

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efm064-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: **PIN NAMES FOR 144-PIN DEVICES (CONTINUED)**

144-PIN LQFP AND TQFP (TOP VIEW)

PIC32MZ0512EF(E/F/K)144 PIC32MZ1024EF(G/H/M)144 PIC32MZ1024EF(E/F/K)144 PIC32MZ2048EF(G/H/M)144

144

			1
Pin Number	Full Pin Name	Pin Number	Full Pin Name
73	VBUS	109	RPD1/SCK1/RD1
74	VUSB3V3	110	EBID14/RPD2/PMD14/RD2
75	Vss	111	EBID15/RPD3/PMD15/RD3
76	D-	112	EBID12/RPD12/PMD12/RD12
77	D+	113	EBID13/PMD13/RD13
78	RPF3/USBID/RF3	114	ETXERR/RJ0
79	SDA3/RPF2/RF2	115	EMDIO/RJ1
80	SCL3/RPF8/RF8	116	EBIRDY3/RJ2
81	ERXD0/RH8	117	EBIA22/RJ3
82	ERXD3/RH9	118	SQICS0/RPD4/RD4
83	ECOL/RH10	119	SQICS1/RPD5/RD5
84	EBIRDY2/RH11	120	ETXEN/RPD6/RD6
85	SCL2/RA2	121	ETXCLK/RPD7/RD7
86	EBIRDY1/SDA2/RA3	122	VDD
87	EBIA14/PMCS1/PMA14/RA4	123	Vss
88	Vdd	124	EBID11/RPF0/PMD11/RF0
89	Vss	125	EBID10/RPF1/PMD10/RF1
90	EBIA9/RPF4/SDA5/PMA9/RF4	126	EBIA21/RK7
91	EBIA8/RPF5/SCL5/PMA8/RF5	127	EBID9/RPG1/PMD9/RG1
92	EBIA18/RK4	128	EBID8/RPG0/PMD8/RG0
93	EBIA19/RK5	129	TRCLK/SQICLK/RA6
94	EBIA20/RK6	130	TRD3/SQID3/RA7
95	RPA14/SCL1/RA14	131	EBICS0/RJ4
96	RPA15/SDA1/RA15	132	EBICS1/RJ5
97	EBIA15/RPD9/PMCS2/PMA15/RD9	133	EBICS2/RJ6
98	RPD10/SCK4/RD10	134	EBICS3/RJ7
99	EMDC/RPD11/RD11	135	EBID0/PMD0/RE0
100	ECRS/RH12	136	Vss
101	ERXDV/ECRSDV/RH13	137	Vdd
102	RH14	138	EBID1/PMD1/RE1
103	EBIA23/RH15	139	TRD2/SQID2/RG14
104	RPD0/RTCC/INT0/RD0	140	TRD1/SQID1/RG12
105	SOSCI/RPC13/RC13	141	TRD0/SQID0/RG13
106	SOSCO/RPC14/T1CK/RC14	142	EBID2/PMD2/RE2
107	VDD	143	EBID3/RPE3/PMD3/RE3
108	Vss	144	EBID4/AN18/PMD4/RE4

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See Section 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip's Worldwide Web site; http://www.microchip.com

· Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	—	—		—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—		—	—	—
45.0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8	—	—	T13PGV	T12PGV	T11PGV	T10PGV	T9PGV	T8PGV
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0	T7PGV	T6PGV	T5PGV	T4PGV	T3PGV	T2PGV	T1PGV	TOPGV

REGISTER 4-2: SBFLAG: SYSTEM BUS STATUS FLAG REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-14 Unimplemented: Read as '0'

bit 13-0 **TxPGV:** Target 'x' Permission Group Violation Status bits ('x' = 0-13)

Refer to Table 4-6 for the list of available targets and their descriptions.

- 1 = Target is reporting a Permission Group (PG) violation
- 0 = Target is not reporting a PG violation

Note: All errors are cleared at the source (i.e., SBTxELOG1, SBTxELOG2, SBTxECLRS, or SBTxECLRM registers).

