15	43	68	B38	97	0							
PMCS1	45	61	A42	87	0	_	Parallel Master Port Chip Select 1 Strobe					
PMCS2	43	68	B38	97	0	_	Parallel Master Port Chip Select 2 Strobe					
PMD0	58	91	B52	135	I/O	TTL/ST	Parallel Master Port Data (Demultiplexed Master					
PMD1	61	94	A64	138	I/O	TTL/ST	mode) or Address/Data (Multiplexed Master modes)					
PMD2	62	98	A66	142	I/O	TTL/ST	4					
PMD3	63	99	B56	143	I/O	TTL/ST	-					
PMD4	64	100	A67	144	I/O	TTL/ST	-					
PMD5	1	3	A3	3	I/O	TTL/ST	-					
PMD6	2	4	B2	4	I/O	TTL/ST	-					
PMD7	3	5	A4	5	I/O	TTL/ST	-					
PMD8		88	B50	128	I/O	TTL/ST	-					
PMD9		87	A60	120	I/O	TTL/ST	4					
PMD10		86	B49	127	1/O	TTL/ST	4					
PMD11		85	A59	123	1/O	TTL/ST	4					
PMD12		79	B43	112	1/O	TTL/ST	4					
PMD13		80	A54	112	1/O	TTL/ST	4					
PMD13		77	B42	110	1/O	TTL/ST	4					
PMD15		78	A53	110	1/O	TTL/ST	4					
PMALL	30	44	B24	30	0		Parallel Master Port Address Latch Enable Low Byte (Multiplexed Master modes)					
PMALH	29	43	A28	51	0		Parallel Master Port Address Latch Enable High Byte (Multiplexed Master modes)					
PMRD	53	9	A7	13	0		Parallel Master Port Read Strobe					
PMWR	52	8	B5	10	0	<u> </u>	Parallel Master Port Write Strobe					
		MOS-comp				Analog –	Analog input P = Power					

TABLE 1-12: PMP PINOUT I/O DESCRIPTIONS

egend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

Analog = Analog input O = Output

I = Input

REGISTER 4-8:	SBTxREGy: SYSTEM BUS TARGET 'x' REGION 'y' REGISTER	
	(x' = 0.13; y' = 0.8)	

		(x = 0 - 13;	y = 0-o)					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				BASE	<21:14>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				BASE	=<13:6>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	U-0
15:8			BAS	E<5:0>			PRI	_
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
7:0			SIZE<4:0>			_	_	—

Legend:

3		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

more information.

bit 31-10	BASE<21:0>: Region Base Address bits
bit 9	PRI: Region Priority Level bit
	1 = Level 2
	0 = Level 1
bit 8	Unimplemented: Read as '0'
bit 7-3	SIZE<4:0>: Region Size bits
	Permissions for a region are only active is the SIZE is non-zero. 11111 = Region size = $2^{(SIZE - 1)} \times 1024$ (bytes)
	•
	•
	•
	00001 = Region size = 2 ^(SIZE - 1) x 1024 (bytes)
	00000 = Region is not present
bit 2-0	Unimplemented: Read as '0'

Note 1: Refer to Table 4-6 for the list of available targets and their descriptions. 2: For some target regions, certain bits in this register are read-only with preset values. See Table 4-6 for

	Clock Source														
Peripheral	FRC	LPRC	SOSC	SYSCLK	USBCLK	PBCLK1 ⁽¹⁾	PBCLK2	PBCLK3	PBCLK4	PBCLK5	PBCLK7	PBCLK8	REFCLK01	REFCLK02	REFCLK03
CPU											Х				
WDT		Х				X ⁽²⁾									
Deadman Timer						X ⁽²⁾					Х				
Flash	X ⁽²⁾			X ⁽²⁾		X ⁽²⁾									
ADC	Х			Х				χ ⁽³⁾							Х
Comparator								Х							
Crypto										Х					
RNG										Х					
USB					Х					X ⁽³⁾					
CAN										Х					
Ethernet										χ(3)					
PMP							Х								
I ² C							Х								
UART							Х								
RTCC		Х	Х			X ⁽²⁾									
EBI												Х			
SQI										χ(3)				Х	
SPI							Х						Х		
Timers			X ⁽⁴⁾					Х							
Output Compare								Х							
Input Capture								Х							
Ports									Х						
DMA				Х											
Interrupts				Х											
Prefetch				Х											
OSC2 Pin						χ(5)									

TABLE 8-1: SYSTEM AND PERIPHERAL CLOCK DISTRIBUTION

Note 1: PBCLK1 is used by system modules and cannot be turned off.

