

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efm144-e-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
CLKI	31	49	B28	71	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	32	50	A33	72	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	31	49	B28	71	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	32	50	A33	72	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	47	72	B41	105	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	48	73	A49	106	0	—	32.768 low-power oscillator crystal output.
REFCLKI1	PPS	PPS	PPS	PPS	I	—	Reference Clock Generator Inputs 1-4
REFCLKI3	PPS	PPS	PPS	PPS	I	—	1
REFCLKI4	PPS	PPS	PPS	PPS	I	—	
REFCLKO1	PPS	PPS	PPS	PPS	0	—	Reference Clock Generator Outputs 1-4
REFCLKO3	PPS	PPS	PPS	PPS	0	—	1
REFCLKO4	PPS	PPS	PPS	PPS	0	—	1
Legend: (CMOS = CI	MOS-comp	atible input	or output		Analog =	Analog input P = Power

TABLE 1-2: OSCILLATOR PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog input P O = Output I = PPS = Peripheral Pin Select

I = Input

TABLE 1-3: IC1 THROUGH IC9 PINOUT I/O DESCRIPTIONS

		Pin Nu	mber								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
Input Capture											
IC1	PPS	PPS	PPS	PPS	I	ST	Input Capture Inputs 1-9				
IC2	PPS	PPS	PPS	PPS	I	ST	1				
IC3	PPS	PPS	PPS	PPS	I	ST	1				
IC4	PPS	PPS	PPS	PPS	I	ST	1				
IC5	PPS	PPS	PPS	PPS	I	ST	1				
IC6	PPS	PPS	PPS	PPS	I	ST	1				
IC7	PPS	PPS	PPS	PPS	I	ST	1				
IC8	PPS	PPS	PPS	PPS	I	ST	1				
IC9	PPS	PPS	PPS	PPS	I	ST	1				
Legend	CMOS = CI	MOS-comp	atible input	or output	•	Analog =	Analog input P = Power				

Legend:

CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select P = Power I = Input

		Pin Nu	mber						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description		
				Inte	er-Integr	ated Circui	it 1		
SCL1	44	66	B37	95	I/O	ST	I2C1 Synchronous Serial Clock Input/Output		
SDA1	43	67	A45	96	I/O	ST	I2C1 Synchronous Serial Data Input/Output		
Inter-Integrated Circuit 2									
SCL2	—	59	A41	85	I/O	ST	I2C2 Synchronous Serial Clock Input/Output		
SDA2	—	60	B34	86	I/O	ST	I2C2 Synchronous Serial Data Input/Output		
				Inte	er-Integr	ated Circui	it 3		
SCL3	51	58	A39	80	I/O	ST	I2C3 Synchronous Serial Clock Input/Output		
SDA3	50	57	B31	79	I/O	ST	I2C3 Synchronous Serial Data Input/Output		
				Inte	er-Integr	ated Circui	it 4		
SCL4	6	12	B7	16	I/O	ST	I2C4 Synchronous Serial Clock Input/Output		
SDA4	5	11	A8	15	I/O	ST	I2C4 Synchronous Serial Data Input/Output		
				Inte	er-Integr	ated Circui	it 5		
SCL5	42	65	A44	91	I/O	ST	I2C5 Synchronous Serial Clock Input/Output		
SDA5	41	64	B36	90	I/O	ST	I2C5 Synchronous Serial Data Input/Output		
Legend:	CMOS = C	CMOS = CMOS-compatible input or output Analog = Analog input P = Power							

TABLE 1-10: I2C1 THROUGH I2C5 PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output

I = Input

PPS = Peripheral Pin Select

COMPARATOR 1, COMPARATOR 2 AND CVREF PINOUT I/O DESCRIPTIONS TABLE 1-11:

		Pin Nu	mber								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
Comparator Voltage Reference											
CVREF+	16	29	A20	40	I	Analog	Comparator Voltage Reference (High) Input				
CVREF-	15	28	B15	39	I	Analog	Comparator Voltage Reference (Low) Input				
CVREFOUT	23	34	B19	49	0	Analog	Comparator Voltage Reference Output				
Comparator 1											
C1INA	11	20	B11	25	I	Analog	Comparator 1 Positive Input				
C1INB	12	21	A13	26	I	Analog	Comparator 1 Selectable Negative Input				
C1INC	5	11	A8	15	I	Analog					
C1IND	4	10	B6	14	I	Analog	1				
C10UT	PPS	PPS	PPS	PPS	0	_	Comparator 1 Output				
			•	•	Comp	arator 2	•				
C2INA	13	22	A14	31	I	Analog	Comparator 2 Positive Input				
C2INB	14	23	A16	34	I	Analog	Comparator 2 Selectable Negative Input				
C2INC	10	16	B9	21	I	Analog	1				
C2IND	6	12	B7	16	I	Analog]				
C2OUT	PPS	PPS	PPS	PPS	0	—	Comparator 2 Output				
Legend:	CMOS = C	MOS-comp	atible input	or output	•	Analog = Analog input P = Power					
	ST = Schm	itt Trigger ir	put with C	MOS level	S	O = Outpu	ut I = Input				

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

		Pin Nu	mber				Description	
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type		
EBIOE	—	9	A7	13	0	—	External Bus Interface Output Enable	
EBIRDY1	—	60	B34	86	I	ST	External Bus Interface Ready Input	
EBIRDY2	—	58	A39	84	I	ST		
EBIRDY3	—	57	B45	116	I	ST		
EBIRP	_	_	—	45	0	_	External Bus Interface Flash Reset Pin	
EBIWE	_	8	B5	12	0	_	External Bus Interface Write Enable	
Legend:	CMOS = CI	atible input	or output		Analog =	Analog input P = Power		

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog inputP = PowerO = OutputI = InputPPS = Peripheral Pin Select

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device programming and debugging

Pulling The MCLR pin low generates either a device Reset or a POR, depending on the setting of the SMCLR bit (DEVCFG0<15>). Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

3: No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

DS60001320D-page 38

3.1 Architecture Overview

The MIPS32 M-Class Microprocessor core in PIC32MZ EF family devices contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution unit
- General Purpose Register (GPR)
- Multiply/Divide Unit (MDU)
- System control coprocessor (CP0)
- Floating Point Unit (FPU)
- Memory Management Unit (MMU)
- Instruction/Data cache controllers
- Power Management
- Instructions and data caches
- microMIPS support
- Enhanced JTAG (EJTAG) controller

3.1.1 EXECUTION UNIT

The processor core execution unit implements a load/ store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. Seven additional register file shadow sets (containing thirty-two registers) are added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- · Load aligner
- Trap condition comparator
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results

- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing arithmetic and bitwise logical operations
- Shifter and store aligner
- DSP ALU and logic block for performing DSP instructions, such as arithmetic/shift/compare operations

3.1.2 MULTIPLY/DIVIDE UNIT (MDU)

The processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations, and DSP ASE multiply instructions. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x32 booth recoded multiplier, four pairs of result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x32) represents the *rs* operand. The second number ('32' of 32x32) represents the *rt* operand.

The MDU supports execution of one multiply or multiply-accumulate operation every clock cycle.

Divide operations are implemented with a simple 1-bitper-clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16-bit wide *rs*, 15 iterations are skipped and for a 24-bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation has completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the processor core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

Opcode	Operand Size (mul rt) (div rs)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	5	1
MSUB/MSUBU (HI/LO destination)	32 bits	5	1
MUL (GPR destination)	16 bits	5	1
	32 bits	5	1
DIV/DIVU	8 bits	12/14	12/14
	16 bits	20/22	20/22
	24 bits	28/30	28/30
	32 bits	36/38	36/38

TABLE 3-1:MIPS32[®] M-CLASS MICROPROCESSOR CORE HIGH-PERFORMANCE INTEGER
MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES

The FPU implements a high-performance 7-stage pipeline:

- Decode, register read and unpack (FR stage)
- Multiply tree, double pumped for double (M1 stage)
- Multiply complete (M2 stage)
- Addition first step (A1 stage)
- Addition second and final step (A2 stage)
- Packing to IEEE format (FP stage)
- Register writeback (FW stage)

The FPU implements a bypass mechanism that allows the result of an operation to be forwarded directly to the instruction that needs it without having to write the result to the FPU register and then read it back.

Table 3-5 lists the Coprocessor 1 Registers for the FPU.

Register Number	Register Name	Function
0	FIR	Floating Point implementation register. Contains information that identifies the FPU.
25	FCCR	Floating Point condition codes register.
26	FEXR	Floating Point exceptions register.
28	FENR	Floating Point enables register.
31	FCSR	Floating Point Control and Status register.