		('x' = 0-13)								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0, C	U-0	U-0	U-0	R/W-0, C	R/W-0, C	R/W-0, C	R/W-0, C		
31:24	MULTI	—	—	—		CODE	<3:0>			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10		—	—	—	—	_	_	_		
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
10.0	INITID<7:0>									
7.0	R-0	R-0	R-0	R-0	U-0	R-0	R-0	R-0		
7.0		REGIO	N<3:0>		—		CMD<2:0>			

REGISTER 4-3: SBTxELOG1: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 1

Le	egend:	C = Clearable bit	
R	= Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n	= Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31 MULTI: Multiple Permission Violations Status bit

This bit is cleared by writing a '1'.

1 = Multiple errors have been detected

0 = No multiple errors have been detected

bit 30-28 Unimplemented: Read as '0'

bit 27-24 CODE<3:0>: Error Code bits

Indicates the type of error that was detected. These bits are cleared by writing a '1'.

- 1111 = Reserved
- 1101 = Reserved
- •
- •
- 0011 = Permission violation
- 0010 = Reserved
- 0001 = Reserved
- 0000 = No error
- bit 23-16 Unimplemented: Read as '0'
- bit 15-8 INITID<7:0>: Initiator ID of Requester bits
 - 11111111 = Reserved
 - 00001111 = Reserved 00001110 = Crypto Engine 00001101 = Flash Controller 00001100 = SQI1 00001011 = CAN2 00001010 = CAN1 00001001 = Ethernet Write 00001000 = Ethernet Read 00000111 = USB 00000110 = DMA Write (DMAPRI (CFGCON<25>) = 1) 00000101 = DMA Write (DMAPRI (CFGCON<25>) = 0) 00000100 = DMA Read (DMAPRI (CFGCON<25>) = 1) 00000011 = DMA Read (DMAPRI (CFGCON<25>) = 0) 00000010 = CPU (CPUPRI (CFGCON<24>) = 1) 00000001 = CPU (CPUPRI (CFGCON<25>) = 0) 00000000 = Reserved

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

TABLE 7-2: INTERRUPT IRQ, VECTOR, AND BIT LOCATION (CONTINUED)