2: SYSCLK/PBCLK1 is used to fetch data from/to the Flash Controller, while the FRC clock is used for programming.

- **3:** Special Function Register (SFR) access only.
- 4: Timer1 only.
- 5: PBCLK1 divided by 2 is available on the OSC2 pin in certain clock modes.

8.1 Fail-Safe Clock Monitor (FSCM)

The PIC32MZ EF oscillator system includes a Fail-safe Clock Monitor (FSCM). The FSCM monitors the SYSCLK for continuous operation. If it detects that the SYSCLK has failed, it switches the SYSCLK over to the BFRC oscillator and triggers a NMI. The BFRC is an untuned 8 MHz oscillator that will drive the SYSCLK during FSCM event. When the NMI is executed, software can attempt to restart the main oscillator or shut down the system.

In Sleep mode both the SYSCLK and the FSCM halt, which prevents FSCM detection.

REGISTE	ER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER
bit 10-8	NOSC<2:0>: New Oscillator Selection bits
	111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
	110 = Reserved
	101 = Internal Low-Power RC (LPRC) Oscillator
	100 = Secondary Oscillator (Sosc) 011 = Reserved
	010 = Primary Oscillator (Posc) (HS or EC)
	001 = System PLL (SPLL)
	000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
	On Reset, these bits are set to the value of the FNOSC<2:0> Configuration bits (DEVCFG1<2:0>).
bit 7	CLKLOCK: Clock Selection Lock Enable bit
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified
bit 6-5	Unimplemented: Read as '0'
bit 4	SLPEN: Sleep Mode Enable bit
	 1 = Device will enter Sleep mode when a WAIT instruction is executed 0 = Device will enter Idle mode when a WAIT instruction is executed
hi+ 0	CF: Clock Fail Detect bit
bit 3	
	 1 = FSCM has detected a clock failure 0 = No clock failure has been detected
bit 2	Unimplemented: Read as '0'
bit 1	SOSCEN: Secondary Oscillator (Sosc) Enable bit
	1 = Enable Secondary Oscillator
	0 = Disable Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit ⁽¹⁾
	1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1:	The reset value for this bit depends on the setting of the IESO bit (DEVCFG1<7>). When IESO = 1, the
NOLE I.	reset value is '1'. When IESO = 0, the reset value is '0'.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER

bit 10-8 PLLIDIV<2:0>: System PLL Input Clock Divider bits

- 111 =Divide by 8
- 110 = Divide by 7
- 101 =Divide by 6
- 100 =Divide by 5
- 011 = Divide by 4
- 010 = Divide by 3
- 001 = Divide by 2
- 000 = Divide by 1

The default setting is specified by the FPLLIDIV<2:0> Configuration bits in the DEVCFG2 register. If the PLLICLK is set for FRC, this setting is ignored by the PLL and the divider is set for Divide-by-1. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

- bit 7 PLLICLK: System PLL Input Clock Source bit
 - 1 = FRC is selected as the input to the System PLL
 - 0 = Posc is selected as the input to the System PLL
 The POR default is specified by the FPLLICLK Configuration bit in the DEVCFG2 register. Refer to
 Register 34-5 in Section 34.0 "Special Features" for information.
- bit 6-3 Unimplemented: Read as '0'

bit 2-0 PLLRANGE<2:0>: System PLL Frequency Range Selection bits

111 = Reserved 110 = Reserved 101 = 34-64 MHz 100 = 21-42 MHz 011 = 13-26 MHz 010 = 8-16 MHz 001 = 5-10 MHz 000 = Bypass The default setting

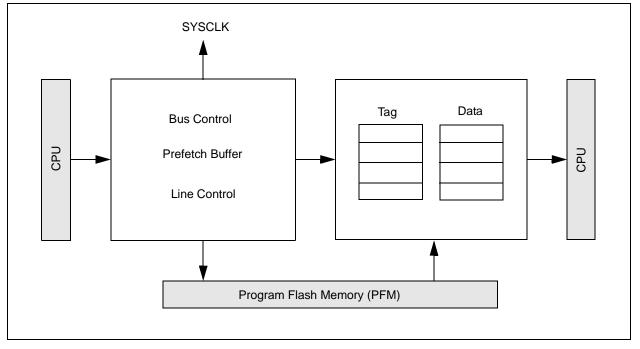
The default setting is specified by the FPLLRNG<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

- Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.
 - 2: Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

9.0 PREFETCH MODULE

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 41. "Prefetch Module for Devices with L1 CPU Cache" (DS60001183) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Prefetch module is a performance enhancing module that is included in the PIC32MZ EF family of devices. When running at high-clock rates, Wait states must be inserted into Program Flash Memory (PFM) read transactions to meet the access time of the PFM. Wait states can be hidden to the core by prefetching and storing instructions in a temporary holding area that the CPU can access quickly. Although the data path to the CPU is 32 bits wide, the data path to the PFM is 128 bits wide. This wide data path provides the same bandwidth to the CPU as a 32-bit path running at four times the frequency.


The Prefetch module holds a subset of PFM in temporary holding spaces known as lines. Each line contains a tag and data field. Normally, the lines hold a copy of what is currently in memory to make instructions or data available to the CPU without Flash Wait states.

The following are key features of the Prefetch module:

- 4x16 byte fully-associative lines
- One line for CPU instructions
- · One line for CPU data
- Two lines for peripheral data
- 16-byte parallel memory fetch
- Configurable predictive prefetch
- Error detection and correction

A simplified block diagram of the Prefetch module is shown in Figure 9-1.

FIGURE 9-1: PREFETCH MODULE BLOCK DIAGRAM

IABL	LE 10-3:	וט		ANNEL	J THROU	JGH CH	ANNEL	7 REGI		AP				
ess		Ð								Bit	s			
/irtual Addr (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	I

A TUDOUCU CUANNEL 7 DE

ess										Bit	s								
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	DOLIGOON	31:16				CHPIG	SN<7:0>				_	_	_	_	_	_	_	_	0000
1060	DCH0CON	15:0	CHBUSY	_	CHPIGNEN	_	CHPATLEN	_	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	l<1:0>	0000
1070	DCH0ECON	31:16	_	_	—	_	—	_	_	—				CHAIR	Q<7:0>				OOFF
1070		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	_		FF00
1080	DCH0INT	31:16	—	—	—	—	—	—	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
1000	Derioitti	15:0	—	—	—	_	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
1090	DCH0SSA	31:16 15:0		CHSSA<31:0>															
10A0	DCH0DSA	31:16 15:0		CHDSA<31:0>															
		31:16					_												0000
10B0	DCH0SSIZ	15:0								CHSSIZ	<15:0>								0000
		31:16		_	_	_	_	_	_	_	_		_	_			_		0000
10C0	DCH0DSIZ	15:0								CHDSIZ	<15:0>								0000
		31:16	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	0000
10D0	DCH0SPTR	15:0								CHSPTR	<15:0>								0000
4050		31:16	_	_	_	_	_	_	_	_	_	—	_	_	—	_	_		0000
10E0	DCH0DPTR	15:0								CHDPTR	<15:0>								0000
10E0	DCH0CSIZ	31:16	—	—	—	_	—	—	_	_					-	_		_	0000
101.0	DCI IOCOIZ	15:0								CHCSIZ	<15:0>								0000
1100	DCH0CPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1100		15:0			· · · · ·					CHCPTR	<15:0>								0000
1110	DCH0DAT	31:16	—	_	—	_	—	—	—	—	—	—	—	—	—	—	—		0000
-		15:0								CHPDAT	<15:0>								0000
1120	DCH1CON	31:16				CHPIG	N<7:0>					—	_	_	—		_		0000
-		15:0	CHBUSY	—	CHPIGNEN	—	CHPATLEN	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	0000
1130	DCH1ECON	31:16	—	_	—	_	—	—	—	_				CHAIR					00FF
		15:0					Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	-	FF00
1140	DCH1INT	31:16	_		-				_	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0	—	—	_	—	—	_		—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
1150	DCH1SSA	31:16 15:0	CHSSA<31:0> 0000																
1100		31:16									.24.0.								0000
1160	DCH1DSA	15:0		CHDSA<31:0>															