TABLE 3-5: FPU (CP1) REGISTERS

3.2 Power Management

The processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during Idle periods.

3.2.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see **Section 33.0** "**Power-Saving Features**".

3.2.2 LOCAL CLOCK GATING

The majority of the power consumed by the processor core is in the clock tree and clocking registers. The PIC32MZ family makes extensive use of local gatedclocks to reduce this dynamic power consumption.

3.3 L1 Instruction and Data Caches

3.3.1 INSTRUCTION CACHE (I-CACHE)

The I-Cache is an on-core memory block of 16 Kbytes. Because the I-Cache is virtually indexed, the virtual-tophysical address translation occurs in parallel with the cache access rather than having to wait for the physical address translation. The tag holds 22 bits of physical address, a valid bit, and a lock bit. The LRU replacement bits are stored in a separate array.

The I-Cache block also contains and manages the instruction line fill buffer. Besides accumulating data to be written to the cache, instruction fetches that reference data in the line fill buffer are serviced either by a bypass of that data, or data coming from the external interface. The I-Cache control logic controls the bypass function.

The processor core supports I-Cache locking. Cache locking allows critical code or data segments to be locked into the cache on a per-line basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache locking function is always available on all I-Cache entries. Entries can then be marked as locked or unlocked on a per entry basis using the CACHE instruction.

3.3.2 DATA CACHE (D-CACHE)

The D-Cache is an on-core memory block of 4 Kbytes. This virtually indexed, physically tagged cache is protected. Because the D-Cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access. The tag holds 22 bits of physical address, a valid bit, and a lock bit. There is an additional array holding dirty bits and LRU replacement algorithm bits for each set of the cache.

In addition to I-Cache locking, the processor core also supports a D-Cache locking mechanism identical to the I-Cache. Critical data segments are locked into the cache on a per-line basis. The locked contents can be updated on a store hit, but cannot be selected for replacement on a cache miss.

The D-Cache locking function is always available on all D-Cache entries. Entries can then be marked as locked or unlocked on a per-entry basis using the CACHE instruction.

3.3.3 ATTRIBUTES

The processor core I-Cache and D-Cache attributes are listed in the Configuration registers (see Register 3-1 through Register 3-4).