		IRQ			Persistent			
Interrupt Source''	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
I2C3 Master Event	_I2C3_MASTER_VECTOR	162	OFF162<17:1>	IFS5<2>	IEC5<2>	IPC40<20:18>	IPC40<17:16>	Yes
SPI4 Fault	_SPI4_FAULT_VECTOR	163	OFF163<17:1>	IFS5<3>	IEC5<3>	IPC40<28:26>	IPC40<25:24>	Yes
SPI4 Receive Done	_SPI4_RX_VECTOR	164	OFF164<17:1>	IFS5<4>	IEC5<4>	IPC41<4:2>	IPC41<1:0>	Yes
SPI4 Transfer Done	_SPI4_TX_VECTOR	165	OFF165<17:1>	IFS5<5>	IEC5<5>	IPC41<12:10>	IPC41<9:8>	Yes
Real Time Clock	_RTCC_VECTOR	166	OFF166<17:1>	IFS5<6>	IEC5<6>	IPC41<20:18>	IPC41<17:16>	No
Flash Control Event	_FLASH_CONTROL_VECTOR	167	OFF167<17:1>	IFS5<7>	IEC5<7>	IPC41<28:26>	IPC41<25:24>	No
Prefetch Module SEC Event	_PREFETCH_VECTOR	168	OFF168<17:1>	IFS5<8>	IEC5<8>	IPC42<4:2>	IPC42<1:0>	Yes
SQI1 Event	_SQI1_VECTOR	169	OFF169<17:1>	IFS5<9>	IEC5<9>	IPC42<12:10>	IPC42<9:8>	Yes
UART4 Fault	_UART4_FAULT_VECTOR	170	OFF170<17:1>	IFS5<10>	IEC5<10>	IPC42<20:18>	IPC42<17:16>	Yes
UART4 Receive Done	_UART4_RX_VECTOR	171	OFF171<17:1>	IFS5<11>	IEC5<11>	IPC42<28:26>	IPC42<25:24>	Yes
UART4 Transfer Done	_UART4_TX_VECTOR	172	OFF172<17:1>	IFS5<12>	IEC5<12>	IPC43<4:2>	IPC43<1:0>	Yes
I2C4 Bus Collision Event	_I2C4_BUS_VECTOR	173	OFF173<17:1>	IFS5<13>	IEC5<13>	IPC43<12:10>	IPC43<9:8>	Yes
I2C4 Slave Event	_I2C4_SLAVE_VECTOR	174	OFF174<17:1>	IFS5<14>	IEC5<14>	IPC43<20:18>	IPC43<17:16>	Yes
I2C4 Master Event	_I2C4_MASTER_VECTOR	175	OFF175<17:1>	IFS5<15>	IEC5<15>	IPC43<28:26>	IPC43<25:24>	Yes
SPI5 Fault ⁽²⁾	_SPI5_FAULT_VECTOR	176	OFF176<17:1>	IFS5<16>	IEC5<16>	IPC44<4:2>	IPC44<1:0>	Yes
SPI5 Receive Done ⁽²⁾	_SPI5_RX_VECTOR	177	OFF177<17:1>	IFS5<17>	IEC5<17>	IPC44<12:10>	IPC44<9:8>	Yes
SPI5 Transfer Done ⁽²⁾	_SPI5_TX_VECTOR	178	OFF178<17:1>	IFS5<18>	IEC5<18>	IPC44<20:18>	IPC44<17:16>	Yes
UART5 Fault	_UART5_FAULT_VECTOR	179	OFF179<17:1>	IFS5<19>	IEC5<19>	IPC44<28:26>	IPC44<25:24>	Yes
UART5 Receive Done	_UART5_RX_VECTOR	180	OFF180<17:1>	IFS5<20>	IEC5<20>	IPC45<4:2>	IPC45<1:0>	Yes
UART5 Transfer Done	_UART5_TX_VECTOR	181	OFF181<17:1>	IFS5<21>	IEC5<21>	IPC45<12:10>	IPC45<9:8>	Yes
I2C5 Bus Collision Event	_I2C5_BUS_VECTOR	182	OFF182<17:1>	IFS5<22>	IEC5<22>	IPC45<20:18>	IPC45<17:16>	Yes
I2C5 Slave Event	_I2C5_SLAVE_VECTOR	183	OFF183<17:1>	IFS5<23>	IEC5<23>	IPC45<28:26>	IPC45<25:24>	Yes
I2C5 Master Event	_I2C5_MASTER_VECTOR	184	OFF184<17:1>	IFS5<24>	IEC5<24>	IPC46<4:2>	IPC46<1:0>	Yes
SPI6 Fault ⁽²⁾	_SPI6_FAULT_VECTOR	185	OFF185<17:1>	IFS5<25>	IEC5<25>	IPC46<12:10>	IPC46<9:8>	Yes
SPI6 Receive Done ⁽²⁾	_SPI6_RX_VECTOR	186	OFF186<17:1>	IFS5<26>	IEC5<26>	IPC46<20:18>	IPC46<17:16>	Yes
SPI6 Transfer Done ⁽²⁾	_SPI6_TX_VECTOR	187	OFF187<17:1>	IFS5<27>	IEC5<27>	IPC46<28:26>	IPC46<25:24>	Yes
UART6 Fault	_UART6_FAULT_VECTOR	188	OFF188<17:1>	IFS5<28>	IEC5<28>	IPC47<4:2>	IPC47<1:0>	Yes
UART6 Receive Done	_UART6_RX_VECTOR	189	OFF189<17:1>	IFS5<29>	IEC5<29>	IPC47<12:10>	IPC47<9:8>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals. 2: This interrupt source is not available on 64-pin devices. This interrupt source is not available on 100-pin devices. 4: This interrupt source is not available on 124-pin devices.

3:

12.4.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the PPS options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 12-2) are used to control output mapping. Like the [*pin name*]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 12-3 and Figure 12-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 12-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPF0

12.4.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32MZ EF devices include two features to prevent alterations to the peripheral map:

- Control register lock sequence
- Configuration bit select lock

12.4.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [*pin name*]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** in the *"PIC32 Family Reference Manual"* for details.

12.4.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [*pin name*]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and reenable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