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

ess										Bit	5								
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1440	DCH5DPTR	31:16	_	_	—		—		—	—		_		_	_			_	0000
1 // 10	DONODI III	15:0		CHDPTR<15:0> 0000															
14B0	DCH5CSIZ	31:16	_	—	—	_	—	_	—	—		-	—	_	—	—	—	—	0000
		15:0								CHCSIZ	<15:0>								0000
14C0	DCH5CPTR	31:16	—	_	—	_		_			45:0	—	—	—	—	—	—		0000
		15:0								CHCPTR									0000
14D0	DCH5DAT	31:16 15:0	—	_	—			_		CHPDAT		—	_	_	—	—	—	—	0000
							N 7.0			CHEDAI	<13.0>								
14E0	DCH6CON	31:16 15:0	CHBUSY		CHPIGNEN	CHPIG	N<7:0> CHPATLEN			CHCHNS	CHEN	— CHAED	CHCHN	— CHAEN			CHPR	-	0000
		31:16			CHPIGNEN				_		CHEN	CHAED	СПСПИ	CHAEN		CHEDEI	СПРК	1<1:0>	0000
14F0	DCH6ECON	15:0					 Q<7:0>	_		_	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	—	FF00
		31:16	_	_	_	_	_	_		_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
1500	DCH6INT	15:0	_	_	_	_		_	_	_	CHSDIE	CHSHIF	CHDDIE	CHDHIF	CHBCIE	CHCCIF	CHTAIF	CHERIF	0000
		31:16										01101111	0.1551	0.15111	0.12011	0.1001	0	0.1210	0000
1510	DCH6SSA	15:0								CHSSA<	:31:0>								0000
4500	DOLIODOA	31:16																	0000
1520	DCH6DSA	15:0								CHDSA<	:31:0>								0000
1520	DCH6SSIZ	31:16	—	—	—	_		_	_	_	_	_	—	—	_	_	_	_	0000
1550	DCH033IZ	15:0								CHSSIZ	<15:0>								0000
1540	DCH6DSIZ	31:16	_	_	—	_		_	—	—	_	_	_	_	_	_	_	_	0000
1340	DOI IODOIZ	15:0								CHDSIZ	<15:0>								0000
1550	DCH6SPTR	31:16	—	—	—	—		—	—	—	—	—	—	—	—	—	—	—	0000
	5 011001 111	15:0								CHSPTR	<15:0>								0000
1560	DCH6DPTR	31:16	—	—	—	—		—	—	—	_	—	—	—	—	—	—	—	0000
		15:0			1					CHDPTR	<15:0>								0000
1570	DCH6CSIZ	31:16		_	—	_		_	_	—	-	_	_	_	_	—	_		0000
		15:0			г г					CHCSIZ	<15:0>								0000
1580	DCH6CPTR	31:16	_		—	_		_	_		-15:0:	—	-	—	-	—	-	—	0000
		15:0 31:16								CHCPTR	<15:0>								0000
1590	DCH6DAT	15:0	_		_		_	_		CHPDAT	-15:0>							_	0000
		31:16				CHPIG	N-7:0-			OTFDAT	<13.02								0000
15A0	DCH7CON		CHBUSY		CHPIGNEN		N<7:0> CHPATLEN			CHCHNS	CHEN	— CHAED	CHCHN	— CHAEN					0000
Leger					unimplement				hown in ho		OHLIN	UTALD	GHGHN	UNALIN	_	UNEDET	UNFR		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				CHPIG	N<7:0>			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	—	—	—	-	—	—
45.0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
15:8	CHBUSY	_	CHIPGNEN	_	CHPATLEN		—	CHCHNS ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPF	RI<1:0>

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 CHPIGN<7:0>: Channel Register Data bits

Pattern Terminate mode:

Any byte matching these bits during a pattern match may be ignored during the pattern match determination when the CHPIGNEN bit is set. If a byte is read that is identical to this data byte, the pattern match logic will treat it as a "don't care" when the pattern matching logic is enabled and the CHPIGEN bit is set.

bit 23-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **CHPIGNEN:** Enable Pattern Ignore Byte bit
 - 1 = Treat any byte that matches the CHPIGN<7:0> bits as a "don't care" when pattern matching is enabled
 0 = Disable this feature
- bit 12 Unimplemented: Read as '0'
- bit 11 CHPATLEN: Pattern Length bit
 - 1 = 2 byte length
 - 0 = 1 byte length

bit 10-9 Unimplemented: Read as '0'

