

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efm100-e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-13: SYSTEM BUS TARGET 5 REGISTER MAP

sse											Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI	_		_		CODE	<3:0>		_		_	_	_	_	_	_	0000
9420	SBT5ELOG1	15:0				INI	ΓID<7:0>				•	REGIO	N<3:0>	•	—	C	MD<2:0>	•	0000
0424		31:16	_	—	_	—	_	_	_	_	_	_	_	—	_	_	—	_	0000
9424	9424 SBT5ELOG2	15:0	_	_	_	—	_	_	_	_	_	_	_	—	_	_	GROU	P<1:0>	0000
0.400	SBT5ECON	31:16		_	_	_	_	_	_	ERRP	-	_	_	_	_	_	—	_	0000
9428	SBISECON	15:0	_	—	_	_	—		_	—	_		—	_	—	_	—	—	0000
9430	SBT5ECLRS	31:16	-	_		—	_		_	-	_		_	_	_	_	—	-	0000
9430	SBISECLKS	15:0	-	_		—	_		_	-	_		_	_	_	_	—	CLEAR	0000
0/38	9438 SBT5ECLRM	31:16	_	—	_	—	—	—	—	—	_	_	—	—	—	—		—	0000
9430		15:0	_	—	_	_	—	_	—	_	_	_		—	—	_	—	CLEAR	0000
9440	SBT5REG0	31:16								BA	SE<21:6>								xxxx
3440	OBTOREOU	15:0		_	BA	ASE<5:0>	-		PRI	—			SIZE<4:0	>	_	—		—	xxxx
9450	SBT5RD0	31:16	—	—	_	_	_		—	_	—	_		—	—	_	—	_	xxxx
0 100	SBISKDU	15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9458	SBT5WR0	31:16	_	—	-	—	—		—	—	—		—	—	—	_	—	—	xxxx
0 100	obronnic	15:0	_	—	—	—	—			—	—	_	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9460	SBT5REG1	31:16							1	BA	SE<21:6>								xxxx
		15:0			BA	\SE<5:0>			PRI	—			SIZE<4:0	>		—		—	xxxx
9470	SBT5RD1	31:16	—	_		_		_	_		_	_		_	-	_		_	XXXX
		15:0	—	—		—			_		_			_	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
9478	SBT5WR1	31:16	—	—		—			_		_			_	_	_			XXXX
		15:0	—	—	—	_	—			—	_	_	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9480	SBT5REG2	31:16								BA	SE<21:6>								XXXX
		15:0			BA	ASE<5:0>			PRI	—	SIZE<4:0>					—		—	XXXX
9490	SBT5RD2	31:16	_	_	—	—	—	—	—	—	_	—	—	—	—	—	—	—	XXXX
		15:0	_	_	—	—	—	—	—	—	_	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9498	SBT5WR2	31:16		_	—	—	—	_		—	_	_	—	_	—	—	—	—	XXXX
		15:0	—	—	—	—	—	—	—	—	—	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

DS60001320D-page 82

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

		('x' = 0-13)												
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	R/W-0, C	U-0	U-0	U-0	R/W-0, C	R/W-0, C	R/W-0, C	R/W-0, C						
31:24	MULTI	—	—	—		CODE<3:0>								
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16			—	—		—		_						
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
15:8	INITID<7:0>													
7.0	R-0	R-0	R-0	R-0	U-0	R-0	R-0	R-0						
7:0		REGIO	N<3:0>			– CMD<2:0>								

REGISTER 4-3: SBTxELOG1: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 1

Legend:	C = Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31 MULTI: Multiple Permission Violations Status bit

This bit is cleared by writing a '1'.

1 = Multiple errors have been detected

0 = No multiple errors have been detected

bit 30-28 Unimplemented: Read as '0'

bit 27-24 CODE<3:0>: Error Code bits

Indicates the type of error that was detected. These bits are cleared by writing a '1'.