TABLE 12-14: PORTF REGISTER MAP FOR 64-PIN DEVICES ONLY

ess		6								Bi	ts								
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0510	TDICE	31:16	_	_	—	—	—	—	—	—	-		—	—	—	—	_	—	0000
0510	IRIOF	15:0	-	—			-					_	TRISF5	TRISF4	TRISF3	-	TRISF1	TRISF0	003B
0520	PORTE	31:16	—	—	—	—	—	_	—	—	_	—		—	—	—	—		0000
0020	1 OKII	15:0	—	—	—	—	—	—	—	—	_	—	RF5	RF4	RF3	—	RF1	RF0	xxxx
0530	LATF	31:16	_	_								—		—	—		—		0000
		15:0	—	—	—	—	—	_	—	—	—	—	LATF5	LATF4	LATF3	—	LATF1	LATF0	XXXX
0540	ODCF	31:16	_	_	—	—	_	_	—	—	_	—	_	—	_	—	—	—	0000
		15:0	_	_	_	_	_			_	_	-	ODCF5	ODCF4	ODCF3	_	ODCF1	ODCF0	0000
0550	CNPUF	31:16	_				_					_							0000
		15:0	_	_	_	_	_	_	_	_	_	_	CNPUF5	CNPUF4	CNPUF3	_	CNPUF1	CNPUFU	0000
0560	CNPDF	31:16	_		_	_	_			_	_	_				_			0000
		15.0	_										CINFDF5	CINFDF4	CINFDF3		CNEDEL	CINFDFU	0000
0570	CNCONF	15:0	ON	_	_	_	EDGE			_	_	_		_	_	_	_	_	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0580	CNENF	15:0	_	_	_	_	_	_	_	_	_		CNENF5	CNENF4	CNENF3	_	CNENF1	CNENF0	0000
		31:16	_	_	_	—	_	_	-	—	_	_	_	—	—	—	_	_	0000
0590	CNSTATF	15:0	_	_	_	_	_	_	_	_	_	_	CN STATF5	CN STATF4	CN STATF3	_	CN STATF1	CN STATF0	0000
05 4 0		31:16	-	_	—	_	_	_	—	—	—	_	—	—	_	_	_	—	0000
05A0	CININEF	15:0	_	_	-	-	-			-		_	CNNEF5	CNNEF4	CNNEF3		CNNEF1	CNNEF0	0000
05B0	CNEE	31:16	—	_	_	_	—	_	_	—	_	—	—	_	—	—	—	—	0000
0000	ONT	15:0	—	—	—	—	—	—	—	—	_	—	CNFF5	CNFF4	CNFF3	—	CNFF1	CNFF0	0000
05C0	SRCON0F	31:16	_	_	—	—	—	_	_	—	_	—	_	—	_	_	—	_	0000
		15:0	—	_		—	—	_	_		—	—	-		—	—	SR0F1	SR0F0	0000
05D0	SRCON1F	31:16	—	_		_	—	_	_	_	_	—	-	_	_		—		0000
		15:0	_	—	—	—	_	_	—	_	_	—	—	_	_	_	SR1F1	SR2F0	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

TABLE 12-19: PORTJ REGISTER MAP FOR 124-PIN DEVICES ONLY

ess										Bits									
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0800	ANSEL	31:16	-	_	-	-	—	_	—	_		_		—	_	—	—	—	0000
0000		15:0	_	_	_	_	ANSJ11	—	ANSJ9	ANSJ8	—	-	—	—	_	—	—		0B00
0810	TRISJ	31:16	—	—	_	—	—	_	—		—	—	_	—	_	-	—	—	0000
		15:0	_	_	_	_	TRISJ11	_	TRISJ9	TRISJ8				TRISJ4	_	TRISJ2	TRISJ1	TRISJ0	0B17
0820	PORTJ	31:16	_	_	_	_	_	_	—	_				—	_	—	—		0000
		15:0	_	_	_	_	RJ11	—	RJ9	RJ8	—	—	_	RJ4	_	RJ2	RJ1	RJ0	xxxx
0830	LATJ	31:16	_	_	_	_	—	_			_	_	_	—	_	—	—		0000
		15:0	_	_	_	_	LATJ11	_	LATJ9	LATJ8	_	_	_	LATJ4	_	LATJ2	LATJ1	LATJ0	xxxx
0840	ODCJ	31:16	_	_	_	_	-	_	-	-	_	_		-	_	-	-	-	0000
		15:0					ODCJ11		ODC19	ODC18				ODCJ4		ODCJ2	ODCJ1	ODCJ0	0000
0850	CNPUJ	31:16					-	_	-			_				-		-	0000
		15:0	_	_	_	_	CNPUJ11	_	CNPUJ9	CNPUJ8	_	_	_	CNPUJ4	_	CNPUJ2	CNPUJ1	CNPUJU	0000
0860	CNPDJ	31:16	_	_	_	_		_			_	_	_		_				0000
		15:0	_	_	_	_	CNPDJ11	_	CNPDJ9	CNPDJ8		_		CNPDJ4	_	CNPDJ2	CNPDJ1	CNPDJ0	0000
0870		31:10	_				-			_		-		_					0000
0070	CINCONS	15:0	ON	—	—	—	DETECT	—	—	—	—	—	—	—	—	—	—	-	0000
0000		31:16	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	0000
0880	CINEINJ	15:0					CNENJ11		CNENJ9	CNENJ8				CNENJ4		CNENJ2	CNENJ1	CNENJ0	0000
		31:16	-	-	-	-	—	—	—	-	—		-	—	—	—	—	_	0000
0890	CNSTATJ	15:0	_	_	_	_	CN STATJ11	_	CN STATJ9	CN STATJ8	_	_	_	CN STATJ4	_	CN STATJ2	CN STATJ1	CN STATJ0	0000
0040		31:16	—	_	—	—	—	_	—	—	—	—	_	—	_	—	—	—	0000
08A0	CININEJ	15:0	—	_	—	—	CNNEJ11	_	CNNEJ9	CNNEJ8	—	—	_	CNNEJ4	_	CNNEJ2	CNNEJ1	CNNEJ0	0000
		31:16	—	_	—	—	—	_	—	—	—	—	_	—	_	—	—	—	0000
0880	CINEJ	15:0	_	_	_	_	CNFJ11	_	CNFJ9	CNFJ8	_	_	_	CNFJ4		CNFJ2	CNFJ1	CNFJ0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—		—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—		—	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_		[pin name	e]R<3:0>	