(1)		IRQ			Persistent			
Interrupt Source ^(*)	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
DMA Channel 0	_DMA0_VECTOR	134	OFF134<17:1>	IFS4<6>	IEC4<6>	IPC33<20:18>	IPC33<17:16>	No
DMA Channel 1	_DMA1_VECTOR	135	OFF135<17:1>	IFS4<7>	IEC4<7>	IPC33<28:26>	IPC33<25:24>	No
DMA Channel 2	_DMA2_VECTOR	136	OFF136<17:1>	IFS4<8>	IEC4<8>	IPC34<4:2>	IPC34<1:0>	No
DMA Channel 3	_DMA3_VECTOR	137	OFF137<17:1>	IFS4<9>	IEC4<9>	IPC34<12:10>	IPC34<9:8>	No
DMA Channel 4	_DMA4_VECTOR	138	OFF138<17:1>	IFS4<10>	IEC4<10>	IPC34<20:18>	IPC34<17:16>	No
DMA Channel 5	_DMA5_VECTOR	139	OFF139<17:1>	IFS4<11>	IEC4<11>	IPC34<28:26>	IPC34<25:24>	No
DMA Channel 6	_DMA6_VECTOR	140	OFF140<17:1>	IFS4<12>	IEC4<12>	IPC35<4:2>	IPC35<1:0>	No
DMA Channel 7	_DMA7_VECTOR	141	OFF141<17:1>	IFS4<13>	IEC4<13>	IPC35<12:10>	IPC35<9:8>	No
SPI2 Fault	_SPI2_FAULT_VECTOR	142	OFF142<17:1>	IFS4<14>	IEC4<14>	IPC35<20:18>	IPC35<17:16>	Yes
SPI2 Receive Done	_SPI2_RX_VECTOR	143	OFF143<17:1>	IFS4<15>	IEC4<15>	IPC35<28:26>	IPC35<25:24>	Yes
SPI2 Transfer Done	_SPI2_TX_VECTOR	144	OFF144<17:1>	IFS4<16>	IEC4<16>	IPC36<4:2>	IPC36<1:0>	Yes
UART2 Fault	_UART2_FAULT_VECTOR	145	OFF145<17:1>	IFS4<17>	IEC4<17>	IPC36<12:10>	IPC36<9:8>	Yes
UART2 Receive Done	_UART2_RX_VECTOR	146	OFF146<17:1>	IFS4<18>	IEC4<18>	IPC36<20:18>	IPC36<17:16>	Yes
UART2 Transfer Done	_UART2_TX_VECTOR	147	OFF147<17:1>	IFS4<19>	IEC4<19>	IPC36<28:26>	IPC36<25:24>	Yes
I2C2 Bus Collision Event ⁽²⁾	_I2C2_BUS_VECTOR	148	OFF148<17:1>	IFS4<20>	IEC4<20>	IPC37<4:2>	IPC37<1:0>	Yes
I2C2 Slave Event ⁽²⁾	_I2C2_SLAVE_VECTOR	149	OFF149<17:1>	IFS4<21>	IEC4<21>	IPC37<12:10>	IPC37<9:8>	Yes
I2C2 Master Event ⁽²⁾	_I2C2_MASTER_VECTOR	150	OFF150<17:1>	IFS4<22>	IEC4<22>	IPC37<20:18>	IPC37<17:16>	Yes
Control Area Network 1	_CAN1_VECTOR	151	OFF151<17:1>	IFS4<23>	IEC4<23>	IPC37<28:26>	IPC37<25:24>	Yes
Control Area Network 2	_CAN2_VECTOR	152	OFF152<17:1>	IFS4<24>	IEC4<24>	IPC38<4:2>	IPC38<1:0>	Yes
Ethernet Interrupt	_ETHERNET_VECTOR	153	OFF153<17:1>	IFS4<25>	IEC4<25>	IPC38<12:10>	IPC38<9:8>	Yes
SPI3 Fault	_SPI3_FAULT_VECTOR	154	OFF154<17:1>	IFS4<26>	IEC4<26>	IPC38<20:18>	IPC38<17:16>	Yes
SPI3 Receive Done	_SPI3_RX_VECTOR	155	OFF155<17:1>	IFS4<27>	IEC4<27>	IPC38<28:26>	IPC38<25:24>	Yes
SPI3 Transfer Done	_SPI3_TX_VECTOR	156	OFF156<17:1>	IFS4<28>	IEC4<28>	IPC39<4:2>	IPC39<1:0>	Yes
UART3 Fault	_UART3_FAULT_VECTOR	157	OFF157<17:1>	IFS4<29>	IEC4<29>	IPC39<12:10>	IPC39<9:8>	Yes
UART3 Receive Done	_UART3_RX_VECTOR	158	OFF158<17:1>	IFS4<30>	IEC4<30>	IPC39<20:18>	IPC39<17:16>	Yes
UART3 Transfer Done	_UART3_TX_VECTOR	159	OFF159<17:1>	IFS4<31>	IEC4<31>	IPC39<28:26>	IPC39<25:24>	Yes
I2C3 Bus Collision Event	_I2C3_BUS_VECTOR	160	OFF160<17:1>	IFS5<0>	IEC5<0>	IPC40<4:2>	IPC40<1:0>	Yes
I2C3 Slave Event	_I2C3_SLAVE_VECTOR	161	OFF161<17:1>	IFS5<1>	IEC5<1>	IPC40<12:10>	IPC40<9:8>	Yes

TABLE 7-2: INTERRUPT IRQ, VECTOR, AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

		(==. 0	••••								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24		ISO	MODE					—			
	AUTOSET		MODE	DIVIANEQUI	INCOALIG	DIVIAILOUVID	DATAWEN	DATATGGL			
	R/W-0, HS	R/W-0, HC	R/W-0, HS	R/W-0	R/W-0	R/W-0, HS	R/W-0	R/W-0, HC			
23:16	INCOMPTX		SENTSTALL	SENDSTALL	ELLIQU	UNDERRUN		TXPKTRDY			
	NAKTMOUT	GERDI	RXSTALL	SETUPPKT	FLUSH	ERROR	FIFONE				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.6			MULT<4:0>		Т	XMAXP<10:8	>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0		TXMAXP<7:0>									

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 AUTOSET: Auto Set Control bit

- 1 = TXPKTRDY will be automatically set when data of the maximum packet size (value in TXMAXP) is loaded into the TX FIFO. If a packet of less than the maximum packet size is loaded, then TXPKTRDY will have to be set manually.
- 0 = TXPKTRDY must be set manually for all packet sizes
- **ISO:** Isochronous TX Endpoint Enable bit (Device mode)
- 1 = Enables the endpoint for Isochronous transfers
- 0 = Disables the endpoint for Isochronous transfers and enables it for Bulk or Interrupt transfers.
- This bit only has an effect in Device mode. In Host mode, it always returns zero.
- bit 29 MODE: Endpoint Direction Control bit
 - 1 = Endpoint is TX

bit 30

0 = Endpoint is RX

This bit only has any effect where the same endpoint FIFO is used for both TX and RX transactions.

- bit 28 DMAREQEN: Endpoint DMA Request Enable bit
 - 1 = DMA requests are enabled for this endpoint
 - 0 = DMA requests are disabled for this endpoint

bit 27 **FRCDATTG:** Force Endpoint Data Toggle Control bit

- 1 = Forces the endpoint data toggle to switch and the data packet to be cleared from the FIFO, regardless of whether an ACK was received.
- 0 = No forced behavior
- bit 26 DMAREQMD: Endpoint DMA Request Mode Control bit
 - 1 = DMA Request Mode 1
 - 0 = DMA Request Mode 0

This bit must not be cleared either before or in the same cycle as the above DMAREQEN bit is cleared.

- bit 25 DATAWEN: Data Toggle Write Enable bit (Host mode)
 - 1 = Enable the current state of the TX Endpoint data toggle (DATATGGL) to be written
 - 0 = Disables writing the DATATGGL bit
- bit 24 **DATATGGL:** Data Toggle Control bit (Host mode)

When read, this bit indicates the current state of the TX Endpoint data toggle. If DATAWEN = 1, this bit may be written with the required setting of the data toggle. If DATAWEN = 0, any value written to this bit is ignored.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	R-0	R-0	R-0	R-0	R-1	R-0	R-0	R-0
15.0	RC		VE	ERMAJOR<4:	0>		VERMIN	OR<9:8>
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0				VERMIN	OR<7:0>			

REGISTER 11-15: USBHWVER: USB HARDWARE VERSION REGISTER

Legend:

- 5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 RC: Release Candidate bit
 - 1 = USB module was created using a release candidate
 - 0 = USB module was created using a full release
- bit 14-10 **VERMAJOR<4:0>:** USB Module Major Version number bits This read-only number is the Major version number for the USB module.
- bit 9-0 VERMINOR<9:0>: USB Module Minor Version number bits This read-only number is the Minor version number for the USB module.

TABLE 12-15: PORTG REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess										Bits	6								
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600		31:16	—	—		—	_	_	_	_	—	_	—	—	_	—	—	—	0000
0000	ANGLLO	15:0	ANSG15	—	_	—	_	-	ANSG9	ANSG8	ANSG7	ANSG6	_	—	—	_	_	—	83C0
0610	TRISG	31:16	—	—		—	_	—	—	—	—	—	—	—	—	—	-	—	0000
0010	11100	15:0	TRISG15	TRISG14	TRISG13	TRISG12	—	—	TRISG9	TRISG8	TRISG7	TRISG6		—	—	—	TRISG1	TRISG0	F3C3
0620	PORTG	31:16	—	—	—	—	-	_	—	—	—	—	—	—	—	—	-	—	0000
0020		15:0	RG15	RG14	RG13	RG12	—	—	RG9	RG8	RG7	RG6	_	—	—	—	RG1	RG0	xxxx
0630	LATG	31:16		—		—			_	—	—	—		—					0000
		15:0	LATG15	LATG14	LATG13	LATG12	—	_	LATG9	LATG8	LATG7	LATG6	—	—		—	LATG1	LATG0	XXXX
0640	ODCG	31:16	—	—	—	—	_	_	—	—	_	—		—	_	_	—	—	0000
		15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_		—	ODCG1	ODCG0	0000
0650	CNPUG	31:16	-	-	-	-					-						-		0000
		15:0	CNPUG15	CNPUG14	CNPUG13	CNPUG12	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_		_	CNPUG1	CNPUG0	0000
0660	CNPDG	31:16					_	_											0000
		15:0	CNPDG15	CNPDG14	CNPDG13	CNPDG12			CNPDG9	CNPDG8	CNPDG7	CNPDG6					CNPDGT	CNPDGU	0000
0670	CNCONG	15:0	ON	_	_		EDGE		_	_	_	_		_	_	_	_	_	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0680	CNENG	15:0	CNENG15	CNENG14	CNENG13	CNENG12	_	_	CNENG9	CNENG8	CNENG7	CNENG6		_	_	_	CNENG1	CNENG0	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0690	CNSTATG	15:0	CN STATG15	CN STATG14	CN STATG13	CN STATG12	_	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6	_	_	_	_	CN STATG1	CN STATG0	0000
0040		31:16	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	0000
06A0	CNNEG	15:0	CNNEG15	CNNEG14	CNNEG13	CNNEG12			CNNEG9	CNNEG8	CNNEG7	CNNEG6	_	—	—	—	CNNEG1	CNNEG0	0000
OGRO	CNEC	31:16	_	_	_	—	—	_	_	—	_	—	_	_	-	_	—	—	0000
0660	CINEG	15:0	CNFG15	CNFG14	CNFG13	CNFG12		_	CNFG9	CNFG8	CNFG7	CNFG6		—	—		CNFG1	CNFG0	0000
0600	SPCONOG	31:16	_	-	_	—			_	_	_	_	_	_	_	_	—	_	0000
0000	GILCONUG	15:0	—	SR0G14	SR0G13	SR0G12	—	_	SR0G9	—	—	SR0G6	—	—	-	—	-	—	0000
0600	SRCON1G	31:16	—	—	—	-	_	_	—	—	—	—	—	—	—	—	-	-	0000
0000	GILCONIG	15:0	—	SR1G14	SR1G13	SR1G12	_	_	SR1G9	_	—	SR1G6	—	—	_	_	—	—	0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—		T	XINTTHR<4:0)>	
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_		R	XINTTHR<4:0)>	