- 1111 = Reserved
- 1101 = Reserved
- •
- •
- 0011 = Permission violation
- 0010 = Reserved
- 0001 = Reserved
- 0000 = No error
- bit 23-16 Unimplemented: Read as '0'
- bit 15-8 INITID<7:0>: Initiator ID of Requester bits
 - 11111111 = Reserved
 - 00001111 = Reserved 00001110 = Crypto Engine 00001101 = Flash Controller 00001100 = SQI1 00001011 = CAN2 00001010 = CAN1 00001001 = Ethernet Write 00001000 = Ethernet Read 00000111 = USB 00000110 = DMA Write (DMAPRI (CFGCON<25>) = 1) 00000101 = DMA Write (DMAPRI (CFGCON<25>) = 0) 00000100 = DMA Read (DMAPRI (CFGCON<25>) = 1) 00000011 = DMA Read (DMAPRI (CFGCON<25>) = 0) 00000010 = CPU (CPUPRI (CFGCON<24>) = 1) 00000001 = CPU (CPUPRI (CFGCON<25>) = 0) 00000000 = Reserved

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

REGISTER 11-11: USBIENCSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 1-7)

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x					
31:24		RXFIFC)SZ<3:0>		TXFIFOSZ<3:0>								
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23.10	—	—	—	—	—	—	—	—					
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
10.0	RXINTERV<7:0>												
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	SPEEI	D<1:0>	PROTO	COL<1:0>	TEP<3:0>								

Leaend:

Logena.							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-28 RXFIFOSZ<3:0>: Receive FIFO Size bits

	1111 = Reserved 1110 = Reserved 1101 = 8192 bytes
	1101 = 4096 bytes
	•
	•
	•
	0011 = 8 bytes 0010 = Reserved 0001 = Reserved 0000 = Reserved or endpoint has not been configured
	This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic FIFO sizing is used.
bit 27-24	TXFIFOSZ<3:0>: Transmit FIFO Size bits 1111 = Reserved 1110 = Reserved 1101 = 8192 bytes 1100 = 4096 bytes
	•
	•
	•
	0011 = 8 bytes 0010 = Reserved 0001 = Reserved 0000 = Reserved or endpoint has not been configured

This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic

FIFO sizing is used.

bit 23-16 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	_	_	-	_		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	-	_		—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	-	_		—
7.0	R-0, HC, HS	R-0, HC, HS	R-0, HC, HS	U-0	U-0	U-0	U-0	R-0, HC, HS
7:0	BAD1	BAD2	DMTEVENT	_		_	_	WINOPN

REGISTER 15-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

Legend:	HC = Hardware Cleared	HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is$	is unknown

bit 31-8	Unimplemented: Read as '0'
bit 7	BAD1: Bad STEP1<7:0> Value Detect bit
	1 = Incorrect STEP1<7:0> value was detected
	0 = Incorrect STEP1<7:0> value was not detected
bit 6	BAD2: Bad STEP2<7:0> Value Detect bit
	1 = Incorrect STEP2<7:0> value was detected
	0 = Incorrect STEP2<7:0> value was not detected
bit 5	DMTEVENT: Deadman Timer Event bit
	1 = Deadman timer event was detected (counter expired or bad STEP1<7:0> or STEP2<7:0> value was entered prior to counter increment)
	0 = Deadman timer even was not detected
bit 4-1	Unimplemented: Read as '0'
bit 0	WINOPN: Deadman Timer Clear Window bit
	1 = Deadman timer clear window is open
	0 = Deadman timer clear window is not open

NOTES:

SQI Control Registers 20.1

TABLE 20-1: SERIAL QUADRATURE INTERFACE (SQI) REGISTER MAP

ess										В	its								s	
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
2000	SQI1	31:16	_	—		—	_	—	—	—	DUN	IMYBYTES<	:2:0>	AD	DRBYTES<2	2:0>	READOPC	CODE<7:6>	0000	
2000	XCON1	15:0								MD<1:0>	0000									
2004	SQI1	31:16	—	—	_	—	_	—	—	—	—	—	_	—	—	—	_	—	0000	
	XCON2	15:0	_	_	_	_	DEVSE	L<1:0>	MODEBY	TES<1:0>				MODECO	DDE<7:0>				0000	
2008	SQI1CFG	31:16	-	_	_	-	—	_	CSEN	l<1:0>	SQIEN	—	DATAE	N<1:0>	CON FIFORST	RXFIFO RST	TXFIFO RST	RESET	0000	
		15:0	_	—	—	BURSTEN	_	HOLD	WP	—	—	—	LSBF	CPOL	CPHA		MODE<2:0>	•	0000	
200C	SQI1CON	31:16	—	—	—	-	—	—	—	SCHECK	—	DASSERT	DEVSE	L<1:0>	LANEMC	DE<1:0>	CMDIN	IT<1:0>	0000	
		15:0								TXRXCOL	JNT<15:0>								0000	
2010	SQI1	31:16	—	—	—	-	—	—	—	—	_	_	_	_	_		LKDIV<10:8		0000	
	CLKCON	15:0				CLKDI	V<7:0>				—	—	—	_	_	—	STABLE	EN	0000	
2014	SQI1	31:16	—	_		-	—	—	—	—	_	_	—	—	—	—	—	—	0000	
	2014 CMDTHR 15:0 —		_	_		TX	CMDTHR<4	:0>	>			_	RXCMDTHR<4:0>			4:0>		0000		
2018	SQI1	31:16	—	_	_	-		—	_	—	—	_	_	—	—	—	-	—	0000	
	INTTHR	15:0	—	-	-			(INTTHR<4:			_	_	_			(INTTHR<4:				
201C	SQI1	31:16	_	_	_	_	_	-	-	-	-	-	—	-	-	-	— —	— —	0000	
2010	INTEN	15:0	_	_	_	_	DMAEIE	PKT COMPIE	BD DONEIE	CON THRIE	CON EMPTYIE	CON FULLIE	RX THRIE	RX FULLIE	RX EMPTYIE	TX THRIE	TX FULLIE	TX EMPTYIE	0000	
0000	SQI1	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000	
2020	INTSTAT	15:0	—	_	—	-	DMAEIF	PKT COMPIF	BD DONEIF	CON THRIF	CON EMPTYIF	CON FULLIF	RX THRIF	RX FULLIF	RX EMPTYIF	TX THRIF	TX FULLIF	TX EMPTYIF	0000	
2024	SQI1	31:16								TXDATA									0000	
	TXDATA	15:0								TXDAT									0000	
2028	SQI1	31:16								RXDATA									0000	
	RXDATA	15:0			i			i		RXDAT	A<15:0>								0000	
202C	SQI1 STAT1	31:16	_	_	_		_	_	_	_					REE<7:0>				0000	
	-	15:0	_	_	_		_	_	_	_					CNT<7:0>		0,4507		0000	
2030	SQI1 STAT2	31:16	_	—		_	—	-			—					_		AT<1:0>	0000	
	-	15:0	—	_		_			ONAVAIL<4:			SDID3	SDID2	SDID1	SDID0		RXUN	TXOV	00x0	
2034	SQI1 BDCON	31:16 15:0			_	_	_			_	_		_			— START	POLLEN	— DMAEN	0000	
		31:16	_	_	_	_	_	_	_		DP-31-16-	_	_	—	_	SIARI	POLLEN	DIVIAEN	0000	
2038	SQI1BD CURADD	15:0																		
		31:16									R<31:16>								0000	
2040	SQI1BD BASEADD	15:0																	0000	
		BASEADD 15:0 BDADDR<15:0>										0000								