REGISTER 12-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 [*pin name*]R<3:0>: Peripheral Pin Select Input bits Where [*pin name*] refers to the pins that are used to configure peripheral input mapping. See Table 12-2 for input pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

REGISTER 12-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	_		-	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	-	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—		_				
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_			_		RPnR	<3:0>	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 **RPnR<3:0>:** Peripheral Pin Select Output bits See Table 12-3 for output pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

19.0 SERIAL PERIPHERAL INTERFACE (SPI) AND INTER-IC SOUND (I²S)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/ PIC32).

The SPI/I²S module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices, as well as digital audio devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters, and so on.

The SPI/I²S module is compatible with Motorola[®] SPI and SIOP interfaces.

The following are key features of the SPI module:

- Master and Slave modes support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during Sleep and Idle modes
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

FIGURE 19-1: SPI/I²S MODULE BLOCK DIAGRAM

REGISTER 20-13:	SQI1STAT2: SQI STATUS REGISTER 2
-----------------	----------------------------------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	_	—	_	-	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
23:16	—	—	—	—	—	—	CMDST	AT<1:0>
45.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
0.61	—	—	—	_		CONAVA	AIL<4:1>	
7.0	R-0	R-0	R-0	R-0	R-0	U-0	R-0	R-0
7:0	CONAVAIL<0>	SQID3	SQID2	SQID1	SQID0		RXUN	TXOV

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-18 Unimplemented: Read as '0'

- bit 17-16 **CMDSTAT<1:0>:** Current Command Status bits These bits indicate the current command status.
 - 11 = Reserved
 - 10 = Receive
 - 01 = Transmit
 - 00 = Idle
- bit 15-12 Unimplemented: Read as '0'

bit 11-7 **CONAVAIL<4:0>:** Control FIFO Space Available bits These bits indicate the available control Word space. 11111 = 32 bytes are available 11110 = 31 bytes are available

- 00001 = 1 byte is available
- 00000 = No bytes are available

bit 6 SQID3: SQID3 Status bit

- 1 = Data is present on SQID3
- 0 = Data is not present on SQID3 bit 5 **SQID2:** SQID2 Status bit
 - 1 = Data is present on SQID2
 - 0 = Data is not present on SQID2
- bit 4 **SQID1:** SQID1 Status bit
 - 1 = Data is present on SQID1
 - 0 = Data is not present on SQID1
- bit 3 SQID0: SQID0 Status bit
 - 1 = Data is present on SQID0
 - 0 = Data is not present on SQID0
- bit 2 Unimplemented: Read as '0'
- bit 1 RXUN: Receive FIFO Underflow Status bit
 - 1 = Receive FIFO Underflow has occurred
 - 0 = Receive FIFO underflow has not occurred
- bit 0 TXOV: Transmit FIFO Overflow Status bit
 - 1 = Transmit FIFO overflow has occurred
 - 0 = Transmit FIFO overflow has not occurred

