

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efm064t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description		
ERXD0	61	41	B32	81	Ι	ST	Ethernet Receive Data 0		
ERXD1	RXD1 58 42 B26 66 I ST Ethernet Receive Data 1		Ethernet Receive Data 1						
ERXD2	57	43	A31	67	I	ST	Ethernet Receive Data 2		
ERXD3	56	44	A40	82	I	ST	Ethernet Receive Data 3		
ERXERR	64	35	A30	65	I	ST	Ethernet Receive Error Input		
ERXDV	62	12	B40	101	I	ST	Ethernet Receive Data Valid		
ERXCLK	63	16	B12	27	I	ST	Ethernet Receive Clock		
ETXD0	2	86	A5	7	0	—	Ethernet Transmit Data 0		
ETXD1	3	85	B4	8	0	—	Ethernet Transmit Data 1		
ETXD2	43	79	B17	43	0	—	Ethernet Transmit Data 2		
ETXD3	46	80	A22	44	0	—	Ethernet Transmit Data 3		
ETXERR	50	87	B44	114	0	—	Ethernet Transmit Error		
ETXEN	1	77	A57	120	0	—	Ethernet Transmit Enable		
ETXCLK	51	78	B47	121	I	ST	Ethernet Transmit Clock		
ECOL	44	10	B33	83	I	ST	Ethernet Collision Detect		
ECRS	45	11	A47	100	I	ST	Ethernet Carrier Sense		
EMDC	30	70	B39	99	0	—	Ethernet Management Data Clock		
EMDIO	49	71	A55	115	I/O	—	Ethernet Management Data		
Legend:	CMOS = CI	MOS-compa	atible input	or output		Analog =	Analog input P = Power		

TABLE 1-16: ETHERNET MII I/O DESCRIPTIONS

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output

I = Input

PPS = Peripheral Pin Select

TABLE 1-17: ETHERNET RMII PINOUT I/O DESCRIPTIONS

- Bin Namo		Pin Nu	mber							
Pin Name	64-pin QFN/ 100-pi TQFP TQFP		124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description			
				E	thernet I	All Interfac	e			
ERXD0	61	41	B32	81	I	ST	Ethernet Receive Data 0			
ERXD1	58	42	B26	66	I	ST	Ethernet Receive Data 1			
ERXERR	64	35	A30	65	I	ST	Ethernet Receive Error Input			
ETXD0	2	86	A5	7	0	—	Ethernet Transmit Data 0			
ETXD1	3	85	B4	8	0	—	Ethernet Transmit Data 1			
ETXEN	1	77	A57	120	0	—	Ethernet Transmit Enable			
EMDC	30	70	B39	99	0	—	Ethernet Management Data Clock			
EMDIO	49	71	A55	115	I/O	—	Ethernet Management Data			
EREFCLK	63	16	B12	27	I	ST	Ethernet Reference Clock			
ECRSDV	62	12	B40	101	Ι	ST	Ethernet Carrier Sense Data Valid			
Legend:	CMOS = CI	MOS-compa	atible input	or output		Analog =	Analog input P = Power			

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog inputP = Power<math>O = OutputI = InputPPS = Peripheral Pin Select

3.0 CPU

- Note 1: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: The Series 5 Warrior M-class CPU core resources are available at: www.imgtec.com.

The MIPS32[®] M-Class Core is the heart of the PIC32MZ EF family device processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

Key features include:

- 5-stage pipeline
- · 32-bit address and data paths
- MIPS32 Enhanced Architecture (Release 5):
 - Multiply-accumulate and multiply-subtract instructions
 - Targeted multiply instruction
 - Zero/One detect instructions
 - WAIT instruction
 - Conditional move instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - GPR shadow registers to minimize latency for interrupt handlers
 - Bit field manipulation instructions
 - Virtual memory support
- microMIPS[™] compatible instruction set:
 - Improves code size density over MIPS32, while maintaining MIPS32 performance.
 - Supports all MIPS32 instructions (except branchlikely instructions)
 - Fifteen additional 32-bit instructions and 39 16-bit instructions corresponding to commonly-used MIPS32 instructions
 - Stack pointer implicit in instruction
 - MIPS32 assembly and ABI compatible
- MMU with Translation Lookaside Buffer (TLB) mechanism:
 - 16 dual-entry fully associative Joint TLB
 - 4-entry fully associative Instruction and Data TLB
 - 4 KB pages

- Separate L1 data and instruction caches:
 - 16 KB 4-way Instruction Cache (I-Cache)
 - 4 KB 4-way Data Cache (D-Cache)
- Autonomous Multiply/Divide Unit (MDU):
 - Maximum issue rate of one 32x32 multiply per clock
 - Early-in iterative divide. Minimum 12 and maximum 38 clock latency (dividend (*rs*) sign extension-dependent)
- Power Control:
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- EJTAG Debug and Instruction Trace:
 - Support for single stepping
 - Virtual instruction and data address/value breakpoints
 - Hardware breakpoint supports both address match and address range triggering.
 - Eight instruction and four data complex breakpoints
- iFlowtrace[®] version 2.0 support:
 - Real-time instruction program counter
 - Special events trace capability
 - Two performance counters with 34 userselectable countable events
 - Disabled if the processor enters Debug mode
 - Program Counter sampling
- Four Watch registers:
 - Instruction, Data Read, Data Write options
 - Address match masking options
- DSP ASE Extension:
 - Native fractional format data type operations
 - Register Single Instruction Multiple Data (SIMD) operations (add, subtract, multiply, shift)
 - GPR-based shift
 - Bit manipulation
 - Compare-Pick
 - DSP Control Access
 - Indexed-Load
 - Branch
 - Multiplication of complex operands
 - Variable bit insertion and extraction
 - Virtual circular buffers
 - Arithmetic saturation and overflow handling
 - Zero-cycle overhead saturation and rounding operations
- Floating Point Unit (FPU):
 - 1985 IEEE-754 compliant Floating Point Unit
 - Supports single and double precision datatypes
 - 2008 IEEE-754 compatibility control of NaN handling and Abs/Neg instructions
 - Runs at 1:1 core/FPU clock ratio

		x = 0-13)						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	_	_	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	—	—	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
7.0	—			—				CLEAR

REGISTER 4-6: SBTxECLRS: SYSTEM BUS TARGET 'x' SINGLE ERROR CLEAR REGISTER ('x' = 0-13)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Single Error on Read bit A single error as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

REGISTER 4-7: SBTxECLRM: SYSTEM BUS TARGET 'x' MULTIPLE ERROR CLEAR REGISTER ('x' = 0-13)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_			_	_	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_			_		—	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	_	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
7:0								CLEAR

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Multiple Errors on Read bit Multiple errors as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

© 2015-2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24	PWPULOCK	—	_	—	—		_	_						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16	PWP<23:16>													
45.0	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0						
15:8				PWP<	15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
7:0				PWP<	7:0>									

REGISTER 5-7: NVMPWP: PROGRAM FLASH WRITE-PROTECT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 PWPULOCK: Program Flash Memory Page Write-protect Unlock bit

1 = Register is not locked and can be modified

0 = Register is locked and cannot be modified

This bit is only clearable and cannot be set except by any reset.

bit 30-24 Unimplemented: Read as '0'

bit 23-0 PWP<23:0>: Flash Program Write-protect (Page) Address bits

Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

REGISTE	R 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER (CONTINUED)
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit
	 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ) 0 = No interrupt is pending
bit 4	CHDHIF: Channel Destination Half Full Interrupt Flag bit
	 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2) 0 = No interrupt is pending
bit 3	CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
	1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
1.11.0	0 = No interrupt is pending
bit 2	CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
	 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred) 0 = No interrupt is pending
bit 1	CHTAIF: Channel Transfer Abort Interrupt Flag bit
	 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted 0 = No interrupt is pending
bit 0	CHERIF: Channel Address Error Interrupt Flag bit
	1 = A channel address error has been detected
	Either the source or the destination address is invalid. 0 = No interrupt is pending

ŝ											Bits								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3028	USB	31:16									ATA<31:16>								00
020	FIFO2	15:0									DATA<15:0>								00
02C	USB FIFO3	31:16									ATA<31:16>								00
		15:0		DATA<15:0> 00 DATA<31:16> 00															
8030	USB FIFO4	31:16 15:0									ATA<31:16> ATA<15:0>								00
	USB	31:16									ATA<15.0> ATA<31:16>								00
3034	FIFO5	15:0									ATA<15:0>								00
	USB	31:16									ATA<31:16>								00
3038	FIFO6	15:0									ATA<15:0>								00
	USB	31:16								D	ATA<31:16>								0(
03C	FIF07	15:0								D	ATA<15:0>								00
	31:16 — — — RXDPB RXFIFOSZ<3:0> — — — TXDPB TXFIFOSZ<3:0>						<3:0>		0 (
8060	USBOTG	15:0	_	_	-	—	_	_	TXEDMA	RXEDMA	BDEV	FSDEV	LSDEV	VBUS	<1:0>	HOSTMODE	HOSTREQ	SESSIO	N 00
8064	USB	31:16	6 — — RXFIFOA							RXFIFOAD<12:0>							0(
004	FIFOA	15:0	—	-	—							TXFIFOAD<1	2:0>						00
806C	USB 31:16				—	—	00												
	HWVER	15:0	RC	VERMAJOR<4:0>								VERMINOR<9:0>						08	
3078	USB	31:16				VPLEN	l<7:0>					WTCON<3:0> WTID<3:0>							30
	INFO	15:0		DMACHAN	IS<3:0>			RAMBI	TS<3:0>	· · ·		RXEND	PTS<3:0>			TXENDPTS	<3:0>		8C
307C	USB EOFRST	31:16	—	_	_	-		-	NRSTX	NRST				LSEOF<7:					00
		15:0				FSEOF	-<7:0> (HUBPRT<6												77
3080	USB E0TXA	31:16 15:0			_			>	_	_	MULTTRAN	I TXHUBADD<6:0> TXFADDR<6:0>						00	
		31:16		_	_		HUBPRT<6		_	_	— MULTTRAN				BADD<6:0>				00
3084	USB E0RXA	15:0			_	_			_	_		_	_	_		_	_	_	00
	USB	31:16	_			ТХ	HUBPRT<6	:0>			MULTTRAN	RAN TXHUBADD<6:0>					0.0		
3088	E1TXA	15:0	_	_							0.0								
	USB	31:16 — RXHUBPRT<6:0> MULTTRAN RXHUBADD<6:0>							00										
08C	E1RXA	15:0	_		_		_	_	_	_	_			RXFA	DDR<6:0>				0.0
0000	USB 31:16 - TXHUBPRT<6:0> MULTTRAN			TXHU	BADD<6:0>				0.0										
3090	E2TXA	TXA 15:0 - - - - - - TXFADDR<6:0>					0.0												
3094	USB						00												
JU 34	E2RXA	15:0	—		—	—	—	-	—	_	_				DDR<6:0>				00
3098	USB	31:16	_			ТХ	HUBPRT<6	:0>			MULTTRAN				BADD<6:0>				00
	E3TXA	15:0	15:0 TXFADDR<6:0>							00									

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

					(
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—			—			—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDL ⁽²⁾	_	—	_	_	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
7:0	TGATE ⁽¹⁾	Т	CKPS<2:0>(1)	T32 ⁽³⁾	_	TCS ⁽¹⁾	—

TxCON: TYPE B TIMER CONTROL REGISTER ('x' = 2-9) REGISTER 14-1:

Legend:

bit 3

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: Timer On bit⁽¹⁾
 - 1 = Module is enabled 0 = Module is disabled
 - Unimplemented: Read as '0'

bit 14 bit 13 SIDL: Stop in Idle Mode bit⁽²⁾

- 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation even in Idle mode

Unimplemented: Read as '0' bit 12-8

TGATE: Timer Gated Time Accumulation Enable bit⁽¹⁾ bit 7

When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

- 1 = Gated time accumulation is enabled
- 0 = Gated time accumulation is disabled

bit 6-4 TCKPS<2:0>: Timer Input Clock Prescale Select bits⁽¹⁾

- 111 = 1:256 prescale value
- 110 = 1:64 prescale value
- 101 = 1:32 prescale value
- 100 = 1:16 prescale value
- 011 = 1:8 prescale value
- 010 = 1:4 prescale value
- 001 = 1:2 prescale value

000 = 1:1 prescale value

T32: 32-Bit Timer Mode Select bit(3)

- 1 = Odd numbered and even numbered timers form a 32-bit timer
- 0 = Odd numbered and even numbered timers form separate 16-bit timers
- Note 1: While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
 - While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer 2: in Idle mode.
 - 3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
31:24		—	_	RXBUFELM<4:0>				
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
23:16	—	—	_		Tک	(BUFELM<4:)>	
45-0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0
15:8	_	—	_	FRMERR	SPIBUSY	—	_	SPITUR
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0
7:0	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF

REGISTER 19-3: SPIxSTAT: SPI STATUS REGISTER

Legend:	C = Clearable bit	HS = Set in hardware	
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 FRMERR: SPI Frame Error status bit
 - 1 = Frame error is detected
 - 0 = No Frame error is detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 SPITUR: Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling/re-enabling the module.

- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 **SPIROV:** Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred

This bit is set in hardware; can only be cleared (= 0) in software.

- bit 5 **SPIRBE:** RX FIFO Empty bit (valid only when ENHBUF = 1)
 - 1 = RX FIFO is empty (CRPTR = SWPTR)
 - 0 = RX FIFO is not empty (CRPTR \neq SWPTR)
- bit 4 Unimplemented: Read as '0'

21.1 I²C Control Registers

TABLE 21-1: I2C1 THROUGH I2C5 REGISTER MAP

ess										Bi	ts								
Virtual Address (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	I2C1CON	31:16	_	_	—	_	—		_			PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
0000	12010011	15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0010	I2C1STAT	31:16		—	—	—		-	—	_	—	—	-	_	_	—	—	-	0000
		15:0	ACKSTAT	TRSTAT	ACKTIM	_		BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0020	I2C1ADD	31:16	_	_			_			_	_	—			—	—		—	0000
		15:0	_										Address	Register					0000
0030	I2C1MSK	31:16 15:0			—				—	_	_	_	- Address Mr	ask Registe		_	—	—	0000
		31:16	_										Address Ma	ask Registe				_	0000
0040	I2C1BRG	15:0			_	_	_		Bau	d Rate Gen	erator Reg	ister	_	_	_	_	_		0000
		31:16		_	_	_		_					_	_	_	_	_	_	0000
0050	I2C1TRN	15:0	_	_	_	_		_	_	_				Transmit	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	_	_		—	_	_	_	0000
0060	I2C1RCV	15:0	_	_	_	_		_	_	_				Receive	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
0200	12C2CON ⁽²⁾	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0040	12C2STAT ⁽²⁾	31:16	_		_	—	—		_	_		_	—	—	—	_	—		0000
0210	12025TAT-	15:0	ACKSTAT	TRSTAT	ACKTIM	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0220	12C2ADD(2)	31:16	_		—	_	_		—	_	-	_	-	_	_	—	-		0000
0220	IZCZADD.	15:0	_	_	_	—	_	_					Address	Register			-		0000
0230	12C2MSK(2)	31:16	—	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	0000
0200		15:0	_			—	_						Address Ma	ask Registe	r				0000
0240	12C2BRG(2)	31:16	—	—	—	—	_	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0							Bau	d Rate Gen	erator Reg	ister							0000
0250	12C2TRN(2)	31:16	_			_	_		_	_	_	—				_		_	0000
		15:0	_				_			_				Transmit	Register				0000
0260	I2C2RCV(2)	31:16	_	_	_	_		_	_	_	-		—	-	—	—	—	—	0000
		15:0	_							_		DOIE	0015	Receive		00005		DUCH	0000
0400	I2C3CON	31:16 15:0	ON				— STRICT	— A10M	— DISSLW	 SMEN	— GCEN	PCIE STREN	SCIE ACKDT	BOEN ACKEN	SDAHT RCEN	SBCDE PEN	AHEN RSEN	DHEN SEN	0000
		31:16			SIDL	SULREL		A10M	DISSLW	SIMEIN	GCEN		ACKDI	ACKEN	RCEN	PEN	KSEN	SEN —	1000
0410	I2C3STAT	15:0	 ACKSTAT	 TRSTAT	ACKTIM	_		BCL	GCSTAT	ADD10		I2COV	 D/A	 P		R/W	 RBF	 TBF	0000
		31:16	-				_	BCL	GCSTAT			12000		г 	3	R/W			0000
0420	I2C3ADD	15:0											Address	 Register					0000
Logon									chown in h				/1001033	register					0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

2: This register is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	-	_	_	_	-		—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	_	_	_	_	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	PTEN<	:15:14>			PTEN-	<13:8>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				PTEN	<7:0>			

REGISTER 23-6: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-15 Unimplemented: Read as '0'

- bit 15-14 **PTEN<15:14>:** PMCS1 Strobe Enable bits
 - 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS1 and PMCS2⁽¹⁾
 0 = PMA15 and PMA14 function as port I/O
- bit 13-2 **PTEN<13:2>:** PMP Address Port Enable bits
 - 1 = PMA<13:2> function as PMP address lines
 - 0 = PMA<13:2> function as port I/O
- bit 1-0 PTEN<1:0>: PMALH/PMALL Strobe Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
 - Note 1: The use of these pins as PMA15 and PMA14 or CS1 and CS2 is selected by the CSF<1:0> bits in the PMCON register.
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—		—	-	—		—				
00.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	—	—	—	—	—	_			
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC		AMASK	<3:0> ⁽²⁾				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		ARPT<7:0> ⁽²⁾									

REGISTER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled
- bit 14 CHIME: Chime Enable bit⁽²⁾
 - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
 - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is more than 32 real-time clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved
- 1011 = Reserved
- 11xx = Reserved
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

© 2015-2016 Microchip Technology Inc.

FIGURE 26-4: FORMAT OF BD_SRCADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24				BD_SCRAD	DR<31:24>			
23-16				BD_SCRAD	DR<23:16>			
15-8				BD_SCRAD	DR<15:8>			
7-0				BD_SCRA	DDR<7:0>			

bit 31-0 BD_SCRADDR: Buffer Source Address

The source address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 26-5: FORMAT OF BD_DSTADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24				BD_DSTAD	DR<31:24>			
23-16				BD_DSTAD	DR<23:16>			
15-8				BD_DSTAD	DR<15:8>			
7-0				BD_DSTAI	DDR<7:0>			

bit 31-0 BD_DSTADDR: Buffer Destination Address

The destination address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 26-6: FORMAT OF BD_NXTADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31-24				BD_NXTAD	DR<31:24>				
23-16		BD_NXTADDR<23:16>							
15-8		BD_NXTADDR<15:8>							
7-0				BD_NXTAI	DDR<7:0>				

bit 31-0 **BD_NXTADDR:** Next BD Pointer Address Has Next Buffer Descriptor The next buffer can be a next segment of the previous buffer or a new packet. Figure 26-10 shows the Security Association control word structure.

The Crypto Engine fetches different structures for different flows and ensures that hardware fetches minimum words from SA required for processing. The structure is ready for hardware optimal data fetches.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24		—	VERIFY	—	NO_RX	OR_EN	ICVONLY	IRFLAG
23-16	LNC	LOADIV	FB	FLAGS	—		_	ALGO<6>
15-8			ALGO	<5:0>			ENC	KEY SIZE<1>
7-0	KEY SIZE<0>	MU	ILTITASK<2:	0>		CRYPTOA	LGO<3:0>	
oit 31-30	Reserved:	Do not use						
oit 29	1 = NIST pr	ST Procedure ocedures are use NIST proc	to be used	Setting				
oit 28	Reserved:	Do not use						
oit 27	1 = Only cal	NO_RX: Receive DMA Control Setting 1 = Only calculate ICV for authentication calculations 0 = Normal processing						
oit 26		R Register Bits register bits w processing		-	ne CSR regis	ster		
oit 25	This affects 1 = Only thr	ncomplete Ch the SHA-1 alg ee words of th ts from the Hi	gorithm only. ne HMAC res	It has no eff sult are avail		ES algorithm.		
bit 24	This bit is se 1 = Save the	 IRFLAG: Immediate Result of Hash Setting This bit is set when the immediate result for hashing is requested. 1 = Save the immediate result for hashing 0 = Do not save the immediate result 						
bit 23	LNC: Load	 Load New Keys Setting 1 = Load a new set of keys for encryption and authentication 0 = Do not load new keys 						
oit 22	1 = Load the	LOADIV: Load IV Setting 1 = Load the IV from this Security Association 0 = Use the next IV						
bit 21	FB: First Block Setting This bit indicates that this is the first block of data to feed the IV value. 1 = Indicates this is the first block of data 0 = Indicates this is not the first block of data							
oit 20	 FLAGS: Incoming/Outgoing Flow Setting 1 = Security Association is associated with an outgoing flow 0 = Security Association is associated with an incoming flow 							
		Do not use						

FIGURE 26-10: FORMAT OF SA_CTRL

REGISTER 28-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 3 STRGLVL: Scan Trigger High Level/Positive Edge Sensitivity bit

- 1 = Scan trigger is high level sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), the scan trigger will continue for all selected analog inputs, until the STRIG option is removed.
- 0 = Scan trigger is positive edge sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), only a single scan trigger will be generated, which will complete the scan of all selected analog inputs.
- bit 2-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	DIFF15	SIGN15	DIFF14	SIGN14	DIFF13	SIGN13	DIFF12	SIGN12
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	DIFF11	SIGN11	DIFF10	SIGN10	DIFF9	SIGN9	DIFF8	SIGN8
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF4	SIGN4
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0

REGISTER 28-5: ADCIMCON1: ADC INPUT MODE CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	DIFF15: AN15 Mode bit
	1 = AN15 is using Differential mode
	0 = AN15 is using Single-ended mode
bit 30	SIGN:15 AN15 Signed Data Mode bit
	1 = AN15 is using Signed Data mode
	0 = AN15 is using Unsigned Data mode
bit 29	DIFF14: AN14 Mode bit
	1 = AN14 is using Differential mode
	0 = AN14 is using Single-ended mode
bit 28	SIGN14: AN14 Signed Data Mode bit
	1 = AN14 is using Signed Data mode
	0 = AN14 is using Unsigned Data mode
bit 27	DIFF13: AN13 Mode bit
	1 = AN13 is using Differential mode
	0 = AN13 is using Single-ended mode
bit 26	SIGN13: AN13 Signed Data Mode bit
	1 = AN13 is using Signed Data mode
	0 = AN13 is using Unsigned Data mode
bit 25	DIFF12: AN12 Mode bit
	1 = AN12 is using Differential mode
	0 = AN12 is using Single-ended mode
bit 24	SIGN12: AN12 Signed Data Mode bit
	1 = AN12 is using Signed Data mode
	0 = AN12 is using Unsigned Data mode
bit 23	DIFF11: AN11 Mode bit
	1 = AN11 is using Differential mode
	0 = AN11 is using Single-ended mode
bit 22	SIGN11: AN11 Signed Data Mode bit
	1 = AN11 is using Signed Data mode
	0 = AN11 is using Unsigned Data mode
bit 21	DIFF10: AN10 Mode bit
	1 = AN10 is using Differential mode
	0 = AN10 is using Single-ended mode

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0							
31:24	DIFF31 ⁽¹⁾	SIGN31 ⁽¹⁾	DIFF30 ⁽¹⁾	SIGN30 ⁽¹⁾	DIFF29 ⁽¹⁾	SIGN29 ⁽¹⁾	DIFF28 ⁽¹⁾	SIGN28 ⁽¹⁾
00.40	R/W-0							
23:16	DIFF27 ⁽¹⁾	SIGN27 ⁽¹⁾	DIFF26 ⁽¹⁾	SIGN26 ⁽¹⁾	DIFF25 ⁽¹⁾	SIGN25 ⁽¹⁾	DIFF24 ⁽¹⁾	SIGN24 ⁽¹⁾
45-0	R/W-0							
15:8	DIFF23 ⁽¹⁾	SIGN23 ⁽¹⁾	DIFF22 ⁽¹⁾	SIGN22 ⁽¹⁾	DIFF21 ⁽¹⁾	SIGN21 ⁽¹⁾	DIFF20 ⁽¹⁾	SIGN20 ⁽¹⁾
	R/W-0							
7:0	DIFF19 ⁽¹⁾	SIGN19 ⁽¹⁾	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16

REGISTER 28-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2

Legend:

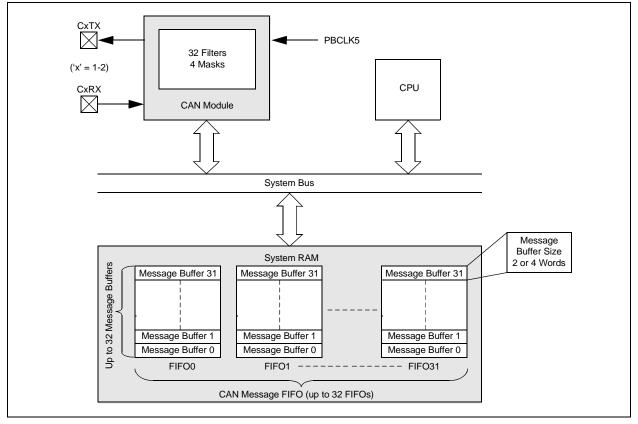
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31	DIFF31: AN31 Mode bit ⁽¹⁾
	1 = AN31 is using Differential mode
	0 = AN31 is using Single-ended mode
bit 30	SIGN31: AN31 Signed Data Mode bit ⁽¹⁾
	1 = AN31 is using Signed Data mode
	0 = AN31 is using Unsigned Data mode
bit 29	DIFF30: AN30 Mode bit ⁽¹⁾
	1 = AN30 is using Differential mode
	0 = AN30 is using Single-ended mode
bit 28	SIGN30: AN30 Signed Data Mode bit ⁽¹⁾
	1 = AN30 is using Signed Data mode
	0 = AN30 is using Unsigned Data mode
bit 27	DIFF29: AN29 Mode bit ⁽¹⁾
	1 = AN29 is using Differential mode
	0 = AN29 is using Single-ended mode
	(4)
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode
bit 26	0
bit 26 bit 25	1 = AN29 is using Signed Data mode
	1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode
	1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾
	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode
bit 25	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode
bit 25	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit⁽¹⁾
bit 25	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit⁽¹⁾ 1 = AN28 is using Signed Data mode
bit 25 bit 24	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode
bit 25 bit 24	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit⁽¹⁾
bit 25 bit 24	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode 0 = AN28 is using Unsigned Data mode 0 = AN28 is using Unsigned Data mode 0 = AN27 Mode bit⁽¹⁾ 1 = AN27 is using Differential mode
bit 25 bit 24 bit 23	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode 0 = AN28 is using Unsigned Data mode 0 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode
bit 25 bit 24 bit 23	1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode SIGN27: AN27 Signed Data Mode bit ⁽¹⁾

Note 1: This bit is not available on 64-pin devices.

29.0 CONTROLLER AREA NETWORK (CAN)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Controller Area Network (CAN)" (DS60001154) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The Controller Area Network (CAN) module supports the following key features:

- Standards Compliance:
 - Full CAN 2.0B compliance
 - Programmable bit rate up to 1 Mbps
- Message Reception and Transmission:
 - 32 message FIFOs
 - Each FIFO can have up to 32 messages for a total of 1024 messages

- FIFO can be a transmit message FIFO or a receive message FIFO
- User-defined priority levels for message FIFOs used for transmission
- 32 acceptance filters for message filtering
- Four acceptance filter mask registers for message filtering
- Automatic response to remote transmit request
- DeviceNet[™] addressing support
- Additional Features:
 - Loopback, Listen All Messages and Listen Only modes for self-test, system diagnostics and bus monitoring
 - Low-power operating modes
 - CAN module is a bus master on the PIC32 System Bus
 - Use of DMA is not required
 - Dedicated time-stamp timer
 - Dedicated DMA channels
 - Data-only Message Reception mode

Figure 29-1 illustrates the general structure of the CAN module.

FIGURE 29-1: PIC32 CAN MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	FLTEN19	MSEL19<1:0>		FSEL19<4:0>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN18	MSEL18<1:0>		FSEL18<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	FLTEN17	MSEL17<1:0>		FSEL17<4:0>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN16	MSEL16<1:0>		FSEL16<4:0>				

REGISTER 29-14: CIFLTCON4: CAN FILTER CONTROL REGISTER 4

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN19: Filter 19 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL19<1:0>: Filter 19 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL19<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN18: Filter 18 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL18<1:0>: Filter 18 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL18<4:0>: FIFO Selection bits
511 20 10	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	—		-	—	-	-	—	
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	-	—		_	_			-	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.0	-	—		_	_			-	
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	
7.0		_			_	_	C2OUT	C1OUT	

REGISTER 31-2: CMSTAT: COMPARATOR STATUS REGISTER

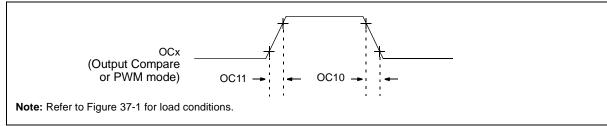
Legend:

R = Readable bit	= Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-2 Unimplemented: Read as '0'

bit 1 C2OUT: Comparator Output bit

1 = Output of Comparator 2 is a '1'

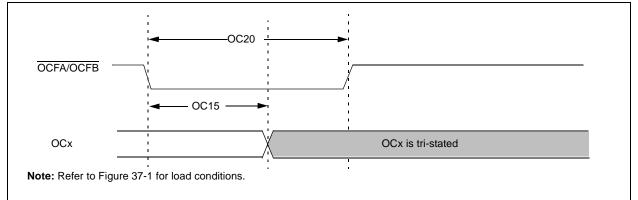

0 = Output of Comparator 2 is a '0'

bit 0 **C1OUT:** Comparator Output bit

1 = Output of Comparator 1 is a '1'

0 =Output of Comparator 1 is a '0'

FIGURE 37-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS


TABLE 37-28: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
OC10	TccF	OCx Output Fall Time	—	_	_	ns	See parameter DO32	
OC11	TCCR	OCx Output Rise Time	—	—	_	ns	See parameter DO31	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 37-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 37-29: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Typical ⁽²⁾	Max	Units	Conditions			
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns				
OC20	TFLT	Fault Input Pulse Width	50	—		ns				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.