

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TFBGA
Supplier Device Package	144-TFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efm144-i-jwx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
AN0	16	25	A18	36	I	Analog	Analog Input Channels
AN1	15	24	A17	35	I	Analog	
AN2	14	23	A16	34	I	Analog	
AN3	13	22	A14	31	I	Analog	
AN4	12	21	A13	26	I	Analog	
AN5	23	34	B19	49	I	Analog	
AN6	24	35	A24	50	I	Analog	
AN7	27	41	A27	59	I	Analog	
AN8	28	42	B23	60	I	Analog	
AN9	29	43	A28	61	I	Analog	
AN10	30	44	B24	62	I	Analog	
AN11	10	16	B9	21	I	Analog	
AN12	6	12	B7	16	I	Analog	
AN13	5	11	A8	15	I	Analog	
AN14	4	10	B6	14	I	Analog	
AN15	3	5	A4	5	I	Analog	
AN16	2	4	B2	4	I	Analog	
AN17	1	3	A3	3	I	Analog	
AN18	64	100	A67	144	I	Analog	
AN19	—	9	A7	13	I	Analog	
AN20	—	8	B5	12	I	Analog	
AN21	—	7	A6	11	I	Analog	
AN22	—	6	B3	6	I	Analog	
AN23	—	1	A2	1	I	Analog	
AN24	—	17	A11	22	I	Analog	
AN25	—	18	B10	23	I	Analog	
AN26	—	19	A12	24	I	Analog	
AN27	—	28	B15	39	I	Analog	
AN28	—	29	A20	40	I	Analog	
AN29	—	38	B21	56	I	Analog	
AN30	—	39	A26	57	I	Analog	
AN31	—	40	B22	58	I	Analog	
AN32	—	47	B27	69	I	Analog	
AN33	—	48	A32	70	Ι	Analog	
AN34	_	2	B1	2	Ι	Analog	
AN35	_	_	A5	7	Ι	Analog	
Legend:	CMOS = C	MOS-comp	atible input	t or output		Analog =	Analog input P = Power

TABLE 1-1: ADC PINOUT I/O DESCRIPTIONS

egend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output PPS = Peripheral Pin Select

I = Input

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
CLKI	31	49	B28	71	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	32	50	A33	72	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	31	49	B28	71	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	32	50	A33	72	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	47	72	B41	105	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	48	73	A49	106	0	—	32.768 low-power oscillator crystal output.
REFCLKI1	PPS	PPS	PPS	PPS	I	—	Reference Clock Generator Inputs 1-4
REFCLKI3	PPS	PPS	PPS	PPS	I	—	1
REFCLKI4	PPS	PPS	PPS	PPS	I	—	
REFCLKO1	PPS	PPS	PPS	PPS	0	—	Reference Clock Generator Outputs 1-4
REFCLKO3	PPS	PPS	PPS	PPS	0	—	1
REFCLKO4	PPS	PPS	PPS	PPS	0	—	1
Legend: (CMOS = CI	MOS-comp	atible input	or output		Analog =	Analog input P = Power

TABLE 1-2: OSCILLATOR PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog input P O = Output I = PPS = Peripheral Pin Select

I = Input

TABLE 1-3: IC1 THROUGH IC9 PINOUT I/O DESCRIPTIONS

		Pin Nu	mber							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description			
Input Capture										
IC1	PPS	PPS	PPS	PPS	Ι	ST	Input Capture Inputs 1-9			
IC2	PPS	PPS	PPS	PPS	I	ST	1			
IC3	PPS	PPS	PPS	PPS	I	ST	1			
IC4	PPS	PPS	PPS	PPS	I	ST	1			
IC5	PPS	PPS	PPS	PPS	I	ST	1			
IC6	PPS	PPS	PPS	PPS	I	ST	1			
IC7	PPS	PPS	PPS	PPS	I	ST	1			
IC8	PPS	PPS	PPS	PPS	I	ST	1			
IC9	PPS	PPS	PPS	PPS	I	ST	1			
Legend	CMOS = CI	MOS-comp	atible input	or output	•	Analog =	Analog input P = Power			