- bit 8 **CHCHNS:** Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)
 - CHEN: Channel Enable bit⁽²⁾
- 1 = Channel is enabled

bit 7

- 0 = Channel is disabled
- bit 6 CHAED: Channel Allow Events If Disabled bit
 - 1 = Channel start/abort events will be registered, even if the channel is disabled
 - 0 = Channel start/abort events will be ignored if the channel is disabled
- bit 5 CHCHN: Channel Chain Enable bit
 - 1 = Allow channel to be chained
 - 0 = Do not allow channel to be chained
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

REGISTER 11-11: USBIENCSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 1-7) (CONTINUED)

bit 15-8 **RXINTERV<7:0>:** Endpoint RX Polling Interval/NAK Limit bits

For Interrupt and Isochronous transfers, this field defines the polling interval for the endpoint. For Bulk endpoints, this field sets the number of frames/microframes after which the endpoint should time out on receiving a stream of NAK responses.

The following table describes the valid values and meaning for this field:

Transfer Type	Speed	Valid Values (m)	Interpretation
Interrupt	Low/Full	0x01 to 0xFF	Polling interval is 'm' frames.
	High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames.
Isochronous	Full or High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames/microframes.
Bulk	Full or High	0x02 to 0x10	NAK limit is 2 ^(m-1) frames/microframes. A value of '0' or '1' disables the NAK time-out function.

bit 7-6 **SPEED<1:0>:** RX Endpoint Operating Speed Control bits

- 11 = Low-Speed
- 10 = Full-Speed
- 01 = Hi-Speed

00 = Reserved

bit 5-4 **PROTOCOL<1:0>:** RX Endpoint Protocol Control bits

- 11 = Interrupt
- 10 = Bulk
- 01 = Isochronous
- 00 = Control

bit 3-0 **TEP<3:0>:** RX Target Endpoint Number bits

This value is the endpoint number contained in the TX endpoint descriptor returned to the USB module during device enumeration.

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER ('x' = 2-9) (CONTINUED)

bit 2 Unimplemented: Read as '0'

- bit 1 TCS: Timer Clock Source Select bit⁽¹⁾
 - 1 = External clock from TxCK pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
 - 2: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.
 - 3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	—	—	-	_	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16					—			-
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	—	_	_	_
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0			_		AREIF	PKTIF	CBDIF	PENDIF

REGISTER 26-6: CEINTSRC: CRYPTO ENGINE INTERRUPT SOURCE REGISTER

Legend:

5				
R = Readable bit	W = Writable bit	able bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-4 Unimplemented: Read as '0'

- bit 3 AREIF: Access Response Error Interrupt bit
 - 1 = Error occurred trying to access memory outside the Crypto Engine
 - 0 = No error has occurred
- bit 2 **PKTIF:** DMA Packet Completion Interrupt Status bit
 - 1 = DMA packet was completed
 - 0 = DMA packet was not completed

bit 1 CBDIF: BD Transmit Status bit

- 1 = Last BD transmit was processed
- 0 = Last BD transmit has not been processed
- bit 0 PENDIF: Crypto Engine Interrupt Pending Status bit
 - 1 = Crypto Engine interrupt is pending (this value is the result of an OR of all interrupts in the Crypto Engine)
 - 0 = Crypto Engine interrupt is not pending

		$\mathbf{x} = 1 \text{ OR } \mathbf{z}$						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
31:24				POLY<3	31:24>			
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
23:16				POLY<2	3:16>		25/17/9/1 R/W-1	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				POLY<	15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				POLY<	:7:0>			

REGISTER 27-3: RNGPOLYX: RANDOM NUMBER GENERATOR POLYNOMIAL REGISTER 'x'

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 POLY<31:0>: PRNG LFSR Polynomial MSb/LSb bits (RNGPOLY1 = LSb, RNGPOLY2 = MSb)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R/W-1	R/W-1						
31:24				RNG<3	1:24>			
/ -	R/W-1	R/W-1						
23:16				RNG<2	3:16>		25/17/9/1 R/W-1	
45.0	R/W-1	R/W-1						
15:8	RNG<15:8>							
	R/W-1	R/W-1						
7:0			•	RNG<	7:0>		R/W-1 R/W-1	•

