

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	97
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efm124-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
PMA0	30	44	B24	30	I/O	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)				
PMA1	29	43	A28	51	I/O	TTL/ST	Parallel Master Port Address bit 1 Input (Buffered Slave modes) and Output (Master modes)				
PMA2	10	16	B9	21	0	_	Parallel Master Port Address (Demultiplexed Master				
PMA3	6	12	B7	52	0	_	modes)				
PMA4	5	11	A8	68	0	_					
PMA5	4	2	B1	2	0	_	1				
PMA6	16	6	B3	6	0	—					
PMA7	22	33	A23	48	0	_	1				
PMA8	42	65	A44	91	0	_					
PMA9	41	64	B36	90	0	_					
PMA10	21	32	B18	47	0	_	1				
PMA11	27	41	A27	29	0	_	1				
PMA12	24	7	A6	11	0	_					
PMA13	23	34	B19	28	0	_					
PMA14	45	61	A42	87	0	_					
PMA15	43	68	B38	97	0						
PMCS1	45	61	A42	87	0	_	Parallel Master Port Chip Select 1 Strobe				
PMCS2	43	68	B38	97	0	_	Parallel Master Port Chip Select 2 Strobe				
PMD0	58	91	B52	135	I/O	TTL/ST	Parallel Master Port Data (Demultiplexed Master				
PMD1	61	94	A64	138	I/O	TTL/ST	mode) or Address/Data (Multiplexed Master modes)				
PMD2	62	98	A66	142	I/O	TTL/ST	4				
PMD3	63	99	B56	143	I/O	TTL/ST	-				
PMD4	64	100	A67	144	I/O	TTL/ST	-				
PMD5	1	3	A3	3	I/O	TTL/ST	-				
PMD6	2	4	B2	4	I/O	TTL/ST	-				
PMD7	3	5	A4	5	I/O	TTL/ST	-				
PMD8		88	B50	128	I/O	TTL/ST	-				
PMD9		87	A60	120	I/O	TTL/ST	4				
PMD10		86	B49	127	1/O	TTL/ST	4				
PMD11		85	A59	123	1/O	TTL/ST	4				
PMD12		79	B43	112	1/O	TTL/ST	4				
PMD13		80	A54	112	1/O	TTL/ST	4				
PMD13		77	B42	110	1/O	TTL/ST	4				
PMD15		78	A53	110	1/O	TTL/ST	4				
PMALL	30	44	B24	30	0		Parallel Master Port Address Latch Enable Low Byte (Multiplexed Master modes)				
PMALH	29	43	A28	51	0		Parallel Master Port Address Latch Enable High Byte (Multiplexed Master modes)				
PMRD	53	9	A7	13	0		Parallel Master Port Read Strobe				
PMWR	52	8	B5	10	0	<u> </u>	Parallel Master Port Write Strobe				
		MOS-comp				Analog –	Analog input P = Power				

TABLE 1-12: PMP PINOUT I/O DESCRIPTIONS

egend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

Analog = Analog input O = Output

I = Input

2.9 Designing for High-Speed Peripherals

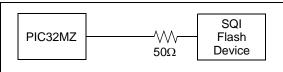
The PIC32MZ EF family devices have peripherals that operate at frequencies much higher than typical for an embedded environment. Table 2-1 lists the peripherals that produce high-speed signals on their external pins:

TABLE 2-1: PERIPHERALS THAT PRODUCE HS SIGNALS ON EXTERNAL PINS

Peripheral	High-Speed Signal Pins	Maximum Speed on Signal Pin
EBI	EBIAx, EBIDx	50 MHz
SQI1	SQICLK, SQICSx, SQIDx	50 MHz
HS USB	D+, D-	480 MHz

Due to these high-speed signals, it is important to consider several factors when designing a product that uses these peripherals, as well as the PCB on which these components will be placed. Adhering to these recommendations will help achieve the following goals:

- Minimize the effects of electromagnetic interference to the proper operation of the product
- Ensure signals arrive at their intended destination at the same time
- Minimize crosstalk
- Maintain signal integrity
- Reduce system noise
- Minimize ground bounce and power sag


2.9.1 SYSTEM DESIGN

2.9.1.1 Impedance Matching

When selecting parts to place on high-speed buses, particularly the SQI bus, if the impedance of the peripheral device does not match the impedance of the pins on the PIC32MZ EF device to which it is connected, signal reflections could result, thereby degrading the quality of the signal.

If it is not possible to select a product that matches impedance, place a series resistor at the load to create the matching impedance. See Figure 2-4 for an example.

FIGURE 2-4: SERIES RESISTOR

2.9.1.2 PCB Layout Recommendations

The following list contains recommendations that will help ensure the PCB layout will promote the goals previously listed.

Component Placement

- Place bypass capacitors as close to their component power and ground pins as possible, and place them on the same side of the PCB
- Devices on the same bus that have larger setup times should be placed closer to the PIC32MZ EF device

• Power and Ground

- Multi-layer PCBs will allow separate power and ground planes
- Each ground pin should be connected to the ground plane individually
- Place bypass capacitor vias as close to the pad as possible (preferably inside the pad)
- If power and ground planes are not used, maximize width for power and ground traces
- Use low-ESR, surface-mount bypass capacitors

• Clocks and Oscillators

- Place crystals as close as possible to the PIC32MZ EF device OSC/SOSC pins
- Do not route high-speed signals near the clock or oscillator
- Avoid via usage and branches in clock lines (SQICLK)
- Place termination resistors at the end of clock lines
- Traces
 - Higher-priority signals should have the shortest traces
 - Match trace lengths for parallel buses (EBIAx, EBIDx, SQIDx)
 - Avoid long run lengths on parallel traces to reduce coupling
 - Make the clock traces as straight as possible
 - Use rounded turns rather than right-angle turns
 - Have traces on different layers intersect on right angles to minimize crosstalk
 - Maximize the distance between traces, preferably no less than three times the trace width
 - Power traces should be as short and as wide as possible
 - High-speed traces should be placed close to the ground plane