REGISTER 20-7: SQI1INTTHR: SQI INTERRUPT THRESHOLD REGISTER

Legend:

- 5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8 **TXINTTHR<4:0>:** Transmit Interrupt Threshold bits A transmit interrupt is set when the transmit FIFO has more space than the set number of bytes. For 16-bit mode, the value should be a multiple of 2.

bit 7-5 Unimplemented: Read as '0'

bit 4-0 RXINTTHR<4:0>: Receive Interrupt Threshold bits

A receive interrupt is set when the receive FIFO count is larger than or equal to the set number of bytes. For 16-bit mode, the value should be multiple of 2.

NOTES:

UART Control Registers 22.1

TABLE 22-1: UART1 THROUGH UART6 REGISTER MAP

ess										Bi	ts								
Virtual Addr (BF82_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2000		31:16	_	_	_	—	_		—	_	_	_			_	—	—	—	0000
2000	UTMODE."	15:0	ON	_	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
2010	14074(1)	31:16	—		—	—	_		—	ADM_EN		•		ADDR	R<7:0>				0000
2010	01514.7	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
2020		31:16	—		-	—	-		—	-		-			-	—	-	—	0000
2020	UTTAKLO	15:0	_	—	—	—	_	—	—	TX8				Transmit	Register				0000
2020		31:16	_	—	—	—	_	—	—	-	—	-	_	_	-	-	_	—	0000
2030	UIKAREG	15:0	_	_	—	—	_	—	_	RX8				Receive	Register				0000
2040		31:16	—	_	—	—	—	_	—	—	_	—	—	—	—	—	—		0000
2040	UIDKG	15:0							Bau	d Rate Gen	erator Pres	caler							0000
2200		31:16	_	_	—	—	—	—	—	_	—	-	—	—	_	—	_	—	0000
2200	UZMODE''	15:0	ON	_	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
2210	1126TA(1)	31:16	_	—	—	—	_	—	—	ADM_EN				ADDR	R<7:0>				0000
2210	02314.7	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
2220		31:16	_	—	—	—	_	—	—	-	—	-	_	_	-	-	_	—	0000
2220	UZTARLO	15:0	—		_	_			_	TX8				Transmit	Register				0000
2220		31:16	—		-	—	-		—	-		-			-	—	-	—	0000
2230	UZRAREG	15:0	—		_	_			_	RX8				Receive	Register				0000
2240		31:16	—		_	_			_	_		-			_	_	_	—	0000
2240	02BKG	15:0							Bau	d Rate Gen	erator Pres	caler							0000
2400		31:16	—		_	_			_	_		-			_	_	_	—	0000
2400	03WODL .	15:0	ON		SIDL	IREN	RTSMD		UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
2410	112074(1)	31:16	—		-	—	-		—	ADM_EN				ADDR	R<7:0>				0000
2410	03514.7	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
2420		31:16	_	—	—	—	_	—	—	-	—	-	_	_	-	-	_	—	0000
2420	USIAREG	15:0	_	_	_	_	_	—	_	TX8				Transmit	Register				0000
2420		31:16	—	_	—	—	—	_	—	—	_	—	—	—	—	—	—		0000
2430 U3RXREG 15:0 RX8 Receive Register				0000															
2440		31:16		—	—	—	_	_	—	—	—	—			—	—	—	—	0000
2440	USBRG	15:0							Bau	d Rate Gen	erator Pres	caler							0000
Leger	nd: x=u	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																	