REGISTER 20-3: SQI1CFG: SQI CONFIGURATION REGISTER (CONTINUED)

bit 12	BURSTEN: Burst Configuration bit ⁽¹⁾
	1 = Burst is enabled
	0 = Burst is not enabled
bit 11	Reserved: Must be programmed as '0'
bit 10	HOLD: Hold bit
	In Single Lane or Dual Lane mode, this bit is used to drive the SQID3 pin, which can be used for devices with a HOLD input pin. The meaning of the values for this bit will depend on the device to which SQID3 is connected.
bit 9	WP: Write Protect bit
	In Single Lane or Dual Lane mode, this bit is used to drive the SQID2 pin, which can be used with devices with a write-protect pin. The meaning of the values for this bit will depend on the device to which SQID2 is connected.
bit 8-6	Unimplemented: Read as '0'
bit 5	LSBF: Data Format Select bit
	 1 = LSB is sent or received first 0 = MSB is sent or received first
bit 4	CPOL: Clock Polarity Select bit
	1 = Active-low SQICLK (SQICLK high is the Idle state)0 = Active-high SQICLK (SQICLK low is the Idle state)
bit 3	CPHA: Clock Phase Select bit
	 1 = SQICLK starts toggling at the start of the first data bit 0 = SQICLK starts toggling at the middle of the first data bit
bit 2-0	MODE<2:0>: Mode Select bits
	111 = Reserved
	•
	•
	•
	100 = Reserved
	011 = XIP mode is selected (when this mode is entered, the module behaves as if executing in place (XIP), but uses the register data to control timing)
	010 = DMA mode is selected

- 010 = DMA mode is selected
- 001 = CPU mode is selected (the module is controlled by the CPU in PIO mode. This mode is entered when leaving Boot or XIP mode)
- 000 = Reserved
- Note 1: This bit must be programmed as '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	_	_	_	-	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	_	_	—	-	-	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	_	_	_	_	_	—
7.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0		_	_	_	_	START	POLLEN	DMAEN

REGISTER 20-14: SQI1BDCON: SQI BUFFER DESCRIPTOR CONTROL REGISTER

Legend:

bit 0

R = Readable bit	= Readable bit W = Writable bit		ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

- bit 2 START: Buffer Descriptor Processor Start bit
 - 1 = Start the buffer descriptor processor
 - 0 = Disable the buffer descriptor processor
- bit 1 **POLLEN:** Buffer Descriptor Poll Enable bit
 - 1 = BDP poll is enabled
 - 0 = BDP poll is not enabled
 - DMAEN: DMA Enable bit
 - 1 = DMA is enabled
 - 0 = DMA is disabled

REGISTER 20-15: SQI1BDCURADD: SQI BUFFER DESCRIPTOR CURRENT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24				BDCURRAD	DR<31:24>					
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:16	BDCURRADDR<23:16>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	BDCURRADDR<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				BDCURRAD	DDR<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BDCURRADDR<31:0>: Current Buffer Descriptor Address bits

These bits contain the address of the current descriptor being processed by the Buffer Descriptor Processor.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—		—	-	—		—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	—	_	
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC	AMASK<3:0> ⁽²⁾				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	ARPT<7:0> ⁽²⁾								

REGISTER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled
- bit 14 CHIME: Chime Enable bit⁽²⁾
 - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
 - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is more than 32 real-time clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved
- 1011 = Reserved
- 11xx = Reserved
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

© 2015-2016 Microchip Technology Inc.

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

REGIST	ER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER (CONTINUED)
bit 7-0	ARPT<7:0>: Alarm Repeat Counter Value bits ⁽²⁾
	11111111 = Alarm will trigger 256 times
	•
	00000000 = Alarm will trigger one time The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.
Note 1:	Hardware clears the ALRMEN bit anytime the alarm event occurs, when $ARPT < 7:0 > = 0.0$ and $CHIME = 0.$
2:	This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0							
31:24	CSS31 ⁽¹⁾	CSS30 ⁽¹⁾	CSS29 ⁽¹⁾	CSS28 ⁽¹⁾	CSS27 ⁽¹⁾	CSS26 ⁽¹⁾	CSS25 ⁽¹⁾	CSS24 ⁽¹⁾
00.40	R/W-0							
23:16	CSS23 ⁽¹⁾	CSS22 ⁽¹⁾	CSS21 ⁽¹⁾	CSS20 ⁽¹⁾	CSS19 ⁽¹⁾	CSS18	CSS17	CSS16
45.0	R/W-0							
15:8	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
7:0	R/W-0							
	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0

REGISTER 28-10: ADCCSS1: ADC COMMON SCAN SELECT REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CSS31:CSS0: Analog Common Scan Select bits^(2,3)

1 =Select ANx for input scan

0 =Skip ANx for input scan

Note 1: This bit is not available on 64-pin devices.

2: In addition to setting the appropriate bits in this register, Class 1 and Class 2 analog inputs must select the STRIG input as the trigger source if they are to be scanned through the CSS*x* bits. Refer to the bit descriptions in the ADCTRGx registers for selecting the STRIG option.

3: If a Class 1 or Class 2 input is included in the scan by setting the CSSx bit to '1' and by setting the TRGSRCx<4:0> bits to STRIG mode (`0b11), the user application must ensure that no other triggers are generated for that input using the RQCNVRT bit in the ADCCON3 register or the hardware input or any digital filter. Otherwise, the scan behavior is unpredictable.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	_		—		TRGSRC3<4:0>				
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	_	_	—	TRGSRC2<4:0>					
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	—	—	—		Т	RGSRC1<4:0)>		
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	_	_	_		Т	RGSRC0<4:0)>		

REGISTER 28-17: ADCTRG1: ADC TRIGGER SOURCE 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28-24 TRGSRC3<4:0>: Trigger Source for Conversion of Analog Input AN3 Select bits
 - 11111 = Reserved . . 01101 = Reserved 01100 = Comparator 2 (COUT) 01011 = Comparator 1 (COUT) 01010 = OCMP5 01001 = OCMP3 01000 = OCMP1 00111 = TMR5 match 00100 = TMR3 match 00101 = TMR1 match 00100 = INT0 External interrupt 00011 = STRIG 00010 = Global level software trigger (GLSWTRG) 00001 = Global software edge Trigger (GSWTRG) 00000 = No Trigger

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSSx registers.

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TRGSRC2<4:0>:** Trigger Source for Conversion of Analog Input AN2 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC1<4:0>:** Trigger Source for Conversion of Analog Input AN1 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC0<4:0>:** Trigger Source for Conversion of Analog Input AN0 Select bits See bits 28-24 for bit value definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	_	_	—	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	—	_	_	—	—	
15:8	U-0	U-0	R/W-1	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	
10.0	—	—			CWINDO	W<5:0>			
7:0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	
7.0	_	_	_	_		RETX<	<3:0>		

REGISTER 30-27: EMAC1CLRT: ETHERNET CONTROLLER MAC COLLISION WINDOW/RETRY LIMIT REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13-8 **CWINDOW<5:0>:** Collision Window bits

This is a programmable field representing the slot time or collision window during which collisions occur in properly configured networks. Since the collision window starts at the beginning of transmission, the preamble and SFD is included. Its default of 0x37 (55d) corresponds to the count of frame bytes at the end of the window.

bit 7-4 Unimplemented: Read as '0'

bit 3-0 RETX<3:0>: Retransmission Maximum bits

This is a programmable field specifying the number of retransmission attempts following a collision before aborting the packet due to excessive collisions. The Standard specifies the maximum number of attempts (attemptLimit) to be 0xF (15d). Its default is '0xF'.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	—	—	—	—	_		—	—
23:16	U-0	U-0						
23.10	—	—	—	—	_		—	_
15:8	U-0	U-0						
15.0	—	—	—	—	_		—	_
7:0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7.0			_	_	_	TESTBP	TESTPAUSE ⁽¹⁾	SHRTQNTA ⁽¹⁾

REGISTER 30-30: EMAC1TEST: ETHERNET CONTROLLER MAC TEST REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

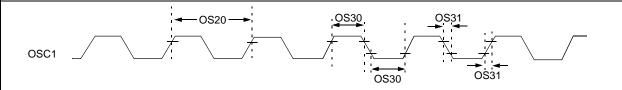
- bit 2 TESTBP: Test Backpressure bit
 - 1 = The MAC will assert backpressure on the link. Backpressure causes preamble to be transmitted, raising carrier sense. A transmit packet from the system will be sent during backpressure.
 0 = Normal operation

bit 1 **TESTPAUSE:** Test PAUSE bit⁽¹⁾

1 = The MAC Control sub-layer will inhibit transmissions, just as if a PAUSE Receive Control frame with a non-zero pause time parameter was received