Legend:

CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select P = Power I = Input

TABLE 4-10: SYSTEM BUS TARGET 2 REGISTER MAP

ess		<i>a</i>									Bits								
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	MULTI	—	—	—		CODE	<3:0>		—	—	—	-	—	_	-	—	0000
8620	SBIZELUGI	15:0				INI	TID<7:0>					REGIO	N<3:0>		_	C	MD<2:0>		0000
8824	SBT2ELOG2	31:16	—	—	_	—	_	_		_	_	_	—			_	_	—	0000
0024	001222002	15:0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	GROU	P<1:0>	0000
8828	SBT2ECON	31:16	—	—	—	—	—	—	_	ERRP	—	—	—		—	_	_	—	0000
0020	00.2200.0	15:0	—	—		—	—			_	_	_	—			_			0000
8830	SBT2ECLRS	31:16	—	—	—	—	—			_		_	—						0000
		15:0	_	—	—	_		—	—	_	—	—	_	_	_			CLEAR	0000
8838	SBT2ECLRM	31:16	—	—	—		—				—	—	—		—			—	0000
		15:0	_	-	—			_	—		—	—		—	—			CLEAR	0000
8840	SBT2REG0	31:16			D/				DDI	BA	SE<21:6>		0175 4-0						XXXX
		15:0			BA	ASE<5:0>			PRI				SIZE<4:0	>					XXXX
8850	SBT2RD0	15:0	_																XXXX
		31.16		_												GROUPZ		GROOPU	·
8858	SBT2WR0	15.0													GROUP3	GROUP2	GROUP1	GROUP	
		31.16								BA	SF<21.6>				on of the off of	ONOOL			XXXX
8860	SBT2REG1	15:0			BA	\SE<5:0>			PRI	_			SIZE<4:0	>		_	_	_	XXXX
		31:16	_	_	—	_	_	—	_	_	_	—	_	_	_	_	_	_	xxxx
8870	SBT2RD1	15:0	_		_				_	_		_	_	_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
8878	SBT2WR1	15:0	_	_	_	_	_	_	_	_	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
0000		31:16	31:16 BASE<21:6>							xxxx									
8880	SB12REG2	15:0			BA	\SE<5:0>			PRI	—			SIZE<4:0	>		_	_	—	xxxx
0000	SPT2PD2	31:16		—	—	_	_	—	—	_	—	—	_	—	_	—	—	—	xxxx
9990	SD12KD2	15:0	—	—	—	_	—	—	_	_	_	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
8898	SBT2WR2	31:16	_	—	—	—	—	—	_	—	—	_	—	_	-	-	-	—	xxxx
0030	SB12WR2	15:0	—	—	—	—	_	—	-	-	—	—	_	-	GROUP3	GROUP2	GROUP1	GROUP0) xxxx

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

7.1 CPU Exceptions

CPU coprocessor 0 contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including boundary cases in data, external events or program errors. Table 7-1 lists the exception types in order of priority.

TABLE 7-1: MIPS32[®] M-CLASS MICROPROCESSOR CORE EXCEPTION TYPES

Exception Type (In Order of Priority)	Description	Branches to	Status Bits Set	Debug Bits Set	EXCCODE	XC32 Function Name
		Highest Priority				
Reset	Assertion MCLR or a Power-on Reset (POR).	0xBFC0_0000	BEV, ERL	_	_	_on_reset
Soft Reset	Assertion of a software Reset.	0xBFC0_0000	BEV, SR, ERL	—	—	_on_reset
DSS	EJTAG debug single step.	0xBFC0_0480	—	DSS	—	—
DINT	EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the EjtagBrk bit in the ECR register.	0xBFC0_0480	—	DINT	_	_
NMI	Assertion of NMI signal.	0xBFC0_0000	BEV, NMI, ERL	—	-	_nmi_handler
Machine Check	TLB write that conflicts with an existing entry.	EBASE+0x180	MCHECK, EXL	—	0x18	_general_exception_handler
Interrupt	Assertion of unmasked hardware or software inter- rupt signal.	See Table 7-2.	IPL<2:0>	—	0x00	See Table 7-2.
Deferred Watch	Deferred watch (unmasked by K DM=>!(K DM) transition).	EBASE+0x180	WP, EXL	—	0x17	_general_exception_handler
DIB	EJTAG debug hardware instruction break matched.	0xBFC0_0480	—	DIB	—	—
WATCH	A reference to an address that is in one of the Watch registers (fetch).	EBASE+0x180	EXL	—	0x17	_general_exception_handler
AdEL	Fetch address alignment error. Fetch reference to protected address.	EBASE+0x180	EXL	—	0x04	_general_exception_handler
TLBL	Fetch TLB miss or fetch TLB hit to page with $V = 0$.	EBASE if Status.EXL = 0	—	—	0x02	—
		EBASE+0x180 if Status.EXL == 1	_	—	0x02	_general_exception_handler
TLBL Execute Inhibit	An instruction fetch matched a valid TLB entry that had the XI bit set.	EBASE+0x180	EXL	—	0x14	_general_exception_handler
IBE	Instruction fetch bus error.	EBASE+0x180	EXL		0x06	_general_exception_handler

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	
31:24	—	—	BYTC)<1:0>	WBO ⁽¹⁾	—	—	BITO	
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	_	—	_	_	—				
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	—	—	—		PLEN<4:0>				
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP	_	_	(CRCCH<2:0>		

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29-28 **BYTO<1:0>:** CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
 - 00 = No swapping (i.e., source byte order)
- bit 27 WBO: CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)
- bit 23-13 Unimplemented: Read as '0'
- bit 12-8 **PLEN<4:0>:** Polynomial Length bits⁽¹⁾

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial -1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

REGISTER 11-3: USBCSR2: USB CONTROL STATUS REGISTER 2 (CONTINUED)

- bit 19 SOFIF: Start of Frame Interrupt bit 1 = A new frame has started 0 = No start of frame detected bit 18 **RESETIF:** Reset/Babble Interrupt bit 1 = In Host mode, indicates babble is detected. In Device mode, indicates reset signaling is detected on the bus. 0 = No reset/babble detected bit 17 **RESUMEIF:** Resume Interrupt bit 1 = Resume signaling is detected on the bus while USB module is in Suspend mode 0 = No Resume signaling detected bit 16 SUSPIF: Suspend Interrupt bit 1 = Suspend signaling is detected on the bus (Device mode) 0 = No suspend signaling detected bit 15-8 Unimplemented: Read as '0' bit 7-1 EP7RXIE:EP1RXIE: Endpoint 'n' Receive Interrupt Enable bit 1 = Receive interrupt is enabled for this endpoint 0 = Receive interrupt is not enabled
- bit 0 Unimplemented: Read as '0'

		(==. 0	••••								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24		ISO	MODE		EPCDATTO			—			
	AUTOSET		MODE	DIVIANEQUI	INCOALLO	DIMAREQUID	DATAWEN	DATATGGL			
	R/W-0, HS	R/W-0, HC	R/W-0, HS	R/W-0	R/W-0	R/W-0, HS	R/W-0	R/W-0, HC			
23:16	INCOMPTX		SENTSTALL	SENDSTALL		UNDERRUN	FIFONE	TXPKTRDY			
	NAKTMOUT	GERDI	RXSTALL	SETUPPKT	FLUSH	ERROR					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.6			MULT<4:0>		Т	XMAXP<10:8	>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0		TXMAXP<7:0>									

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 AUTOSET: Auto Set Control bit

- 1 = TXPKTRDY will be automatically set when data of the maximum packet size (value in TXMAXP) is loaded into the TX FIFO. If a packet of less than the maximum packet size is loaded, then TXPKTRDY will have to be set manually.
- 0 = TXPKTRDY must be set manually for all packet sizes
- **ISO:** Isochronous TX Endpoint Enable bit (Device mode)
- 1 = Enables the endpoint for Isochronous transfers
- 0 = Disables the endpoint for Isochronous transfers and enables it for Bulk or Interrupt transfers.
- This bit only has an effect in Device mode. In Host mode, it always returns zero.
- bit 29 MODE: Endpoint Direction Control bit
 - 1 = Endpoint is TX

bit 30

0 = Endpoint is RX

This bit only has any effect where the same endpoint FIFO is used for both TX and RX transactions.

- bit 28 DMAREQEN: Endpoint DMA Request Enable bit
 - 1 = DMA requests are enabled for this endpoint
 - 0 = DMA requests are disabled for this endpoint

bit 27 **FRCDATTG:** Force Endpoint Data Toggle Control bit

- 1 = Forces the endpoint data toggle to switch and the data packet to be cleared from the FIFO, regardless of whether an ACK was received.
- 0 = No forced behavior
- bit 26 DMAREQMD: Endpoint DMA Request Mode Control bit
 - 1 = DMA Request Mode 1
 - 0 = DMA Request Mode 0

This bit must not be cleared either before or in the same cycle as the above DMAREQEN bit is cleared.

- bit 25 DATAWEN: Data Toggle Write Enable bit (Host mode)
 - 1 = Enable the current state of the TX Endpoint data toggle (DATATGGL) to be written
 - 0 = Disables writing the DATATGGL bit
- bit 24 **DATATGGL:** Data Toggle Control bit (Host mode)

When read, this bit indicates the current state of the TX Endpoint data toggle. If DATAWEN = 1, this bit may be written with the required setting of the data toggle. If DATAWEN = 0, any value written to this bit is ignored.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R/W-1, HS
31:24	—	—	—	—	—	USBIF	USBRF	USBWKUP
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
	r-1	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	—	—	—	—	—	—	USB IDOVEN	USB IDVAL
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	PHYIDEN	VBUS MONEN	ASVAL MONEN	BSVAL MONEN	SEND MONEN	USBIE	USBRIE	USB WKUPEN

REGISTER 11-30: USBCRCON: USB CLOCK/RESET CONTROL REGISTER

l egend.

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bi

bit 31-27	Unimplemented: Read as '0'									
bit 26	USBIF: USB General Interrupt Flag bit 1 = An event on the USB Bus has occurred 0 = No interrupt from USB module or interrupts have not been enabled									
bit 25	USBRF: USB Resume Flag bit 1 = Resume from Suspend state. Device wake-up activity can be started. 0 = No Resume activity detected during Suspend, or not in Suspend state									
bit 24	USBWK: USB Activity Status bit 1 = Connect, disconnect, or other activity on USB detected since last cleared 0 = No activity detected on USB									
	Note: This bit should be cleared just prior to entering sleep, but it should be checked that no activit has already occurred on USB before actually entering sleep.									
bit 23-14	Unimplemented: Read as '0'									
bit 15	Reserved: Read as '1'									
bit 14-10	Unimplemented: Read as '0'									
bit 9	USBIDOVEN: USB ID Override Enable bit 1 = Enable use of USBIDVAL bit 0 = Disable use of USBIDVAL and instead use the PHY value									
bit 8	USBIDVAL: USB ID Value bit 1 = ID override value is 1 0 = ID override value is 0									
bit 7	PHYIDEN: PHY ID Monitoring Enable bit 1 = Enable monitoring of the ID bit from the USB PHY 0 = Disable monitoring of the ID bit from the USB PHY									
bit 6	VBUSMONEN: VBUS Monitoring for OTG Enable bit 1 = Enable monitoring for VBUS in VBUS Valid range (between 4.4V and 4.75V) 0 = Disable monitoring for VBUS in VBUS Valid range									
bit 5	 Disable monitoring for VBUS in VBUS Valid range SVALMONEN: A-Device VBUS Monitoring for OTG Enable bit Enable monitoring for VBUS in Session Valid range for A-device (between 0.8V and 2.0V) Disable monitoring for VBUS in Session Valid range for A-device 									

BSVALMONEN: B-Device VBUS Monitoring for OTG Enable bit

0 = Disable monitoring for VBUS in Session Valid range for B-device

1 = Enable monitoring for VBUS in Session Valid range for B-device (between 0.8V and 4.0V)

© 2015-2016 Microchip Technology Inc.

bit 4

14.0 TIMER2/3, TIMER4/5, TIMER6/7, AND TIMER8/9

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14.** "**Timers**" (DS60001105) of the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).

The PIC32MZ EF family of devices features eight synchronous 16-bit timers (default) that can operate as a free-running interval timer for various timing applications and counting external events.

The following modes are supported:

- Synchronous internal 16-bit timer
- Synchronous internal 16-bit gated timer
- Synchronous external 16-bit timer

Four 32-bit synchronous timers are available by combining Timer2 with Timer3, Timer4 with Timer5, Timer6 with Timer7, and Timer8 with Timer9.

The 32-bit timers can operate in one of three modes:

- · Synchronous internal 32-bit timer
- · Synchronous internal 32-bit gated timer
- Synchronous external 32-bit timer

14.1 Additional Supported Features

- Selectable clock prescaler
- Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (Timer2 through Timer7 only)
- ADC event trigger (Timer3 and Timer5 only)
- Fast bit manipulation using CLR, SET, and INV registers

FIGURE 14-1: TIMER2 THROUGH TIMER9 BLOCK DIAGRAM (16-BIT)

15.1 Deadman Timer Control Registers

TABLE 15-1: DEADMAN TIMER REGISTER MAP

ess											Bits								
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400	DMTCON	31:16	—	—	—	—	_	—	—	—	—	—	—	_	—	—	—	—	0000
0/100	DIMITOON	15:0	ON	—	_	_	_	—	_	_	—	—	—	_	—	—	_	_	x000
0.410		31:16	—	—	—	—	—	—	—	_	—	—	—	_	—	—	—	—	0000
UAIO	DIMITERECER	15:0				STEP	1<7:0>				—	—	—	-	_	—	_	—	0000
0420		31:16	_	—	_	—	-	_	—	_	—	—	—	-	—	—	_	—	0000
0420	DIVITCER	15:0	_	—	—	—		_	—	_				STEP	2<7:0>				0000
0430		31:16	—	—	—	—		—	_	_	—	—	—	_	—	—	_	—	0000
0430	DIVITSTAT	15:0	_	—	—	—		_	—	_	BAD1	BAD2	DMTEVENT	_	—	—	_	WINOPN	0000
0.4.0	DMTCNT	31:16								0		0.							0000
0A40	DIVITCINT	15:0								000	NIEK<31.	0>							0000
0460	DMTRECNT	31:16								De	NIT -21.0								0000
UAGO	DIVITESCINT	15:0								F30	JN1<31.02	>							00xx
0470		31:16									NTV -21.0								0000
0470	DIVITESINT	15:0								P3I	NTV<31:02	>							000x