Legend:

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more informa-Note 1: tion.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	—	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E

REGISTER 23-7: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HS = Hardware Set	SC = Software Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **IBF:** Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer is occurred (must be cleared in software)
 - 0 = No overflow is occurred

bit 13-12 Unimplemented: Read as '0'

- bit 11-8 **IBxF:** Input Buffer x Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data

bit 7 **OBE:** Output Buffer Empty Status bit

- 1 = All readable output buffer registers are empty
- 0 = Some or all of the readable output buffer registers are full

bit 6 **OBUF:** Output Buffer Underflow Status bit

- 1 = A read occurred from an empty output byte buffer (must be cleared in software)
- 0 = No underflow is occurred
- bit 5-4 Unimplemented: Read as '0'

bit 3-0 **OBxE:** Output Buffer x Status Empty bits

- 1 = Output buffer is empty (writing data to the buffer will clear this bit)
- 0 = Output buffer contains data that has not been transmitted

FIGURE 28-2: S&H BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04-04	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	BGVRRDY	REFFLT	EOSRDY	CVDCPL<2:0> SAMC<9:8>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16				SAMC<7	/:0>	Bit 26/18/10/2 R/W-0 R/W-0 R/W-0 AI R/W-0				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
15.8	BGVRIEN	REFFLTIEN	EOSIEN	ADCEIOVR	—	ADCEIS<2:0>				
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_			AD	CDIV<6:0>	R/W-0 R/W-0 ADCEIS<2:0> R/W-0 R/W-0				

REGISTER 28-2: ADCCON2: ADC CONTROL REGISTER 2

Legend:	HC = Hardware Set	HS = Hardware Cleared	r = Reserved
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 BGVRRDY: Band Gap Voltage/ADC Reference Voltage Status bit 1 = Both band gap voltage and ADC reference voltages (VREF) are ready 0 = Either or both band gap voltage and ADC reference voltages (VREF) are not ready Data processing is valid only after BGVRRDY is set by hardware, so the application code must check that the BGVRRDY bit is set to ensure data validity. This bit set to '0' when ON (ADCCON1<15>) = 0. bit 30 **REFFLT:** Band Gap/VREF/AVDD BOR Fault Status bit 1 = Fault in band gap or the VREF voltage while the ON bit (ADCCON1<15>) was set. Most likely a band gap or VREF fault will be caused by a BOR of the analog VDD supply. 0 = Band gap and VREF voltage are working properly This bit is cleared when the ON bit (ADCCON1<15>) = 0 and the BGVRRDY bit = 1. bit 29 EOSRDY: End of Scan Interrupt Status bit 1 = All analog inputs are considered for scanning through the scan trigger (all analog inputs specified in the ADCCSS1 and ADCCSS2 registers) have completed scanning 0 = Scanning has not completed This bit is cleared when ADCCON2<31:24> are read in software. bit 28-26 CVDCPL<2:0>: Capacitor Voltage Divider (CVD) Setting bit 111 = 7 * 2.5 pF = 17.5 pF 110 = 6 * 2.5 pF = 15 pF 101 = 5 * 2.5 pF = 12.5 pF 100 = 4 * 2.5 pF = 10 pF 011 = 3 * 2.5 pF = 7.5 pF 010 = 2 * 2.5 pF = 5 pF 001 = 1 * 2.5 pF = 2.5 pF 000 = 0 * 2.5 pF = 0 pFbit 25-16 SAMC<9:0>: Sample Time for the Shared ADC (ADC7) bits 1111111111 = 1025 TAD7 000000001 = 3 TAD7 0000000000 = 2 TAD7 Where TAD7 = period of the ADC conversion clock for the Shared ADC (ADC7) controlled by the ADCDIV<6:0> bits. bit 15 BGVRIEN: Band Gap/VREF Voltage Ready Interrupt Enable bit 1 = Interrupt will be generated when the BGVRDDY bit is set 0 = No interrupt is generated when the BGVRRDY bit is set

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	—	—		
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	ALGNERRCNT<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				ALGNERRO	CNT<7:0>					

REGISTER 30-22: ETHALGNERR: ETHERNET CONTROLLER ALIGNMENT ERRORS STATISTICS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 ALGNERRCNT<15:0>: Alignment Error Count bits

Increment count for frames with alignment errors. Note that an alignment error is a frame that has an FCS error and the frame length in bits is not an integral multiple of 8 bits (a.k.a., dribble nibble)

Note 1: This register is only used for RX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	_	—	—		_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—		—	—
15:8	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
	ON	COE	CPOL ⁽¹⁾	—	—		—	COUT
7.0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
7:0	EVPOL<1:0>		_	CREF		— CCH<1		<1:0>

REGISTER 31-1: CMxCON: COMPARATOR CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: Comparator ON bit
 - 1 = Module is enabled. Setting this bit does not affect the other bits in this register
 - 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
- bit 14 **COE:** Comparator Output Enable bit
 - 1 = Comparator output is driven on the output CxOUT pin
 - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit⁽¹⁾
 - 1 = Output is inverted
 - 0 = Output is not inverted
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **COUT:** Comparator Output bit
 - 1 =Output of the Comparator is a '1'
 - 0 = Output of the Comparator is a '0'
- bit 7-6 EVPOL<1:0>: Interrupt Event Polarity Select bits
 - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
 - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
 - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
 - 00 = Comparator interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'

bit 4 CREF: Comparator Positive Input Configure bit

- 1 = Comparator non-inverting input is connected to the internal CVREF
- 0 = Comparator non-inverting input is connected to the CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator
 - 11 = Comparator inverting input is connected to the IVREF
 - 10 = Comparator inverting input is connected to the CxIND pin
 - 01 = Comparator inverting input is connected to the CxINC pin
 - 00 =Comparator inverting input is connected to the CxINB pin
- **Note 1:** Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP10	TSCL	SCKx Output Low Time (Note 3)	Tsck/2	—		ns	—	
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	—		ns	_	
SP15	TscK	SPI Clock Speed		—	25	MHz	SPI1, SPI4 through SPI6	
		(Note 5)	—	—	50	MHz	SPI2 on RPB3, RPB5	
			—		25	MHz	SPI2 on other I/O	
			—		50	MHz	SPI3 on RPB10, RPB9, RPF0	
			_		25	MHZ	SPI3 on other I/O	
SP20	TSCF	SCKx Output Fall Time (Note 4)		_		ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	_	_		ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	_		ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_			ns	See parameter DO31	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		_	7	ns	VDD > 2.7V	
				_	10	ns	Vdd < 2.7V	
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	5	—	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	5	—	_	ns	_	

TABLE 37-30: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 20 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 30 pF load on all SPIx pins.

5: To achieve maximum data rate, VDD must be \geq 3.3V, the SMP bit (SPIxCON<9>) must be equal to '1', and the operating temperature must be within the range of -40°C to +105°C.

FIGURE 37-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 37-32: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param. No.	Symbol Characteristics ⁽¹⁾		Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 3)	Tscк/2	—		ns	—
SP71	TscH	SCKx Input High Time (Note 3)	Тѕск/2	—		ns	—
SP72	TscF	SCKx Input Fall Time	_	_	_	ns	See parameter DO32
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	—	_	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	—	ns	See parameter DO31
SP35	TSCH2DOV,	SDOx Data Output Valid after			7	ns	VDD > 2.7V
	TscL2doV	SCKx Edge	—	—	10	ns	VDD < 2.7V
SP40	TDIV2sCH, TDIV2sCL	Setup Time of SDIx Data Input to SCKx Edge	5	—	_	ns	_
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	5	—	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx}\downarrow$ to SCKx \uparrow or SCKx Input	88	—	—	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	2.5	_	12	ns	_
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	10	_		ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 20 ns.

4: Assumes 30 pF load on all SPIx pins.