REGISTER 27-4:	RNGNUMGENX: RANDOM NUMBER GENERATOR REGISTER 'x' ('x' = 1 OR 2)
-----------------------	---

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RNG<31:0>: Current PRNG MSb/LSb Value bits (RNGNUMGEN1 = LSb, RNGNUMGEN2 = MSb)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0							
31:24		—	—	—	—	—	—	—
22:46	U-0							
23:16	—	—	_	—	_	—	—	—
45.0	U-0	U-0	U-0	R-0, HS, HC				
15:8	—	—	_	EIRDY44 ⁽²⁾	EIRDY43 ⁽²⁾	EIRDY42 ⁽²⁾	EIRDY41 ⁽²⁾	EIRDY40 ⁽²⁾
7.0	R-0, HS, HC							
7:0	EIRDY39 ⁽²⁾	EIRDY38 ⁽²⁾	EIRDY37 ⁽²⁾	EIRDY36 ⁽²⁾	EIRDY35 ⁽²⁾	EIRDY34 ⁽¹⁾	EIRDY33 ⁽¹⁾	EIRDY32 ⁽¹⁾

REGISTER 28-31: ADCEISTAT2: ADC EARLY INTERRUPT STATUS REGISTER 2

Legend:	HS = Hardware Set	HC = Hardware Cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$		

bit 31-13 Unimplemented: Read as '0'

bit 31-0 **EIRDY44:EIRDY32:** Early Interrupt for Corresponding Analog Input Ready bits

- 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN2 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCEIS<2:0> bits in the ADCCON2 register.
- 0 = Interrupts are disabled

Note 1: This bit is not available on 64-pin devices.

2: This bit is not available on 64-pin and 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04-04	R-y	R-y								
31:24				AN<3	1:23>					
	R-y	R-y	R-y	R-y	R-y	R-1	R-1	R-1		
23:16				AN<2	3:16>		25/17/9/1 R-y			
45.0	R-1	R-1								
15:8	AN<15:8>									
7.0	R-1	R-1								
7:0				AN<	7:0>					

REGISTER 28-34: ADCSYSCFG1: ADC SYSTEM CONFIGURATION REGISTER 1

Legend:		y = POR value is deter	y = POR value is determined by the specific device			
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 AN<31:0>: ADC Analog Input bits

These bits reflect the system configuration and are updated during boot-up time. By reading these readonly bits, the user application can determine whether or not an analog input in the device is available. AN<31:0>: Reflects the presence or absence of the respective analog input (AN31-AN0).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
01.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	_	_	—	—	_	—	_			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
Bit Range 31:24 23:16 15:8 7:0	_	_	_	—	_	_	_	_			
45.0	U-0	U-0	U-0	R-1	R-1	R-y	R-y	R-y			
15:8	_	_	_			AN<44:40>					
7.0	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y			
7.0		AN<39:32>									

REGISTER 28-35: ADCSYSCFG2: ADC SYSTEM CONFIGURATION REGISTER 2

Legend:		y = POR value is deter	y = POR value is determined by the specific device			
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-13 Unimplemented: Read as '0'

bit 12-0 AN<44:32>: ADC Analog Input bits

These bits reflect the system configuration and are updated during boot-up time. By reading these readonly bits, the user application can determine whether or not an analog input in the device is available. AN<63:32>: Reflects the presence or absence of the respective analog input (AN63-AN32).

29.1 **CAN Control Registers**

Note: The 'i' shown in register names denotes CAN1 or CAN2.

TABLE 29-1: CAN1 REGISTER SUMMARY FOR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES

ess		0								Bit	5								
Virtual Address (BF88_#) Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
0000	C1CON	31:16		—	—	_	ABAT		REQOP<2:0	>	C	PMOD<2:0	>	CANCAP	_	_	—	—	0480
0000	010011	15:0	ON	—	SIDLE	—	CANBUSY	—	—	—	—	—	—		D	NCNT<4:0>			0000
0010	C1CFG	31:16	_	—	—	—	_	_	_	—	_	WAKFIL	—	—	—		EG2PH<2:0	>	0000
0010	01010	15:0	SEG2PHTS	SAM		EG1PH<2:0			PRSEG<2:0	>	SJW	<1:0>			BRP<			-	0000
0020	C1INT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	_	_	_	_	—	—	_	MODIE	CTMRIE	RBIE	TBIE	0000
0020	_	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF	_	—	_	_	_	-	_	MODIF	CTMRIF	RBIF	TBIF	0000
0030	C1VEC	31:16	_	—	—	_	_	_	_	—	_	—	—	—	—	—	—	—	0000
0000	OTVEO	15:0	—	—	—			FILHIT<4:0	>		—				CODE<6:0>				0040
0040	C1TREC	31:16	_	—	—	—	_	_	_	—	_	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
0010		15:0				-	NT<7:0>		-					RERRCN	-			-	0000
0050	C1FSTAT		FIFOIP31	FIFOIP30			FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24	FIFOIP23	FIFOIP22	FIFOIP21		FIFOIP19				
0000			FIFOIP15	FIFOIP14		-	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	
0060	C1RXOVF		RXOVF31		RXOVF29				RXOVF25	RXOVF24		RXOVF22		RXOVF20	RXOVF19	RXOVF18	RXOVF17		
0000			RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
0070	C1TMR	31:16								CANTS<									0000
0010	011111	15:0							CA	NTSPRE<15	:0>								0000
0080	C1RXM0	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
0000	Onotino	15:0								EID<1	5:0>								xxxx
0090	C1RXM1	31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
0090	CIRAI	15:0								EID<1	5:0>								xxxx
00A0	C1RXM2	31:16						SID<10:0>							MIDE		EID<1	7:16>	xxxx
UUAU	CIRAIVIZ	15:0								EID<1	5:0>								xxxx
0000	04.574.40	31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
00B0	C1RXM3	15:0								EID<1	5:0>								xxxx
		31:16	FLTEN3	MSEL	3<1:0>			FSEL3<4:0:	>		FLTEN2	MSEL	2<1:0>		F	SEL2<4:0>			0000
00C0	C1FLTCON0	15:0	FLTEN1	MSEL	1<1:0>			FSEL1<4:0:	>		FLTEN0	MSEL	0<1:0>		F	SEL0<4:0>			0000
0000		31:16	FLTEN7	MSEL	7<1:0>			FSEL7<4:0:	>		FLTEN6	MSEL	6<1:0>		F	SEL6<4:0>			0000
0000	C1FLTCON1	15:0	FLTEN5	MSEL	5<1:0>			FSEL5<4:0:	>		FLTEN4	MSEL	4<1:0>		F	SEL4<4:0>			0000
0050		31:16	FLTEN11	MSEL1	11<1:0>			FSEL11<4:0	>		FLTEN10	MSEL1	10<1:0>		F	SEL10<4:0>	>		0000
00E0 C1FLTCON2	15:0	FLTEN9	MSEL	9<1:0>			FSEL9<4:0:	>		FLTEN8	MSEL	8<1:0>		F	SEL8<4:0>			0000	

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

REGISTER 30-19: ETHMCOLFRM: ETHERNET CONTROLLER MULTIPLE COLLISION FRAMES STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	_	_	_	—	_	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	_	_	_	—	_	—		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	MCOLFRMCNT<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0	MCOLFRMCNT<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **MCOLFRMCNT<15:0>:** Multiple Collision Frame Count bits Increment count for frames that were successfully transmitted after there was more than one collision.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 34-8:	CFGEBIA: EXTERNAL BUS INTERFACE ADDRESS PIN CONFIGURATION
	REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	EBIPINEN	_	_	_	_	_	_	—
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	EBIA23EN	EBIA22EN	EBIA21EN	EBIA20EN	EBIA19EN	EBIA18EN	EBIA17EN	EBIA16EN
45-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	EBIA15EN	EBIA14EN	EBIA13EN	EBIA12EN	EBIA11EN	EBIA10EN	EBIA9EN	EBIA8EN
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	EBIA7EN	EBIA6EN	EBIA5EN	EBIA4EN	EBIA3EN	EBIA2EN	EBIA1EN	EBIA0EN

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31 EBIPINEN: EBI Pin Enable bit

1 = EBI controls access of pins shared with PMP

0 = Pins shared with EBI are available for general use

- bit 30-24 Unimplemented: Read as '0'
- bit 23-0 EBIA23EN:EBIA0EN: EBI Address Pin Enable bits
 - 1 = EBIAx pin is enabled for use by EBI
 - 0 = EBIAx pin has is available for general use

Note: When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.

36.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit[™] 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

36.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for highperformance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window

Project-Based Workspaces:

- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker