

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efm100-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-5: BOOT AND ALIAS MEMORY MAP

TABLE 4-1: SFR MEMORY MAP

	Virtual Address						
Peripheral	Base	Offset Start					
System Bus ⁽¹⁾	0xBF8F0000	0x0000					
Prefetch		0x0000					
EBI		0x1000					
SQI1		0x2000					
USB	UXDF0EUUUU	0x3000					
Crypto		0x5000					
RNG		0x6000					
CAN1 and CAN2		0x0000					
Ethernet	0xBF880000	0x2000					
USBCR		0x4000					
PORTA-PORTK	0xBF860000	0x0000					
Timer1-Timer9		0x0000					
IC1-IC9		0x2000					
OC1-OC9	0xBF840000	0x4000					
ADC		0xB000					
Comparator 1, 2		0xC000					
I2C1-I2C5		0x0000					
SPI1-SPI6	0×PE920000	0x1000					
UART1-UART6	020000	0x2000					
PMP		0xE000					
Interrupt Controller	0×PE910000	0x0000					
DMA	02000000	0x1000					
Configuration		0x0000					
Flash Controller		0x0600					
Watchdog Timer		0x0800					
Deadman Timer		0x0A00					
RTCC		0x0C00					
CVREF		0x0E00					
Oscillator		0x1200					
PPS		0x1400					

Note 1: Refer to 4.2 "System Bus Arbitration" for important legal information.

						-	•	. /					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31.24	—		RODIV<14:8>										
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23.10		RODIV<7:0>											
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R-0, HS, HC					
15:8	ON ⁽¹⁾	—	SIDL	OE	RSLP ⁽²⁾		DIVSWEN	ACTIVE ⁽¹⁾					
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0		_			ROSEL<3:0> ⁽³⁾								

REGISTER 8-4: REFOXCON: REFERENCE OSCILLATOR CONTROL REGISTER ('x' = 1-4)

Legend:	HC = Hardware Cleared	HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Unimplemented: Read as '0' bit 30-16 RODIV<14:0> Reference Clock Divider bits

The value selects the reference clock divider bits (see Figure 8-1 for details). A value of '0' selects no divider.

bit 15 **ON:** Output Enable bit⁽¹⁾

- 1 = Reference Oscillator module is enabled
- 0 =Reference Oscillator module is disabled
- bit 14 **Unimplemented:** Read as '0'
- bit 13 **SIDL:** Peripheral Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode

bit 12 **OE:** Reference Clock Output Enable bit 1 = Reference clock is driven out on REFCLKOx pin

- 0 = Reference clock is not driven out on REFCLKOx pin
- bit 11 **RSLP:** Reference Oscillator Module Run in Sleep bit⁽²⁾
 - 1 = Reference Oscillator module output continues to run in Sleep
 - 0 = Reference Oscillator module output is disabled in Sleep
- bit 10 Unimplemented: Read as '0'
- bit 9 DIVSWEN: Divider Switch Enable bit
 - 1 = Divider switch is in progress
 - 0 = Divider switch is complete
- bit 8 ACTIVE: Reference Clock Request Status bit⁽¹⁾
 - 1 = Reference clock request is active
 - 0 = Reference clock request is not active
- bit 7-4 Unimplemented: Read as '0'

bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽³⁾

- 1111 = Reserved
 - - •
 - 1001 = BFRC 1000 = REFCLKIx
 - 0111 = System PLL output
 - 0110 = Reserved
 - 0101 = Sosc
 - 0100 = LPRC
 - 0011 = FRC
 - 0010 = Posc 0001 = PBCLK1
 - 0000 = SYSCLK

Note 1: Do not write to this register when the ON bit is not equal to the ACTIVE bit.

- 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
- 3: The ROSEL<3:0> bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.

9.1 Prefetch Control Registers

TABLE 9-1: PREFETCH REGISTER MAP

ess		0		Bits										s					
Virtual Addr (BF8E_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	DDECON	31:16	_	—	_	_	_	PFMSECEN	—	—	-	—	—	—	—	—	—	_	0000
0000	PRECON	15:0		—	_	_	_	_	—	_	—	—	PREFE	N<1:0>	—	P	FMWS<2:0	>	0007
0040	DDEOTAT	31:16		_	_	_	PFMDED	PFMSEC	_	_	_	_	_	_	_	_	_	_	0000
0010	PRESIAI	15:0			_	_	_	_	_					PFMSEC	CNT<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
31:24	—	—	BYTC)<1:0>	WBO ⁽¹⁾	—	—	BITO
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	—		_	—			
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—			PLEN<4:0>		
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP	_	_	(CRCCH<2:0>	

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29-28 **BYTO<1:0>:** CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
 - 00 = No swapping (i.e., source byte order)
- bit 27 WBO: CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)
- bit 23-13 Unimplemented: Read as '0'
- bit 12-8 **PLEN<4:0>:** Polynomial Length bits⁽¹⁾

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial -1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

REGISTER 11-4: USBCSR3: USB CONTROL STATUS REGISTER 3 (CONTINUED)

bit 19-16 ENDPOINT<3:0>: Endpoint Registers Select bits

- bit 19-11 Unimplemented: Read as 0
- bit 10-0 RFRMNUM<10:0>: Last Received Frame Number bits

TABLE 12-7: PORTC REGISTER MAP FOR 64-PIN DEVICES ONLY

ess									I	Bits									
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0210	TRISC	31:16	_	_	—		—		—	—	—		—	—	—	—		—	0000
0210	TRIBC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	_	_	_	_	_	_	_	_	—	F000
0220	PORTO	31:16	_	_		_	—	_	_	_	—	_	_	_	-	—	_	—	0000
0220	TOKIC	15:0	RC15	RC14	RC13	RC12	—	—	—	—	—	—	—	—	—	—	_	—	xxxx
0230	LATC	31:16	—	_	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
0200	DAIO	15:0	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
0240	ODCC	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
02.0	0200	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	—	—	—	—	—	—	—	—	—	—		xxxx
0250	CNPUC	31:16	—	_	—	-	—	_	—	—	—	_	—	—		—	_		0000
0200	0111 00	15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	—	_	—	—	—	_	—	—		—	_		0000
0260	CNPDC	31:16	_	_	—	_	—	—	—	—	—	_	—	—		—	_		0000
		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	—	—	—	_	—	—		—	_		0000
		31:16	_		—		_	—	—	—	—	_	—	—		—	_		0000
0270	CNCONC	15:0	ON	_	—	—	EDGE DETECT	—	—	—	—	—	—	—	-	—	—	-	0000
0200		31:16	-	-	—	—	—	-	_	_	—		_		—	_	-	—	0000
0280	CINEINC	15:0	CNENC15	CNENC14	CNENC13	CNENC12													0000
0200	CNSTATC	31:16	_		—		_	-	_	_	_	-	_		_	_	_	—	0000
0290	CINSTATC	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_	-	_	_	_	_	_	_	_	_	_	—	0000
0240	CNNEC	31:16	_	_		_	_	—	—	—	—	—	—	—	—	—	—	-	0000
02A0	CININEC	15:0	CNNEC15	CNNEC14	CNNEC13	CNNEC12	_	_	_	_	_	_	_	_	_	_	_	—	0000
0280	CNEC	31:16	_	_		_	_	—	—	—	—	—	—	—	—	—	—	-	0000
02DU	CINFC	15:0	CNFC15	CNFC14	CNFC13	CNFC12	_	_	_	_	—	_	_	_	_	_	_	-	0000

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

15.0 DEADMAN TIMER (DMT)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The primary function of the Deadman Timer (DMT) is to reset the processor in the event of a software malfunction. The DMT is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs until a count match occurs. Instructions are not fetched when the processor is in Sleep mode. The DMT consists of a 32-bit counter with a time-out count match value as specified by the DMTCNT<3:0> bits in the DEVCFG1 Configuration register.

A Deadman Timer is typically used in mission critical and safety critical applications, where any single failure of the software functionality and sequencing must be detected.

Figure 15-1 shows a block diagram of the Deadman Timer module.

FIGURE 15-1: DEADMAN TIMER BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24		—	—	—	—	—	—	—	
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10		—	—	—	—	—	-	-	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	15:8 RDATAIN<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	RDATAIN<7:0>								

REGISTER 23-10: PMRDIN: PARALLEL PORT READ INPUT DATA REGISTER

Legend:

9			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RDATAIN<15:0>: Port Read Input Data bits

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1' and exclusively for reads. If the DUALBUF bit is '0', the PMDIN register (Register 23-5) is used for reads instead of PMRDIN.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R/W-0							
31:24	DIFF31 ⁽¹⁾	SIGN31 ⁽¹⁾	DIFF30 ⁽¹⁾	SIGN30 ⁽¹⁾	DIFF29 ⁽¹⁾	SIGN29 ⁽¹⁾	DIFF28 ⁽¹⁾	SIGN28 ⁽¹⁾
00.40	R/W-0							
23:16	DIFF27 ⁽¹⁾	SIGN27 ⁽¹⁾	DIFF26 ⁽¹⁾	SIGN26 ⁽¹⁾	DIFF25 ⁽¹⁾	SIGN25 ⁽¹⁾	DIFF24 ⁽¹⁾	SIGN24 ⁽¹⁾
45-0	R/W-0							
15:8	DIFF23 ⁽¹⁾	SIGN23 ⁽¹⁾	DIFF22 ⁽¹⁾	SIGN22 ⁽¹⁾	DIFF21 ⁽¹⁾	SIGN21 ⁽¹⁾	DIFF20 ⁽¹⁾	SIGN20 ⁽¹⁾
7.0	R/W-0							
7:0	DIFF19 ⁽¹⁾	SIGN19 ⁽¹⁾	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16

REGISTER 28-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	DIFF31: AN31 Mode bit ⁽¹⁾
	1 = AN31 is using Differential mode
	0 = AN31 is using Single-ended mode
bit 30	SIGN31: AN31 Signed Data Mode bit ⁽¹⁾
	1 = AN31 is using Signed Data mode
	0 = AN31 is using Unsigned Data mode
bit 29	DIFF30: AN30 Mode bit ⁽¹⁾
	1 = AN30 is using Differential mode
	0 = AN30 is using Single-ended mode
bit 28	SIGN30: AN30 Signed Data Mode bit ⁽¹⁾
	1 = AN30 is using Signed Data mode
	0 = AN30 is using Unsigned Data mode
bit 27	DIFF29: AN29 Mode bit ⁽¹⁾
	1 = AN29 is using Differential mode
	0 = AN29 is using Single-ended mode
	(4)
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode
bit 26 bit 25	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾
bit 26 bit 25	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode
bit 26 bit 25	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode
bit 26 bit 25 bit 24	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾
bit 26 bit 25 bit 24	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode
bit 26 bit 25 bit 24	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode
bit 25 bit 24 bit 23	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾
bit 25 bit 24 bit 23	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode
bit 25 bit 24 bit 23	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode 0 = AN28 is using Unsigned Data mode 0 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode
bit 25 bit 25 bit 24 bit 23 bit 22	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode SIGN27: AN27 Signed Data Mode bit ⁽¹⁾
bit 25 bit 24 bit 23 bit 22	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode SIGN27: AN27 Signed Data Mode bit ⁽¹⁾ 1 = AN27 is using Signed Data mode
bit 25 bit 24 bit 23 bit 22	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode SIGN27: AN27 Signed Data Mode bit ⁽¹⁾ 1 = AN27 is using Signed Data mode 0 = AN27 is using Signed Data mode 0 = AN27 is using Signed Data mode 0 = AN27 is using Unsigned Data mode 0 = AN27 is using Unsigned Data mode

Note 1: This bit is not available on 64-pin devices.