0 = Normal operation

bit 0 SHRTQNTA: Shortcut PAUSE Quanta bit⁽¹⁾


1 = The MAC reduces the effective PAUSE Quanta from 64 byte-times to 1 byte-time

0 = Normal operation

Note 1: This bit is only used for testing purposes.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

FIGURE 37-2: EXTERNAL CLOCK TIMING

TABLE 37-17: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Minimum	Typical ⁽¹⁾	Maximum	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		64	MHz	EC (Note 2,3)
OS13		Oscillator Crystal Frequency	4	—	32	MHz	HS (Note 2,3)
OS15			32	32.768	100	kHz	Sosc (Note 2)
OS20	Tosc	Tosc = 1/Fosc	_		—	_	See parameter OS10 for Fosc value
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.375 x Tosc	—	_	ns	EC (Note 2)
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	—	7.5	ns	EC (Note 2)
OS40	Тоѕт	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 2)
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	_	ms	(Note 2)
OS42	Gм	External Oscillator Transconductance	—	400	_	µA/V	VDD = 3.3V, TA = +25°C, HS (Note 2)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are characterized but are not tested.

2: This parameter is characterized, but not tested in manufacturing.

3: See parameter OS50 for PLL input frequency limitations.

DC CHARACTERISTICS			(unless ot	Operating Conditions: 2.1V to 3.6V herwise stated) temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended	
Parameter No.	Typical ⁽²⁾	Maximum ⁽⁴⁾	Units	Conditions	
Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)					
EDC30a	7	52	mA	4 MHz (Note 3)	
EDC31a	8	56	mA	10 MHz	
EDC32a	13	66	mA	60 MHz (Note 3)	
EDC33a	21	86	mA	130 MHz (Note 3)	
EDC34	26	96	mA	180 MHz (Note 3)	

TABLE 38-3: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE current measurements are as follows:

• Oscillator mode is EC+PLL with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBPMD = 1), VUSB3V3 is connected to VSS, PBCLKx divisor = 1:128 ('x' ≠ 7)
- CPU is in Idle mode (CPU core Halted)
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared (except USBPMD)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: Data in the "Maximum" column is at 3.3V, +125°C at specified operating frequency. Parameters are for design guidance only and are not tested.

38.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MZ EF device AC characteristics and timing parameters.

TABLE 38-5:	SYSTEM TIMING REQUIREMENTS
-------------	----------------------------

AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions
EOS51	Fsys	System Frequency	DC		180	MHz	USB module disabled
			30	_	180	MHz	USB module enabled
EOS55a	Fpb	Peripheral Bus Frequency	DC	_	90	MHz	For PBCLKx, 'x' \neq 4, 7
EOS55b			DC		180	MHz	For PBCLK4, PBCLK7
EOS56	Fref	Reference Clock Frequency	_	_	45	MHz	For REFCLKI1, 3, 4 and REFCLKO1, 3, 4 pins

TABLE 38-6: PLL CLOCK TIMING SPECIFICATIONS

Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended	d
Param. No.SymbolCharacteristics ⁽¹⁾ Min.TypicalMax.UnitsControl	onditions
EOS54a FPLL PLL Output Frequency Range 10 — 180 MHz	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{PBCLK2}{\sqrt{CommunicationClock}}}}$$

For example, if PBCLK2 = 100 MHz and SPI bit rate = 50 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{100}{50}}} = \frac{D_{CLK}}{1.41}$$

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature
Fail-Safe Clock	Monitor (FSCM)
On PIC32MX devices, the internal FRC became the clock source on a failure of the clock source.	On PIC32MZ EF devices, a separate internal Backup FRC (BFRC) becomes the clock source upon a failure at the clock source.
On PIC32MX devices, a clock failure resulted in the triggering of a specific interrupt when the switchover was complete.	On PIC32MZ EF devices, a NMI is triggered instead, and must be handled by the NMI routine.
FSCM generates an interrupt.	FSCM generates a NMI.
	The definitions of the FCKSM<1:0> bits has changed on PIC32MZ EF devices.
FCKSM<1:0> (DEVCFG1<15:14>) 1x = Clock switching is disabled, FSCM is disabled 01 = Clock switching is enabled, FSCM is disabled 00 = Clock switching is enabled, FSCM is enabled	 FCKSM<1:0> (DEVCFG1<15:14>) 11 = Clock switching is enabled and clock monitoring is enabled 10 = Clock switching is disabled and clock monitoring is enabled 01 = Clock switching is enabled and clock monitoring is disabled 00 = Clock switching is disabled and clock monitoring is disabled
On PIC32MX devices, the CF (OSCCON<3>) bit indicates a clock failure. Writing to this bit initiates a FSCM event.	On PIC32MZ EF devices, the CF (OSCCON<3>) bit has the same functionality as that of PIC32MX device; however, an additional CF(RNMICON<1>) bit is available to indicate a NMI event. Writing to this bit causes a NMI event, but not a FSCM event.
On PIC32MX devices, the CLKLOCK (OSCCON<7>) bit is controlled by the FSCM.	On PIC32MZ EF devices, the CLKLOCK (OSCCON<7>) bit is not impacted by the FSCM.
CLKLOCK (OSCCON<7>)	CLKLOCK (OSCCON<7>)
If clock switching and monitoring is disabled (FCKSM<1:0> = 1x):	1 = Clock and PLL selections are locked
1 = Clock and PLL selections are locked	0 = Clock and PLL selections are not locked and may be modified
0 = Clock and PLL selections are not locked and may be modified	
If clock switching and monitoring is enabled (FCKSM<1:0> = $0x$): Clock and PLL selections are never locked and may be modified.	

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES (CONTINUED)

Table A-2 illustrates the difference in code setup of the respective parts for maximum speed using an external 24 MHz crystal.

TABLE A-2:CODE DIFFERENCES FOR MAXIMUM SPEED USING AN EXTERNAL 24 MHz
CRYSTAL

PIC32MX5XX/6XX/7XX @ 80 Hz	PIC32MZ EF @ 200 MHz
<pre>#include <xc.h></xc.h></pre>	<pre>#include <xc.h></xc.h></pre>
#pragma config POSCMOD = HS	#pragma config POSCMOD = HS
#pragma config FNOSC = PRIPLL	<pre>#pragma config FNOSC = SPLL</pre>
	<pre>#pragma config FPLLICLK = PLL_POSC</pre>
<pre>#pragma config FPLLIDIV = DIV_6</pre>	<pre>#pragma config FPLLIDIV = DIV_3</pre>
	<pre>#pragma config FPLLRNG = RANGE_5_10_MHZ</pre>
<pre>#pragma config FPLLMUL = MUL_20</pre>	<pre>#pragma config FPLLMULT = MUL_50</pre>
<pre>#pragma config FPLLODIV = DIV_1</pre>	<pre>#pragma config FPLLODIV = DIV_2</pre>
<pre>#define SYSFREQ (8000000L)</pre>	<pre>#define SYSFREQ (20000000L)</pre>

A.10 Package Differences

In general, PIC32MZ EF devices are mostly pin compatible with PIC32MX5XX/6XX/7XX devices; however, some pins are not. In particular, the VDD and Vss pins have been added and moved to different pins. In addition, I/O functions that were on fixed pins now will largely be on remappable pins.

TABLE A-11: PACKAGE DIFFERENCES

Pin On PIC32MZ EF devices, this requirement has been removed. No VCAP pin. /ss Pins There are more VDD pins on PIC32MZ EF devices, and many are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60 VDD on 64-pin packages: 14, 27, 46, 62, 74, 82, 02
No VCAP pin. /ss Pins There are more VDD pins on PIC32MZ EF devices, and many are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60
/ss Pins There are more VDD pins on PIC32MZ EF devices, and many are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60
There are more VDD pins on PIC32MZ EF devices, and many are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60
are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60
VDD on 100-pin packages: 14, 37, 46, 62, 74, 83, 93
There are more Vss pins on PIC32MZ EF devices, and many are located on different pins.
Vss on 64-pin packages: 7, 25, 35, 40, 55, 59 Vss on 100-pin packages: 13, 36, 45, 53, 63, 75, 84, 92
) Pins
Peripheral functions on PIC32MZ EF devices are now routed through a PPS module, which routes the signals to the desired pins. When migrating software, it is necessary to initialize the PPS I/O functions in order to get the signal to and from the correct pin.
 PPS functionality for the following peripherals: CAN UART SPI (except SCK) Input Capture Output Compare External Interrupt (except INT0) Timer Clocks (except Timer1)

B.2 Analog-to-Digital Converter (ADC)

The PIC32MZ EC family features a Pipelined ADC module, while the PIC32MZ EF family of devices has an entirely new 12-bit High-Speed SAR ADC module. Nearly all registers in this new ADC module differ from the registers in PIC32MZ EC devices. Due to this difference, code will not port from PIC32MZ EC devices to PIC32MZ EF devices. Table B-2 lists some of the differences in registers to note to adapt code as quickly as possible.

TABLE B-2:ADC DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature
Clock Selection and O	perating Frequency (TAD)
On PIC32MZ EC devices, there are three possible sources of the ADC clock: FRC, REFCLKO3, and SYSCLK.	On PIC32MZ EF devices, there are four sources for the ADC clock. In addition to the ones for PIC32MZ EC, PBCLK4 is added as a source. Also, the clock source selection is in a different register.
ADCSEL<1:0> (AD1CON1<9:8>)	ADCSEL<1:0> (ADCCON3<31:30>)
11 = FRC	11 = FRC
10 = REFCLKO3	10 = REFCLKO3
01 = SYSCLK	01 = SYSCLK
00 = Reserved	00 = PBCLK4
Scan Trigg	ger Sources
On PIC32MZ EC devices, there are 10 available trigger sources for starting ADC sampling and conversion.	On PIC32MZ EF devices, two new sources have been added. One is a shared trigger source (STRIG). The other is a Global Level Software Trigger (GLSWTRG). With the GLSWTRG, the conversions continue until the bit is cleared in software.
STRGSRC<4:0> (AD1CON1<26:22>)	TRGSRC<4:0> (ADCTRGx <y:z>)</y:z>
11111 = Reserved	11111 = Reserved
•	•
•	•
• 01101 = Reserved	• 01101 = Reserved
01100 = Comparator 2 COUT	01100 = Comparator 2 COUT
01011 = Comparator 1 COUT	01011 = Comparator 1 COUT
01011 = 0CMP5	01011 = OCMP5
01001 = 0CMP3	01001 = OCMP3
01000 = OCMP1	01000 = OCMP1
00111 = TMR5 match	00111 = TMR5 match
00110 = TMR3 match	00110 = TMR3 match
00101 = TMR1 match	00101 = TMR1 match
00100 = INTO	00100 = INTO
00011 = Reserved	00011 = STRIG
00010 = Reserved	00010 = Global Level Software Trigger (GLSWTRG)
00001 = Global Software Trigger (GSWTRG)	00001 = Global Software Trigger (GSWTRG)
00000 = No trigger	00000 = No trigger
Debu	g Mode
On PIC32MZ EC devices, the ADC module continues operating when stopping on a breakpoint during debugging.	On PIC32MZ EF devices, the ADC module will stop during debugging when stopping on a breakpoint.
Electrical Specifications	and Timing Requirements
Refer to the "Electrical Characteristics" chapter in the	On PIC32MZ EF devices, the ADC module sampling and
PIC32MZ EC data sheet for ADC module specifications and timing requirements.	conversion time and other specifications have changed. Refer to 37.0 "Electrical Characteristics" for more information.
ADC Ca	libration
PIC32MZ EC devices require calibration values be copied into the AD1CALx registers before turning on the ADC. These values come from the DEVADCx registers.	