TABLE 7-3: **INTERRUPT REGISTER MAP (CONTINUED)**

ress f)	b -	Ð								Bi	ts								Ś
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Recete
	055000	31:16	_	_	—	_	_	_	—	_		_	_	_	—	_	VOFF<	17:16>	00
0548	OFF002	15:0								VOFF<15:1>								—	000
0540	OFF003	31:16	_	_	_	_	_	_	_	—	_	_	_	_	_	_	VOFF<	17:16>	000
J54C	0FF003	15:0								VOFF<15:1>								_	000
0550	OFF004	31:16	_	_	—	—		-	_	_		_		_	_	_	VOFF<	17:16>	000
0550	011004	15:0								VOFF<15:1>								—	000
0554	OFF005	31:16	_	-	—	—	-	-	—	—	_	—	-	-	—	-	VOFF<	17:16>	000
0554	011005	15:0							-	VOFF<15:1>					-			—	00
0558	OFF006	31:16		_	—	—	—	—	—	—	_	—	—	_	—	_	VOFF<	17:16>	000
0550	011000	15:0								VOFF<15:1>								—	000
155C	OFF007	31:16		_	—	—	—	—	—	—	_	—	—	_	—	_	VOFF<	17:16>	00
	011007	15:0								VOFF<15:1>								_	00
0560	OFF008	31:16	_	-	—	—	-	-	—	—	_	—	-	-	—	-	VOFF<	17:16>	00
0500	011000	15:0							-	VOFF<15:1>					-			—	000
0564	OFF009	31:16		_	—	—	—	—	—	—	_	—	—	_	—	_	VOFF<	17:16>	00
0004	011005	15:0							-	VOFF<15:1>					-			—	00
0568	OFF010	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	00
0000	011010	15:0							-	VOFF<15:1>					-				000
156C	OFF011	31:16		_	—	—	—	—	—	—	_	—	—	_	—	_	VOFF<	17:16>	000
0000	onioni	15:0								VOFF<15:1>									000
0570	OFF012	31:16	—	—	—	—	—	—		—	—	—	_	—	—	—	VOFF<	17:16>	00
0010	011012	15:0								VOFF<15:1>									000
0574	OFF013	31:16	—	—	—	—	—	—	—	—		—	—	—	—	—	VOFF<	17:16>	00
0374	011013	15:0								VOFF<15:1>									000
0578	OFF014	31:16	—	—	—	—	_	_	_	—		—	—	—		—	VOFF<	17:16>	000
0070	011014	15:0								VOFF<15:1>									000
0570	OFF015	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	000
	0.7010	15:0								VOFF<15:1>									000
0580	OFF016	31:16	_	_	—	—	—	—	—	—	—	—	—	_	—	—	VOFF<	17:16>	000
0000	011010	15:0								VOFF<15:1>								_	000

© 2015-2016 Microchip Technology Inc.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

- Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:
- Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

^{2:}

TABLE 7-3: **INTERRUPT REGISTER MAP (CONTINUED)**

ress ()		Ð	Bits																
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OFF032	31:16	_	_	-	—	-	_	-	_	_	_	—	_	—	—	VOFF<	17:16>	0000
0500	OFF032	15:0								VOFF<15:1>								—	0000
0504	OFF033	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
0504	066033	15:0								VOFF<15:1>								_	0000
0500	OFF034	31:16	—		—	_	_	-	_		—		_	—	—	—	VOFF<	17:16>	0000
0508	0FF034	15:0								VOFF<15:1>								_	0000
0500	OFF035	31:16	—		_	_				—	_		—	_	—	_	VOFF<	17:16>	0000
0500	0FF035	15:0								VOFF<15:1>								_	0000
0500	OFF036	31:16	—		—	_					—		—	—	—	—	VOFF<	17:16>	0000
0500	066030	15:0								VOFF<15:1>								_	0000
05D4	OFF037	31:16	—		—	_				—	—		—	—	_	_	VOFF<	17:16>	0000
0304	011037	15:0								VOFF<15:1>								—	0000
0508	OFF038	31:16	_	-	—	—	-	-	-	_	_	-	—	—	—	—	VOFF<	17:16>	0000
0300	011030	15:0			-	-				VOFF<15:1>					-	-	-	—	0000
05DC	OFF039	31:16	_	—	-	—	_	—	_	—	_		—	_	—	—	VOFF<	17:16>	0000
0300	011039	15:0								VOFF<15:1>								—	0000
0550	OFF040	31:16	_	_						—	_		—	_			VOFF<	17:16>	0000
0520	011040	15:0			-	-				VOFF<15:1>					-	-	-		0000
05E4	OFF041	31:16	_	—	-	—	_	—	_	—	_		—	_	—	—	VOFF<	17:16>	0000
0564	011041	15:0								VOFF<15:1>									0000
05E8	OFF042	31:16	_	—	-	—	_	—	_	—	_		—	_	—	—	VOFF<	17:16>	0000
0520	011042	15:0			-	-				VOFF<15:1>					-	-	-		0000
05EC	OFF043	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0520	011043	15:0								VOFF<15:1>									0000
05E0	OFF044	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	VOFF<	17:16>	0000
001 0	011044	15:0			-	-				VOFF<15:1>					-	-	-	—	0000
05F4	OFF045	31:16	—	—	—	_	_	_	_	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0014	011040	15:0								VOFF<15:1>						-	-		0000
0558	OFF046	31:16	—	_	-		_	_	—	—	—	_	—	_	—	—	VOFF<	17:16>	0000
05-0		15:0								VOFF<15:1>								_	0000

© 2015-2016 Microchip Technology Inc.

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

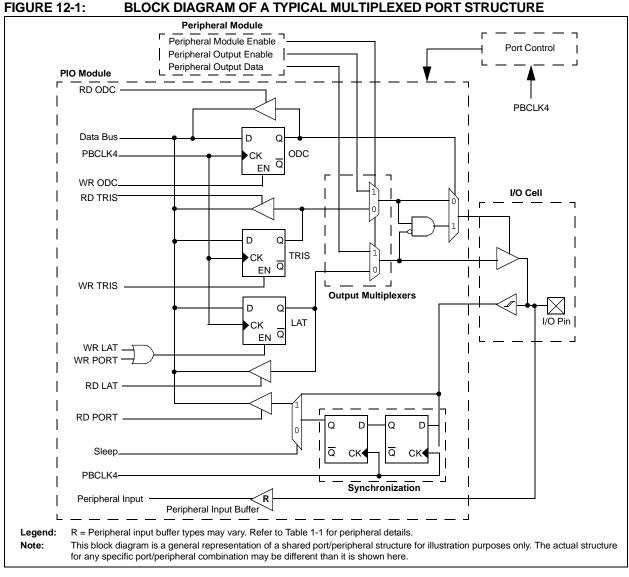
- Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:
- Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

^{2:}

12.0 I/O PORTS


Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC32MZ EF family device to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

Some of the key features of the I/O ports are:

- Individual output pin open-drain enable/disable
- Individual input pin weak pull-up and pull-down
- · Monitor selective inputs and generate interrupt when change in pin state is detected
- · Operation during Sleep and Idle modes
- · Fast bit manipulation using CLR, SET and INV registers

Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE

			[pin name]R Value to
Peripheral Pin	[pin name]R SFR	[pin name]R bits	RPn Pin Selection
INT3	INT3R	INT3R<3:0>	0000 = RPD2
T2CK	T2CKR	T2CKR<3:0>	0001 = RPG8
T6CK	T6CKR	T6CKR<3:0>	0010 = RPF4
IC3	IC3R	IC3R<3:0>	0011 = RPD10 0100 = RPF1
IC7	IC7R	IC7R<3:0>	0101 = RPB9
U1RX	U1RXR	U1RXR<3:0>	0110 = RPB10
U2CTS	U2CTSR	U2CTSR<3:0>	0111 = RPC14
U5RX	U5RXR	U5RXR<3:0>	1000 = RPB5
U6CTS	U6CTSR	U6CTSR<3:0>	1001 = Reserved 1010 = RPC1 ⁽¹⁾
SDI1	SDI1R	SDI1R<3:0>	1010 = RPC(1) $1011 = \text{RPD}(14^{(1)})$
SDI3	SDI3R	SDI3R<3:0>	$1100 = \text{RPG1}^{(1)}$
SDI5 ⁽¹⁾	SDI5R ⁽¹⁾	SDI5R<3:0> ⁽¹⁾	1101 = RPA14 ⁽¹⁾
SS6 ⁽¹⁾	SS6R ⁽¹⁾	SS6R<3:0> ⁽¹⁾	1110 = RPD6 ⁽²⁾
REFCLKI1	REFCLKI1R	REFCLKI1R<3:0>	1111 = Reserved
INT4	INT4R	INT4R<3:0>	0000 = RPD3
T5CK	T5CKR	T5CKR<3:0>	0001 = RPG7
T7CK	T7CKR	T7CKR<3:0>	0010 = RPF5 0011 = RPD11
IC4	IC4R	IC4R<3:0>	0100 = RPF0
IC8	IC8R	IC8R<3:0>	
U3RX	U3RXR	U3RXR<3:0>	0111 = RPC13
U4CTS	U4CTSR	U4CTSR<3:0>	1000 = RPB3 1001 = Reserved
SDI2	SDI2R	SDI2R<3:0>	1010 = RPC4 ⁽¹⁾
SDI4	SDI4R	SDI4R<3:0>	$- 1011 = \text{RPD15}^{(1)}$ 1100 = RPG0 ⁽¹⁾
C1RX ⁽³⁾	C1RXR ⁽³⁾	C1RXR<3:0> ⁽³⁾	1101 = RPA15 ⁽¹⁾
REFCLKI4	REFCLKI4R	REFCLKI4R<3:0>	
INT2	INT2R	INT2R<3:0>	0000 = RPD9
T3CK	T3CKR	T3CKR<3:0>	0001 = RPG6
T8CK	T8CKR	T8CKR<3:0>	0010 = RPB8
IC2	IC2R	IC2R<3:0>	
IC5	IC5R	IC5R<3:0>	0100 = RPD4 0101 = RPB0
IC9	IC9R	IC9R<3:0>	0110 = RPE3
U1CTS	U1CTSR	U1CTSR<3:0>	0111 = RPB7
U2RX	U2RXR	U2RXR<3:0>	1000 = Reserved
USCTS	U5CTSR	U5CTSR<3:0>	$-1001 = \text{RPF12}^{(1)}$
<u> </u>	SS1R	SS1R<3:0>	1010 = RPD12 ⁽¹⁾ 1011 = RPF8 ⁽¹⁾
<u> </u>	SSTR SS3R	SS3R<3:0>	$1011 = RPF8^{(1)}$ $1100 = RPC3^{(1)}$
			1100 = RPC3(7) 1101 = RPE9 ⁽¹⁾
<u> </u>	SS4R SS5R ⁽¹⁾	SS4R<3:0> SS5R<3:0> ⁽¹⁾	1110 = Reserved
			1111 = Reserved
C2RX ⁽³⁾	C2RXR ⁽³⁾	C2RXR<3:0> ⁽³⁾	

TABLE 12-2: INPUT PIN SELECTION

Note 1: This selection is not available on 64-pin devices.

2: This selection is not available on 64-pin or 100-pin devices.

3: This selection is not available on devices without a CAN module.

TABLE 12-16: PORTG REGISTER MAP FOR 64-PIN DEVICES ONLY

SSS										Bi	ts								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	ANSELG	31:16	_	—	—	-	—	—	—	—	—		-	—	-	—	_	—	0000
0000	ANGLEG	15:0	_	_	_	_	_	_	ANSG9	ANSG8	ANSG7	ANSG6	_	_	_	_	_	—	03C0
0610	TRISG	31:16	—	_	—	_	—	_	—	_	_	_	_	—	_	_		—	0000
0010	11100	15:0	—	_	—	_	—	_	TRISG9	TRISG8	TRISG7	TRISG6	_	—	_	_		—	03C0
0620	PORTG	31:16	—	_	—	_	—	_	—	_	_	_	_	—	_	_		—	0000
0020	TOKIO	15:0	—	_	—	_	—	_	RG9	RG8	RG7	RG6	_	—	_	_		—	xxxx
0630	LATG	31:16	—	_	—	_	—	_	—	_	_	—	_	—	_	_		—	0000
0000	DAIO	15:0	—	_	—	_	—	_	LATG9	LATG8	LATG7	LATG6	_	—	_	—		—	xxxx
0640	ODCG	31:16	—	_	—	_	—	_	—			—	_	—	_	—		—	0000
0040	0000	15:0	—	_	—	_	—	_	ODCG9	ODCG8	ODCG7	ODCG6	_	—	_	—		—	0000
0650	CNPUG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
0000		15:0	_	_	—	—	—	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	—	—	—	—	_	—	0000
0660	CNPDG	31:16	_	-	—	-	—	_	—	_	_		-	—	-	—	_	-	0000
	0.1. 20	15:0	_	-	—	-	—	_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	-	—	-	—	_	-	0000
		31:16	—	-	—	-	—	_	—	_	_		-	—	-	—	_	-	0000
0670	CNCONG	15:0	ON	_	_		EDGE DETECT	—	—	—	—	_		—	-	—	_	_	0000
0680	CNENG	31:16	-		_		_	_	—					_		-		—	0000
0000	CINEINO	15:0	_	-	_	-	—	_	CNENG9	CNENG8	CNENG7	CNENG6	-	_	_	_	_	—	0000
		31:16	—	-	—	-	—	—	—	_	_	—	-	—	-	—	-	—	0000
0690	CNSTATG	15:0	—	-	_	_	—	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6		—		—		—	0000
0640		31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
06A0	CNNEG	15:0	_	_	—	_	—	—	CNNEG9	CNNEG8	CNNEG7	CNNEG6	_	_		—	_	—	0000
06B0	CNFG	31:16	_	_					—	—	—	—		—		—		—	0000
0000	UNFG	15:0	_	_	_	_	—	_	CNFG9	CNFG8	CNFG7	CNFG6	_	—		_	-	—	0000
0600	SRCON0G	31:16	—	_	—	_	—	_	—	_	_		_	—	_	—	_	—	0000
	GREUNUG	15:0	_	_	_		—	_	SR0G9	_	_	SR0G6	_	—		—	-	—	0000
	SRCON1G	31:16	_	_	—	_	—	—	-	—	—		_	—	_	—	_	—	0000
	SILCONIG	15:0	_	_	_	_	_	_	SR1G9	_		SR1G6	_	_	_		_	—	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 12-21: PORTK REGISTER MAP FOR 144-PIN DEVICES ONLY

Bits																			
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0910	TRISK	31:16	_	-	—	—	—	_	_	—	-	—	_		—	—	—	—	0000
0010	INION	15:0	—	_	—	—	—	—	—	—	TRISK7	TRISK6	TRISK5	TRISK4	TRISK3	TRISK2	TRISK1	TRISK0	OOFF
0920	PORTK	31:16	—	_	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
0020		15:0	—	_	—	—	—	—	—	—	RK7	RK6	RK5	RK4	RK3	RK2	RK1	RK0	xxxx
0930	LATK	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	_	0000
		15:0	_	_	—	_	—	_	_	_	LATK7	LATK6	LATK5	LATK4	LATK3	LATK2	LATK1	LATK0	XXXX
0940	ODCK	31:16	_	_	—	_	_	_	—	—	—	—	—	—	—	—	—	—	0000
		15:0	_	_	—	_	_	_	_	_	ODCK7	ODCK6	ODCK5	ODCK4	ODCK3	ODCK2	ODCK1	ODCK0	0000
0950	CNPUK	31:16	_	_	_	_	_	_	_	_	-	-	-	—	-	-	-	-	0000
		15:0	_	_	_	_	_	_	_	_	CNPUK7	CNPUK6	CNPUK5	CNPUK4	CNPUK3	CNPUK2	CNPUK1	CNPUK0	0000
0960	CNPDK	31:16			-						-								0000
		15:0	_	_	_	_	_	_		_	CNPDK7	CNPDK6	CNPDK5	CNPDK4	CNPDK3	CNPDK2	CNPDK1	CNPDK0	0000
0070	CNCONK	31:16	_	_	—	—	-			_		_	_	_	_				0000
0070	onconin	15:0	ON	—	—	—	EDGE DETECT	—	—	—	—	—	—	—	—	—	—	—	0000
0980	CNENK	31:16	-		_	_	_	_	_	_	١	_			-	-	-	_	0000
0900	CINLINK	15:0	_	_	—	—	_	_	_	_	CNENK7	CNENK6	CNENK5	CNENK4	CNENK3	CNENK2	CNENK1	CNENK0	0000
		31:16	—	—	—	—	—	—	—	—	-	—	—	-	—	—	—	_	0000
0990	CNSTATK	15:0	-	_	-	-	-	-	_	—	CN STATK7	CN STATK6	CN STATK5	CN STATK4	CN STATK3	CN STATK2	CN STATK1	CN STATK0	0000
0040	CNNEK	31:16	—	_	—	_	_	_	_	_	_	—	_	_	_	—	_	_	0000
09A0	CININER	15:0	_								CNNEK7	CNNEK6	CNNEK5	CNNEK4	CNNEK3	CNNEK2	CNNEK1	CNNEK0	0000
09B0	CNFK	31:16	_	_	—	—	_	_	_	_	_	—	_			—	—		0000
0900	UNER	15:0	_	-	_	_	_	_	_	_	CNFK7	CNFK6	CNFK5	CNFK4	CNFK3	CNFK2	CNFK1	CNFK0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

		-	-					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	_	_	—	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	_	_	_	_	-	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0		-			_			—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_		[pin name	?]R<3:0>	

REGISTER 12-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 [*pin name*]R<3:0>: Peripheral Pin Select Input bits Where [*pin name*] refers to the pins that are used to configure peripheral input mapping. See Table 12-2 for input pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

REGISTER 12-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_		-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	-	-		_			—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_		_	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_				RPnR	<3:0>	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 **RPnR<3:0>:** Peripheral Pin Select Output bits See Table 12-3 for output pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	_	_	_		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	_	_	_		
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0		
15:8	ON	—	SIDL	—	—	_	FEDGE	C32		
7.0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0		
7:0	ICTMR ⁽¹⁾	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>			

REGISTER 17-1: ICXCON: INPUT CAPTURE X CONTROL REGISTER

Legend:

R = Readabl	le bit W = Writable bit	U = Unimplemented bit
-n = Bit Valu	e at POR: ('0', '1', x = unknown)	P = Programmable bit r = Reserved bit
1 :: 04 40		
bit 31-16	Unimplemented: Read as '0'	
bit 15	ON: Input Capture Module Enable bit	
	1 = Module is enabled	disable interrupt generation and allow CED modifications
L: 4 4		, disable interrupt generation and allow SFR modifications
bit 14	Unimplemented: Read as '0'	
bit 13	SIDL: Stop in Idle Control bit	
	1 = Halt in CPU Idle mode	
1 1 40 40	0 = Continue to operate in CPU Idle mode	
bit 12-10	Unimplemented: Read as '0'	
bit 9	FEDGE: First Capture Edge Select bit (only u	used in mode 6, ICM<2:0> = 110)
	1 = Capture rising edge first	
L:1.0	0 = Capture falling edge first	
bit 8	C32: 32-bit Capture Select bit	
	1 = 32-bit timer resource capture	
hit 7	0 = 16-bit timer resource capture	r coloction when C22 (ICyCON (9.) is (1/)(1)
bit 7	ICTMR: Timer Select bit (Does not affect time	er selection when C32 (ICXCON<8>) is 1)(**
	0 = Timery is the counter source for capture1 = Timerx is the counter source for capture	
bit 6-5	ICI<1:0>: Interrupt Control bits	
DIL 0-5	11 = Interrupt on every fourth capture event	
	10 = Interrupt on every third capture event 10 = Interrupt on every third capture event	
	01 = Interrupt on every second capture even	nt
	00 = Interrupt on every capture event	
bit 4	ICOV: Input Capture Overflow Status Flag bit	(read-only)
	1 = Input capture overflow is occurred	
	0 = No input capture overflow is occurred	
bit 3	ICBNE: Input Capture Buffer Not Empty State	us bit (read-only)
	1 = Input capture buffer is not empty; at least	
	0 = Input capture buffer is empty	·
bit 2-0	ICM<2:0>: Input Capture Mode Select bits	
	111 = Interrupt-Only mode (only supported v	while in Sleep mode or Idle mode)
		edge, specified edge first and every edge thereafter
	101 = Prescaled Capture Event mode - eve	
	100 = Prescaled Capture Event mode - eve	ry fourth rising edge
	011 = Simple Capture Event mode – every r	ising edge
	010 = Simple Capture Event mode – every f	
	001 = Edge Detect mode – every edge (risin	ng and falling)
	000 = Input Capture module is disabled	

Note 1: Refer to Table 17-1 for Timerx and Timery selections.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>
00.40	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16	MCLKSEL ⁽¹⁾	_		—	_	_	SPIFE	ENHBUF ⁽¹⁾
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON	_	SIDL	DISSDO ⁽⁴⁾	MODE32	MODE16	SMP	CKE ⁽²⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	SSEN	CKP ⁽³⁾	MSTEN	DISSDI ⁽⁴⁾	STXISE	L<1:0>	SRXIS	EL<1:0>

REGISTER 19-1: SPIxCON: SPI CONTROL REGISTER

Legend:

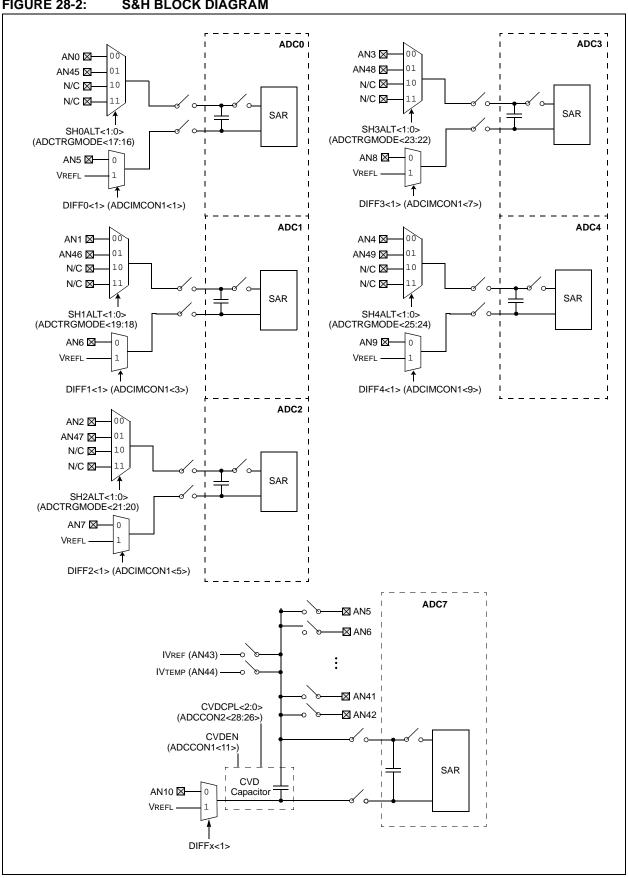
0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 FRMEN: Framed SPI Support bit