REGISTER 28-21: ADCCMPCONx: ADC DIGITAL COMPARATOR 'x' CONTROL REGISTER ('x' = 2 THROUGH 6) (CONTINUED)

- bit 1 IELOHI: Low/High Digital Comparator 'x' Event bit
 - 1 = Generate a Digital Comparator 'x' Event when the DCMPLO<15:0> bits ≤ DATA<31:0> bits
 - 0 = Do not generate an event
- bit 0 IELOLO: Low/Low Digital Comparator 'x' Event bit
 - 1 = Generate a Digital Comparator 'x' Event when the DATA<31:0> bits < DCMPLO<15:0> bits
 - 0 = Do not generate an event

TABLE 30-5: ETHERNET CONTROLLER REGISTER SUMMARY (CONTINUED)

ess										В	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2110	ETH	31:16	_	—	_	_	—	—	-	—	_	_	—	_	—	-	_	_	0000
	FRMIXOK	15:0								FRMTXOK	CNT<15:0>								0000
2120	ETH SCOLERM	31:16	_	_	_	_	_	—	-	-	—	_	_	_	—	-	_	—	0000
		15:0								SCOLFRM	CN1<15:0>								0000
2130	E I H MCOLFRM	15.0				_	_		_	MCOLERN		_				_	_	_	0000
	стц	31:16	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	0000
2140	FRMRXOK	15:0								FRMRXOK	CNT<15:0>								0000
	ETH	31:16	_	_		_	_	—	_			_	—			_			0000
2150	FCSERR	15:0								FCSERRO	CNT<15:0>								0000
2160	ETH	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
2100	ALGNERR	15:0								ALGNERR	CNT<15:0>								0000
	EMAC1	31:16	—		—	—	—		_	—	_	—	_	—	—	_	—	—	0000
2200	CFG1	15:0	SOFT RESET	SIM RESET		—	RESET RMCS	RESET RFUN	RESET TMCS	RESET TFUN	_	_	_	LOOPBACK	TXPAUSE	RXPAUSE	PASSALL	RXENABLE	800D
	EMAC1	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
2210	CFG2	15:0	-	EXCESS DFR	BP NOBKOFF	NOBKOFF	_	_	LONGPRE	PUREPRE	AUTOPAD	VLANPAD	PAD ENABLE	CRC ENABLE	DELAYCRC	HUGEFRM	LENGTHCK	FULLDPLX	4082
2220	EMAC1	31:16	—	-	—	—	—	—	-	—	-	—	—	—	—	—	—	—	0000
	IPGT	15:0	_		—	—			-	—				Bź	2BIPKTGP<6	:0>			0012
2230	EMAC1	31:16	_	—	—	—	—	—	-	—	_	—	—	_	—	-	_	—	0000
	IFGR	15:0				NB2	2BIPKTGP1<	5:0>	1		_			NB:	2BIPKTGP2<	:6:0>			0C12
2240	EMAC1 CLRT	31:16				_		-	_								-	_	2700
	FMAGA	31.16				_		Jvv<5:0>	_	_						RE1/	<3:0>	_	370F
2250	MAXF	15:0								MACMA	<f<15:0></f<15:0>								05EE
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
2260	EMAC1 SUPP	15:0	_	_	_	_	RESET RMII	_	_	SPEED RMII	_	_	_	_	_	_	_	_	1000
	EMAC1	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
2270	TEST	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	TESTBP	TESTPAUSE	SHRTQNTA	0000
	EN LO L	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
2280	MCFG	15:0	RESET MGMT	_	_	_	_	_	-	_	_	_		CLKSE	L<3:0>		NOPRE	SCANINC	0020
2200	EMAC1	31:16	_	_	—	—	_	_	-	—	_	—	_	_	—	_	—	—	0000
2290	MCMD	15:0	_		_	_		_	_	_	_	_		_	_	_	SCAN	READ	0000
2240	EMAC1	31:16	_	_	—	—	_	_	_	_	_	_	_	_	_	_	—	_	0000
22,0	MADR	15:0	—	—	—		P	HYADDR<4:	0>		—	—	—		R	REGADDR<4:	0>		0100
Legend	1: x = 1	unknow	n value on Re	eset: — = unir	mplemented.	read as '0'. R	eset values a	e shown in h	exadecimal.										

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and Note 1: INV Registers" for more information.

2: Reset values default to the factory programmed value.

	, RE	GISTER									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	_	—	_			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10			_	_	_	_	—	_			
15.9	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0	PMCS<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				PMCS	S<7:0>						

REGISTER 30-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits

bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 30-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24		_	_	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0				PMO<	<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				PMO	<7:0>			

Le	gend:	
	D	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **PMO<15:0>:** Pattern Match Offset 1 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31.24	—	_	—	—	—	-	—	—
22.16	U-0	U-0						
23.10	—	_	—	—	—	-	—	—
15.0	U-0	U-0						
15.0	—	_	—	—	—	-	—	—
7.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7.0			—	_	_	TESTBP	TESTPAUSE ⁽¹⁾	SHRTQNTA ⁽¹⁾

REGISTER 30-30: EMAC1TEST: ETHERNET CONTROLLER MAC TEST REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

- bit 2 TESTBP: Test Backpressure bit
 - 1 = The MAC will assert backpressure on the link. Backpressure causes preamble to be transmitted, raising carrier sense. A transmit packet from the system will be sent during backpressure.
 0 = Normal operation

bit 1 **TESTPAUSE:** Test PAUSE bit⁽¹⁾

1 = The MAC Control sub-layer will inhibit transmissions, just as if a PAUSE Receive Control frame with a non-zero pause time parameter was received

0 = Normal operation

bit 0 SHRTQNTA: Shortcut PAUSE Quanta bit⁽¹⁾

1 = The MAC reduces the effective PAUSE Quanta from 64 byte-times to 1 byte-time

0 = Normal operation

Note 1: This bit is only used for testing purposes.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

TABLE 33-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

ess		0								Bi	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0040	DMD1	31:16			—	_	—	_	—			—	_	-		_	—	_	0000
0040	FIVIDT	15:0	_	_	—	CVRMD	—	_	—	-	_	—	—	_	_	_	—	ADCMD	0000
0050		31:16		-	—	-	—	-	_			_		-	-	-	—	_	0000
0050	PIVIDZ	15:0	_	—	-	_	-	_	—	—	—	—	-	—	_	_	CMP2MD	CMP1MD	0000
0060		31:16	_	_	-	_	_	_	_	OC9MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
0060	PIVIDS	15:0	_	_	-	_	_	_	_	IC9MD	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
0070		31:16	_		_				_		_	—	_	_	-				0000
0070	PIVID4	15:0		-	—	-	—	-	_	T9MD	T8MD	T7MD	T6MD	T5MD	T4MD	T3MD	T2MD	T1MD	0000
0080	DMDE	31:16		-	CAN2MD	CAN1MD	—	-	_	USBMD		_		I2C5MD	I2C4MD	I2C3MD	I2C2MD	I2C1MD	0000
0080	PIVIDS	15:0	_	—	SPI6MD	SPI5MD	SPI4MD	SPI3MD	SPI2MD	SPI1MD	—	—	U6MD	U5MD	U4MD	U3MD	U2MD	U1MD	0000
0000	DMDC	31:16	_	_	-	ETHMD	_	_	_	_	SQI1MD	_		_	_	_	EBIMD	PMPMD	0000
0090	PIVIDO	15:0	_	_	-	_	REFO4MD	REFO3MD	REFO2MD	REFO1MD	_	_		_	_	_	_	RTCCMD	0000
0040		31:16	_	_	_	_	_	_	_	_	_	CRYPTMD	_	RNGMD	_	_	_	_	0000
UUAU	PIVID7	15:0	_	_	_	_	_	_	_			_	_	DMAMD		_	_	_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

DC CHA	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions			
Operati	ng Voltag	e								
DC10	Vdd	Supply Voltage (Note 1)	2.1	—	3.6	V	—			
DC12	Vdr	RAM Data Retention Voltage (Note 2)	2.0		—	V	_			
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal (Note 3)	1.75	—	_	V	_			
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.000011	—	1.1	V/µs	300 ms to 3 µs @ 3.3V			

TABLE 37-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: This is the limit to which VDD must be lowered to ensure Power-on Reset.

TABLE 37-5: ELECTRICAL CHARACTERISTICS: BOR

DC CHA	RACTER	ISTICS	Standa (unles Operat	Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Typical	Max.	Units	Conditions				
BO10	VBOR	BOR Event on VDD transition high-to-low (Note 2)	1.88		2.02	V	_				

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

39.1 DC Characteristics

TABLE 39-1: OPERATING MIPS VS. VOLTAGE

	VDD Range	Temp. Range	Max. Frequency	Comment
Characteristic	(In Volts) (Note 1)	(in °C)	PIC32MZ EF Devices	
MDC5	2.1V-3.6V	-40°C to +85°C	252 MHz	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

TABLE 39-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial	
Parameter No.	Typical ⁽³⁾	Maximum ⁽⁶⁾	Units	Conditions
Operating C	Current (IDD) ⁽¹)		
MDC27a	156	170	mA	252 MHz (Note 2)
MDC27b	115	135	mA	252 MHz (Note 4,5)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- **2:** The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC+PLL with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
 - CPU, Program Flash, and SRAM data memory are operational, Program Flash memory Wait states are equal to four
 - L1 Cache and Prefetch modules are enabled
 - No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)
 - WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, +25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: Note 2 applies with the following exceptions: L1 Cache and Prefetch modules are disabled, Program Flash memory Wait states are equal to seven.
- **6:** Data in the "Maximum" column is at 3.3V, +85°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

For the most current package drawings, please see the Microchip Packaging Specification located at

DETAIL 1

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Leads	Ν	64		
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	¢	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	ß	11°	12°	13°

Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

NOTES:

A.2 Analog-to-Digital Converter (ADC)

The PIC32MZ EF family of devices has a new 12-bit High-Speed Successive Approximation Register (SAR) ADC module that replaces the 10-bit ADC module in PIC32MX5XX/6XX/7XX devices; therefore, the use of **Bold** type to show differences is *not* used in the following table. Note that not all register differences are described in this section; however, the key feature differences are listed in Table A-3.

TABLE A-3:ADC DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature			
Clock Selection and Operating Frequency (TAD)				
On PIC32MX devices, the ADC clock was derived from either the FRC or from the PBCLK.	On PIC32MZ EF devices, the three possible sources of the ADC clock are FRC, REFCLKO3, and SYSCLK.			
ADRC (AD1CON3<15>) 1 = FRC clock 0 = Clock derived from Peripheral Bus Clock (PBCLK)	ADCSEL<1:0> (ADCCON3<31:30>) 11 = FRC 10 = REFCLKO3 01 = SYSCLK 00 = Reserved			
On PIC32MX devices, if the ADC clock was derived from the PBCLK, that frequency was divided further down, with a maximum divisor of 512, and a minimum divisor of two.	On PIC32MZ EF devices, any ADC clock source can be divided down separately for each dedicated ADC and the shared ADC, with a maximum divisor of 254. The input clock can also be fed directly to the ADC.			
ADCS<7:0> (AD1CON3<7:0>) 11111111 = 512 * TPB = TAD • • 00000001 = 4 * TPB = TAD 00000000 = 2 * TPB = TAD	ADCDIV<6:0> (ADCTIMEx<22:16>) ADCDIV<6:0> (ADCCON2<6:0>) 1111111 = 254 * TQ = TAD • • • 0000011 = 6 * TQ = TAD 0000010 = 4 * TQ = TAD 0000001 = 2 * TQ = TAD 0000000 = TQ = TAD			

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature			
Ethernet				
	On PIC32MZ EF devices, the input clock divider for the Ethernet module has expanded options to accommodate the faster peripheral bus clock.			
CLKSEL<3:0> (EMAC1MCFG<5:2>) 1000 = SYSCLK divided by 40 0111 = SYSCLK divided by 28 0110 = SYSCLK divided by 20 0101 = SYSCLK divided by 14 0100 = SYSCLK divided by 10 0011 = SYSCLK divided by 8 0010 = SYSCLK divided by 6 000x = SYSCLK divided by 4	CLKSEL<3:0> (EMAC1MCFG<5:2>) 1010 = PBCLK5 divided by 50 1001 = PBCLK5 divided by 48 1000 = PBCLK5 divided by 40 0111 = PBCLK5 divided by 28 0110 = PBCLK5 divided by 20 0101 = PBCLK5 divided by 14 0100 = PBCLK5 divided by 10 0011 = PBCLK5 divided by 8 0010 = PBCLK5 divided by 6 000x = PBCLK5 divided by 4			
Comparator/Comparator Voltage Reference				
On PIC32MX devices, it was possible to select the VREF+ pin as the output to the CVREFOUT pin.	On PIC32MZ EF devices, the CVREFOUT pin must come from the resistor network.			
VREFSEL (CVRCON<10>) 1 = CVREF = VREF+ 0 = CVREF is generated by the resistor network	This bit is not available.			
On PIC32MX devices, the internal voltage reference (IVREF) could be chosen by the BGSEL<1:0> bits.	On PIC32MZ EF devices, IVREF is fixed and cannot be changed.			
BGSEL<1:0> (CVRCON<9:8>) 11 = IVREF = VREF+ 10 = Reserved 01 = IVREF = 0.6V (nominal, default) 00 = IVREF = 1.2V (nominal)	These bits are not available.			
Change N	lotification			
On PIC32MX devices, Change Notification is controlled by the CNCON, CNEN, and CNPUE registers.	On PIC32MZ EF devices, Change Notification functionality has been relocated into each I/O port and is controlled by the CNPUx, CNPDx, CNCONx, CNENx, and CNSTATx registers.			
System Bus				
On PIC32MX devices, the System Bus registers can be used to configure RAM memory for data and program memory partitions, cacheability of Flash memory, and RAM Wait states. These registers are: BMXCON, BMXDKPBA, BMXDUDBA, BMXDUPBA, BMXPUPBA, BMXDOTSZ.	On PIC32MZ EF devices, a new System Bus is utilized that sup- ports using RAM memory for program or data without the need for special configuration. Therefore, no special registers are associated with the System Bus to configure these features.			
On PIC32MX devices, various arbitration modes are used as initiators on the System Bus. These modes can be selected by the BMXARB<2:0> (BMXCON<2:0>) bits.	On PIC32MZ EF devices, a new arbitration scheme has been implemented on the System Bus. All initiators use the Least Recently Serviced (LRS) scheme, with the exception of the DMA, CPU, and the Flash Controller.			
	The Flash Controller always has High priority over LRS initiators. The DMA and CPU (when servicing an interrupt) can be selected to have LRS or High priority using the DMAPRI (CFGCON<25>) and CPUPRI (CFGCON<24>) bits.			

TABLE A-10: PERIPHERAL DIFFERENCES (CONTINUED)