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24		—	—	INIT1SCHECK	INIT1CO	UNT<1:0>	INIT1TY	PE<1:0>
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	INIT1CMD3<7:0> ⁽¹⁾							
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	INIT1CMD2<7:0> ⁽¹⁾							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	INIT1CMD1<7:0> ⁽¹⁾							

REGISTER 20-25: SQI1XCON3: SQI XIP CONTROL REGISTER 3

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28 INIT1SCHECK: Flash Initialization 1 Command Status Check bit
 - 1 = Check the status after executing the INIT1 command
 - 0 = Do not check the status
- bit 27-26 INIT1COUNT<1:0>: Flash Initialization 1 Command Count bits
 - 11 = INIT1CMD1, INIT1CMD2, and INIT1CMD3 are sent
 - 10 = INIT1CMD1 and INIT1CMD2 are sent, but INIT1CMD3 is still pending
 - 01 = INIT1CMD1 is sent, but INIT1CMD2 and INIT1CMD3 are still pending
 - 00 = No commands are sent
- bit 25-24 INIT1TYPE<1:0>: Flash Initialization 1 Command Type bits
 - 11 = Reserved
 - 10 = INIT1 commands are sent in Quad Lane mode
 - 01 = INIT1 commands are sent in Dual Lane mode
 - 00 = INIT1 commands are sent in Single Lane mode
- bit 24-16 **INIT1CMD3<7:0>:** Flash Initialization Command 3 bits⁽¹⁾ Third command of the Flash initialization.
- bit 15-8 **INIT1CMD2<7:0>:** Flash Initialization Command 2 bits⁽¹⁾ Second command of the Flash initialization.
- bit 7-0 **INIT1CMD1<7:0>:** Flash Initialization Command 1 bits⁽¹⁾ First command of the Flash initialization.
- **Note 1:** INIT1CMD1 can be WEN and INIT1CMD2 can be SECTOR UNPROTECT.

Note: Some Flash devices require Write Enable and Sector Unprotect commands before read/write operations and this register is useful in working with those Flash types (XIP mode only)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	ERRMODE<2:0> ERROP<2:0>		>	ERRPHA	ASE<1:0>			
22.16	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	—	—	BDSTATE<3:0>				START	ACTIVE
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	BDCTRL<15:8>							
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0	7:0 BDCTRL<7:0>							

REGISTER 26-5: CESTAT: CRYPTO ENGINE STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 ERRMODE<2:0>: Internal Error Mode Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CEK operation
- 010 = KEK operation
- 001 = Preboot authentication
- 000 = Normal operation

bit 28-26 ERROP<2:0>: Internal Error Operation Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Authentication
- 011 = Reserved
- 010 = Decryption
- 001 = Encryption
- 000 = Reserved

bit 25-24 ERRPHASE<1:0>: Internal Error Phase of DMA Status bits

- 11 = Destination data
- 10 = Source data
- 01 = Security Association (SA) access
- 00 = Buffer Descriptor (BD) access

bit 23-22 Unimplemented: Read as '0'

bit 21-18 BDSTATE<3:0>: Buffer Descriptor Processor State Status bits

The current state of the BDP:

- 1111 = Reserved
- •
- 0111 = Reserved
- 0110 = SA fetch
- 0101 = Fetch BDP is disabled
- 0100 = Descriptor is done
- 0011 = Data phase
- 0010 = BDP is loading
- 0001 = Descriptor fetch request is pending
- 0000 = BDP is idle
- bit 17 START: DMA Start Status bit
 - 1 = DMA start has occurred
 - 0 = DMA start has not occurred

33.3 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 33-1 for more information.

Note:	Disabling a peripheral module while it's
	ON bit is set, may result in undefined
	behavior. The ON bit for the associated
	peripheral module must be cleared prior to
	disable a module via the PMDx bits.

TABLE 33-1:	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS ⁽¹⁾

Peripheral	PMDx bit Name	Register Name and Bit Location
ADC	ADCMD	PMD1<0>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Input Capture 6	IC6MD	PMD3<5>
Input Capture 7	IC7MD	PMD3<6>
Input Capture 8	IC8MD	PMD3<7>
Input Capture 9	IC9MD	PMD3<8>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Output Compare 6	OC6MD	PMD3<21>
Output Compare 7	OC7MD	PMD3<22>
Output Compare 8	OC8MD	PMD3<23>
Output Compare 9	OC9MD	PMD3<24>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
Timer6	T6MD	PMD4<5>
Timer7	T7MD	PMD4<6>
Timer8	T8MD	PMD4<7>
Timer9	T9MD	PMD4<8>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the lists of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

36.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

36.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

36.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

36.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-213B Sheet 1 of 2

A.9 Other Peripherals and Features

Most of the remaining peripherals on PIC32MZ EF devices act identical to their counterparts on PIC32MX-5XX/6XX/7XX devices. The main differences have to do with handling the increased peripheral bus clock speed and additional clock sources. Table A-10 lists the differences (indicated by **Bold** type) that will affect software and hardware migration.

TABLE A-10: PERIPHERAL DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature
ľ	² C
On PIC32MX devices, all pins are 5V-tolerant.	On PIC32MZ EF devices, the I2C4 port uses non-5V tolerant pins, and will have different VOL/VOH specifications.
	The Baud Rate Generator register has been expanded from 12 bits to 16 bits.
I2CxBRG<11:0>	I2CxBRG< 15 :0>
Watchd	og Timer
Clearing the Watchdog Timer on PIC32MX5XX/6XX/7XX devices required writing a '1' to the WDTCLR bit.	On PIC32MZ EF devices, the WDTCLR bit has been replaced with the 16-bit WDTCLRKEY, which must be written with a spe- cific value (0x5743) to clear the Watchdog Timer. In addition, the WDTSPGM (DEVCFG1<21>) bit is used to control operation of the Watchdog Timer during Flash programming.
WDTCLR (WDTCON<0>)	WDTCLRKEY<15:0> (WDTCON<31:16>)
RI	rcc
On PIC32MX devices, the output of the RTCC pin was selected between the Seconds Clock or the Alarm Pulse.	On PIC32MZ EF devices, the RTCC Clock is added as an option. RTCSECSEL has been renamed RTCOUTSEL and expanded to two bits.
RTCSECSEL (RTCCON<7>) 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin	RTCOUTSEL<1:0> (RTCCON<8:7>) 11 = Reserved 10 = RTCC Clock is presented on the RTCC pin 01 = Seconds Clock is presented on the RTCC pin 00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered
On PIC32MX devices, the Secondary Oscillator (Sosc) serves as the input clock for the RTCC module.	On PIC32MZ EF devices, an additional clock source, LPRC, is available as a choice for the input clock.
	RTCCLKSEL<1:0> (RTCCON<10:9>) 11 = Reserved 10 = Reserved 01 = RTCC uses the external 32.768 kHz Sosc 00 = RTCC uses the internal 32 kHz oscillator (LPRC)

Section Name	Update Description
37.0 "Electrical Characteristics"	The DC Characteristics: Operating Current (IDD) and Note 6 were updated (see Table 37-6).
	The DC Characteristics: Idle Current (IIDLE) and Note 4 were updated (see Table 37-7).
	Parameter DC40m and Note 5 in the DC Characteristics: Power-down Current (IPD) were updated (see Table 37-8).
	Parameter DO50 (Cosco) was removed from the Capacitive Loading Requirements on Output Pins (see Table 37-16).
	The Internal FRC Accuracy and Internal LPRC conditions were updated for 125°C (see Table 37-20 and Table 37-21).
	Parameter SP15 and Note 5 of the SPIx Module Master Mode Timing Requirements were updated (see Table 37-30 and Table 37-31).
	The Temperature Sensor Specifications were updated (see Table 37-41).
38.0 "Extended Temperature Electrical Characteristics"	New chapter for Extended Temperature devices was added.
39.0 "AC and DC Characteristics Graphs"	The Typical Temperature Sensor Voltage graph was updated (see Figure 39-7).
40.0 "Packaging Information"	The package drawings and land pattern for the 64-Lead Plastic Quad Flat, No Lead Package (MR) were updated.
Appendix A: "Migrating from PIC32MX5XX/6XX/7XX to PIC32MZ EF"	The Primary Oscillator Configuration section in the Oscillator Configuration Differences was updated (see Table A-1).
Appendix B: "Migrating from PIC32MZ EC to PIC32MZ EF"	Boot Flashing aliasing was updated for PIC32MZ EF devices (see Table B-4).

TABLE C-2: MAJOR SECTION UPDATES (CONTINUED)