- 1 = Framed SPI support is enabled (\overline{SSx} pin used as FSYNC input/output)
 - 0 = Framed SPI support is disabled
- bit 30 **FRMSYNC:** Frame Sync Pulse Direction Control on <u>SSx</u> pin bit (Framed SPI mode only)
 - 1 = Frame sync pulse input (Slave mode)
 - 0 = Frame sync pulse output (Master mode)
- bit 29 FRMPOL: Frame Sync Polarity bit (Framed SPI mode only)
 - 1 = Frame pulse is active-high
 - 0 = Frame pulse is active-low
- bit 28 MSSEN: Master Mode Slave Select Enable bit
 - 1 = Slave select SPI support is enabled. The SS pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit.
 - 0 = Slave select SPI support is disabled.
- bit 27 FRMSYPW: Frame Sync Pulse Width bit
 - 1 = Frame sync pulse is one character wide
 - 0 = Frame sync pulse is one clock wide
- bit 26-24 **FRMCNT<2:0>:** Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in Framed mode.
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Generate a frame sync pulse on every 32 data characters
 - 100 = Generate a frame sync pulse on every 16 data characters
 - 011 = Generate a frame sync pulse on every 8 data characters
 - 010 = Generate a frame sync pulse on every 4 data characters
 - 001 = Generate a frame sync pulse on every 2 data characters

000 = Generate a frame sync pulse on every data character

- bit 23 MCLKSEL: Master Clock Enable bit⁽¹⁾
 - 1 = REFCLKO1 is used by the Baud Rate Generator
 - 0 = PBCLK2 is used by the Baud Rate Generator
- bit 22-18 Unimplemented: Read as '0'
- **Note 1:** This bit can only be written when the ON bit = 0. Refer to **Section 37.0** "**Electrical Characteristics**" for maximum clock frequency requirements.
 - 2: This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - **3:** When AUDEN = 1, the SPI/I²S module functions as if the CKP bit is equal to '1', regardless of the actual value of the CKP bit.
 - 4: This bit present for legacy compatibility and is superseded by PPS functionality on these devices (see Section 12.4 "Peripheral Pin Select (PPS)" for more information).


Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24		—	—	—	—	—	—	_		
00.40	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN		
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ON	—	SIDL	SCKREL	STRICT	A10M	DISSLW	SMEN		
7.0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC		
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN		

REGISTER 21-1: I2CxCON: I²C CONTROL REGISTER

Legend:	HC = Cleared in Hardware				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-23 Unimplemented: Read as '0'

DIL 31-23	Unimplemented: Read as 0
bit 22	PCIE: Stop Condition Interrupt Enable bit (I ² C Slave mode only)
	1 = Enable interrupt on detection of Stop condition
	0 = Stop detection interrupts are disabled
bit 21	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)
	1 = Enable interrupt on detection of Start or Restart conditions
	0 = Start detection interrupts are disabled
bit 20	BOEN: Buffer Overwrite Enable bit (I ² C Slave mode only)
	$1 = I2CxRCV$ is updated and \overline{ACK} is generated for a received address/data byte, ignoring the state of the
	I2COV bit (I2CxSTAT<6>)only if the RBF bit (I2CxSTAT<2>) = 0 0 = I2CxRCV is only updated when the I2COV bit (I2CxSTAT<6>) is clear
bit 19	SDAHT: SDA Hold Time Selection bit
DIL 19	1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL
	1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL0 = Minimum of 100 ns hold time on SDA after the falling edge of SCL
bit 18	SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only)
	1 = Enable slave bus collision interrupts
	0 = Slave bus collision interrupts are disabled
bit 18	AHEN: Address Hold Enable bit (Slave mode only)
	1 = Following the 8th falling edge of SCL for a matching received address byte; SCKREL bit will be cleared
	and the SCL will be held low.
bit 16	 0 = Address holding is disabled DHEN: Data Hold Enable bit (I²C Slave mode only)
DIT 16	
	1 = Following the 8th falling edge of SCL for a received data byte; slave hardware clears the SCKREL bit and SCL is held low
	0 = Data holding is disabled
bit 15	ON: I ² C Enable bit
	1 = Enables the I ² C module and configures the SDA and SCL pins as serial port pins
	0 = Disables the I ² C module; all I ² C pins are controlled by PORT functions
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode
	0 = Continue module operation in Idle mode

FIGURE 28-2: S&H BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04-04	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	BGVRRDY	REFFLT	EOSRDY	0	VDCPL<2:0>		SAMC	<9:8>	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	SAMC<7:0>								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
15:8	BGVRIEN	REFFLTIEN	EOSIEN	ADCEIOVR	_	A	DCEIS<2:0	>	
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	—			AD	CDIV<6:0>				

REGISTER 28-2: ADCCON2: ADC CONTROL REGISTER 2

Legend:	HC = Hardware Set	HS = Hardware Cleared r = Reserved			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 31 BGVRRDY: Band Gap Voltage/ADC Reference Voltage Status bit 1 = Both band gap voltage and ADC reference voltages (VREF) are ready 0 = Either or both band gap voltage and ADC reference voltages (VREF) are not ready Data processing is valid only after BGVRRDY is set by hardware, so the application code must check that the BGVRRDY bit is set to ensure data validity. This bit set to '0' when ON (ADCCON1<15>) = 0. bit 30 **REFFLT:** Band Gap/VREF/AVDD BOR Fault Status bit 1 = Fault in band gap or the VREF voltage while the ON bit (ADCCON1<15>) was set. Most likely a band gap or VREF fault will be caused by a BOR of the analog VDD supply. 0 = Band gap and VREF voltage are working properly This bit is cleared when the ON bit (ADCCON1<15>) = 0 and the BGVRRDY bit = 1. bit 29 EOSRDY: End of Scan Interrupt Status bit 1 = All analog inputs are considered for scanning through the scan trigger (all analog inputs specified in the ADCCSS1 and ADCCSS2 registers) have completed scanning 0 = Scanning has not completed This bit is cleared when ADCCON2<31:24> are read in software. bit 28-26 CVDCPL<2:0>: Capacitor Voltage Divider (CVD) Setting bit 111 = 7 * 2.5 pF = 17.5 pF 110 = 6 * 2.5 pF = 15 pF 101 = 5 * 2.5 pF = 12.5 pF 100 = 4 * 2.5 pF = 10 pF 011 = 3 * 2.5 pF = 7.5 pF 010 = 2 * 2.5 pF = 5 pF 001 = 1 * 2.5 pF = 2.5 pF 000 = 0 * 2.5 pF = 0 pFbit 25-16 SAMC<9:0>: Sample Time for the Shared ADC (ADC7) bits 1111111111 = 1025 TAD7 000000001 = 3 TAD7 0000000000 = 2 TAD7 Where TAD7 = period of the ADC conversion clock for the Shared ADC (ADC7) controlled by the ADCDIV<6:0> bits. bit 15 BGVRIEN: Band Gap/VREF Voltage Ready Interrupt Enable bit 1 = Interrupt will be generated when the BGVRDDY bit is set 0 = No interrupt is generated when the BGVRRDY bit is set

REGISTER 28-14: ADCCMPENX: ADC DIGITAL COMPARATOR 'x' ENABLE REGISTER ('x' = 1 THROUGH 6)

(
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0								
31:24	CMPE31 ⁽¹⁾	CMPE30 ⁽¹⁾	CMPE29 ⁽¹⁾	CMPE28 ⁽¹⁾	CMPE27 ⁽¹⁾	CMPE26 ⁽¹⁾	CMPE25 ⁽¹⁾	CMPE24 ⁽¹⁾	
00.40	R/W-0								
23:16	CMPE23 ⁽¹⁾	CMPE22 ⁽¹⁾	CMPE21 ⁽¹⁾	CMPE20 ⁽¹⁾	CMPE19 ⁽¹⁾	CMPE18	CMPE17	CMPE16	
45.0	R/W-0								
15:8	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	
7.0	R/W-0								
7:0	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	
	-	•	•	•	-	-		-	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0° = Bit is cleared x = Bit is unknown

bit 31-0 CMPE31:CMPE0: ADC Digital Comparator 'x' Enable bits^(2,3)

These bits enable conversion results corresponding to the Analog Input to be processed by the Digital Comparator. CMPE0 enables AN0, CMPE1 enables AN1, and so on.

Note 1: This bit is not available on 64-pin devices.

- **2**: CMPEx = ANx, where 'x' = 0.31 (Digital Comparator inputs are limited to AN0 through AN31).
- **3:** Changing the bits in this register while the Digital Comparator is enabled (ENDCMP = 1) can result in unpredictable behavior.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC							
31:24				CVDDAT	A<15:8>					
23:16	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC							
23.10	CVDDATA<7:0>									
15.0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC		
15:8		—			AINID	<5:0>				
7.0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO		

REGISTER 28-20: ADCCMPCON1: ADC DIGITAL COMPARATOR 1 CONTROL REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$				

bit 31-16 CVDDATA<15:0>: CVD Data Status bits

In CVD mode, these bits obtain the CVD differential output data (subtraction of CVD positive and negative measurement), whenever a Digital Comparator interrupt is generated. The value in these bits is compliant with the FRACT bit (ADCCON1<23>) and is always signed.

bit 15-14 Unimplemented: Read as '0'

bit 13-8 AINID<5:0>: Digital Comparator 0 Analog Input Identification (ID) bits

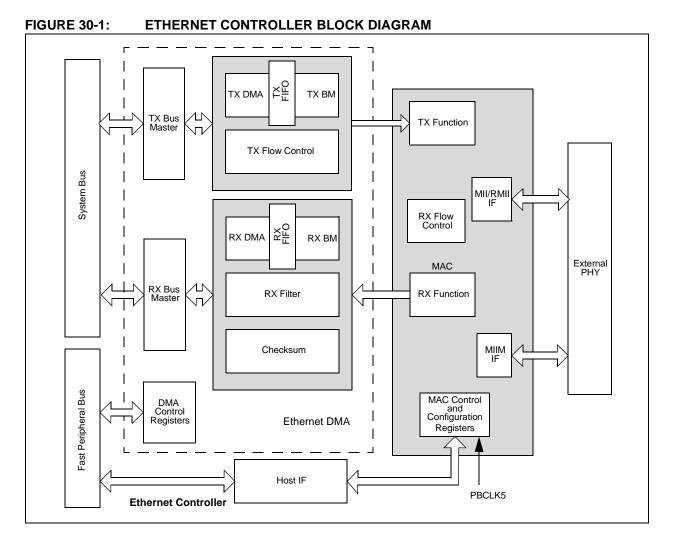
When a digital comparator event occurs (DCMPED = 1), these bits identify the analog input being monitored by Digital Comparator 0.

Note: In normal ADC mode, only analog inputs <31:0> can be processed by the Digital Comparator 0. The Digital Comparator 0 also supports the CVD mode, in which all Class 2 and Class 3 analog inputs may be stored in the AINID<5:0> bits.

111111 = Reserved
•
101101 = Reserved
101100 = AN44 is being monitored
101001 = AN43 is being monitored
•
000001 = AN1 is being monitored
000000 = ANO is being monitored
ENDCMP: Digital Comparator 0 Enable bit
1 = Digital Comparator 0 is enabled
0 = Digital Comparator 0 is not enabled, and the DCMPED status bit (ADCCMP0CON<5>) is cleared
DCMPGIEN: Digital Comparator 0 Global Interrupt Enable bit
1 = A Digital Comparator 0 interrupt is generated when the DCMPED status bit (ADCCMP0CON<5>) is set 0 = A Digital Comparator 0 interrupt is disabled
DCMPED: Digital Comparator 0 "Output True" Event Status bit
The logical conditions under which the digital comparator gets "True" are defined by the IEBTWN, IEHIHI,
IEHILO, IELOHI, and IELOLO bits.
Note: This bit is cleared by reading the AINID<5:0> bits or by disabling the Digital Comparator module (by setting ENDCMP to '0').
1 = Digital Comparator 0 output true event has occurred (output of Comparator is '1')
0 = Digital Comparator 0 output is false (output of comparator is '0')
IEBTWN: Between Low/High Digital Comparator 0 Event bit
1 = Generate a digital comparator event when DCMPLO<15:0> \leq DATA<31:0> < DCMPHI<15:0>

30.0 ETHERNET CONTROLLER

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Ethernet Controller" (DS60001155) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The Ethernet controller is a bus master module that interfaces with an off-chip Physical Layer (PHY) to implement a complete Ethernet node in a system.

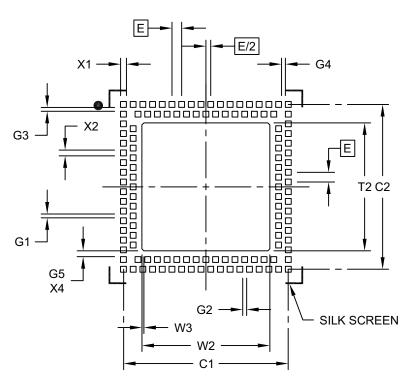
Key features of the Ethernet Controller include:

- Supports 10/100 Mbps data transfer rates
- Supports full-duplex and half-duplex operation

- · Supports RMII and MII PHY interface
- Supports MIIM PHY management interface
- Supports both manual and automatic Flow Control
- RAM descriptor-based DMA operation for both receive and transmit path
- Fully configurable interrupts
- Configurable receive packet filtering
 - CRC check
 - 64-byte pattern match
 - Broadcast, multicast and unicast packets
 - Magic Packet™
 - 64-bit hash table
 - Runt packet
- Supports packet payload checksum calculation
- Supports various hardware statistics counters

Figure 30-1 illustrates a block diagram of the Ethernet controller.

TABLE 33-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY


ess		0	Bits																
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0040	PMD1	31:16	_		_	_			-			—				-	_		0000
0010	TIMET	15:0	—	_	—	CVRMD	—	_	_	—	_		_	_	_	_	—	ADCMD	0000
0050	PMD2	31:16	—	_	—	—	_	_	_	_	-	—	_	_	_	_	—	-	0000
0030	TIVIDZ	15:0	—	-	_	_	-	-	-	-	-	—	-	_	-	-	CMP2MD	CMP1MD	0000
0060	PMD3	31:16	_			_				OC9MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
0000	FIVIDS	15:0	-	-	-			-	-	IC9MD	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
0070	PMD4	31:16	_		-	_						—					-		0000
0070	PIVID4	15:0	_			_				T9MD	T8MD	T7MD	T6MD	T5MD	T4MD	T3MD	T2MD	T1MD	0000
0080	PMD5	31:16	-	-	CAN2MD	CAN1MD		-	-	USBMD		—	-	I2C5MD	I2C4MD	I2C3MD	I2C2MD	I2C1MD	0000
0060	PIVIDS	15:0	-	_	SPI6MD	SPI5MD	SPI4MD	SPI3MD	SPI2MD	SPI1MD	—	—	U6MD	U5MD	U4MD	U3MD	U2MD	U1MD	0000
0090	PMD6	31:16		_	_	ETHMD	_	_	_	_	SQI1MD	_	_	_	_	_	EBIMD	PMPMD	0000
0090	FIVIDO	15:0		_	_	_	REFO4MD	REFO3MD	REFO2MD	REFO1MD	_	_	_	_	_	_	_	RTCCMD	0000
0040	PMD7	31:16	_		_	_		_	_			CRYPTMD		RNGMD	_	_	_		0000
00A0	PIVID/	15:0	_	_	_	_	-			-	_	—	_	DMAMD			_	_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E		0.50 BSC		
Pad Clearance	G1	0.20			
Pad Clearance	G2	0.20			
Pad Clearance	G3	0.20			
Pad Clearance	G4	0.20			
Contact to Center Pad Clearance (X4)	G5	0.30			
Optional Center Pad Width	T2			6.60	
Optional Center Pad Length	W2			6.60	
Optional Center Pad Chamfer (X4)	W3		0.10		
Contact Pad Spacing	C1		8.50		
Contact Pad Spacing	C2		8.50		
Contact Pad Width (X124)	X1			0.30	
Contact Pad Length (X124)	X2			0.30	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2193A

A.2 Analog-to-Digital Converter (ADC)

The PIC32MZ EF family of devices has a new 12-bit High-Speed Successive Approximation Register (SAR) ADC module that replaces the 10-bit ADC module in PIC32MX5XX/6XX/7XX devices; therefore, the use of **Bold** type to show differences is *not* used in the following table. Note that not all register differences are described in this section; however, the key feature differences are listed in Table A-3.

TABLE A-3:ADC DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature					
Clock Selection and Op	perating Frequency (TAD)					
On PIC32MX devices, the ADC clock was derived from either the FRC or from the PBCLK.	On PIC32MZ EF devices, the three possible sources of the ADC clock are FRC, REFCLKO3, and SYSCLK.					
ADRC (AD1CON3<15>) 1 = FRC clock 0 = Clock derived from Peripheral Bus Clock (PBCLK)	ADCSEL<1:0> (ADCCON3<31:30>) 11 = FRC 10 = REFCLKO3 01 = SYSCLK 00 = Reserved					
On PIC32MX devices, if the ADC clock was derived from the PBCLK, that frequency was divided further down, with a maximum divisor of 512, and a minimum divisor of two.	On PIC32MZ EF devices, any ADC clock source can be divided down separately for each dedicated ADC and the shared ADC, with a maximum divisor of 254. The input clock can also be fed directly to the ADC.					
ADCS<7:0> (AD1CON3<7:0>) 11111111 = 512 * TPB = TAD • • 00000001 = 4 * TPB = TAD 00000000 = 2 * TPB = TAD	ADCDIV<6:0> (ADCTIMEx<22:16>) ADCDIV<6:0> (ADCCON2<6:0>) 1111111 = 254 * TQ = TAD • • • 0000011 = 6 * TQ = TAD 0000010 = 4 * TQ = TAD 0000001 = 2 * TQ = TAD 0000000 = TQ = TAD					