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

ess										В	its								6
Virtual Addr (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2044	SQI1BD	31:16		_	-	_	_	-	_	_		—		BDSTA	TE<3:0>		DMA START	DMAACTV	0000
	SIAI	15:0								BDCO	N<15:0>								0000
2049	SQI1BD	31:16		-	—	-	—	—	_	—	-	_	_	_	—	—	-	—	0000
2040	POLLCON	15:0								POLLCO)N<15:0>								0000
2040	SQI1BD	31:16	_	_	—		TXSTA	ΓE<3:0>		_	—	_	_		TX	BUFCNT<4	:0>		0000
2040	TXDSTAT	15:0	—	—	—	—	—	—	—	_				TXCURBU	FLEN<7:0>				0000
2050	SQI1BD	31:16	_	—	—		RXSTA	TE<3:0>	-	—	_	—	—		RX	BUFCNT<4	:0>		0000
2050	RXDSTAT		_	—	—	—	—	—	—	—				RXCURBU	FLEN<7:0>				0000
2054		31:16	_	—	—	—	—	—	_	—	_	—	—	—	—	—	—	—	0000
2054	SQITTIK	15:0	_	_	—	—	—	—	—	_	—	_	_		ד	[HRES<4:0;	>		0000
	SOLUNT	31:16	_	_	—	—	—	—	—	_	—	_	_	_	—	—	_	—	0000
2058	SIGEN	15:0	—	—	-	_	DMAEISE	PKT DONEISE	BD DONEISE	CON THRISE	CON EMPTYISE	CON FULLISE	RX THRISE	RX FULLISE	RX EMPTYISE	TX THRISE	TX FULLISE	TX EMPTYISE	0000
2050	SQI1	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
2050	TAPCON	15:0	_	_			CLKIND	JLY<5:0>				DATAOUT	TDLY<3:0>			CLKOUT	DLY<3:0>		0000
2060	SQI1	31:16	_	_	—	—	—	—	—	_	—	_	_	STATPOS	TYPEST	AT<1:0>	STATBY	TES<1:0>	0000
2000	MEMSTAT	15:0				STATDA					TA<15:0>								0000
2064	SQI1	31:16	—	—	-	INIT1 SCHECK INIT1COUNT<1:0> INIT1TYPE<1:0>								INIT1CM	1D3<7:0>				0000
	15:0 INIT1CMD2<7:0>								INIT1CM	ID1<7:0>				0000					
2068	SQI1	31:16	_	_	—	INIT2 SCHECK	INIT2CO	UNT<1:0>	INIT2TY	PE<1:0>				INIT2CM	1D3<7:0>				0000
	700114	15:0				INIT2CM	ID2<7:0>							INIT2CM	ID1<7:0>				0000

TABLE 20-1: SERIAL QUADRATURE INTERFACE (SQI) REGISTER MAP (CONTINUED)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—		—		—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	_	—	—
45.0	R-0, HS, HC	R-0, HS, HC	R/C-0, HS, HC	U-0	U-0	R/C-0, HS	R-0, HS, HC	R-0, HS, HC
15:8	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10
7.0	R/C-0, HS, SC	R/C-0, HS, SC	R-0, HS, HC	R/C-0, HS, HC	R/C-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

REGISTER 21-2: I2CxSTAT: I²C STATUS REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared SC = Software Cleared				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit			

bit 31-16 Unimplemented: Read as '0'

bit 31-16	Unimplemented: Read as 10
bit 15	ACKSTAT: Acknowledge Status bit (when operating as I ² C master, applicable to master transmit operation)
	1 = NACK received from slave
	0 = ACK received from slave
	Hardware set or clear at end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I^2C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK)
	 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
bit 13	ACKTIM: Acknowledge Time Status bit (Valid in I ² C Slave mode only)
	$1 = I^2C$ bus is in an Acknowledge sequence, set on the eight falling edge of SCL clock 0 = Not an Acknowledge sequence, cleared on 9th rising edge of SCL clock
bit 12-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation0 = No collision
	Hardware set at detection of bus collision.
bit 9	GCSTAT: General Call Status bit
	1 = General call address was received
	0 = General call address was not received
	Hardware set when address matches general call address. Hardware clear at Stop detection.
bit 8	ADD10: 10-bit Address Status bit
	1 = 10-bit address was matched
	0 = 10-bit address was not matched
	Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
bit 7	IWCOL: Write Collision Detect bit
	1 = An attempt to write the I2CxTRN register failed because the I ² C module is busy 0 = No collision
	Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: Receive Overflow Flag bit
	 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow
	Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

REGISTE	R 21-2: I2CxSTAT: I ² C STATUS REGISTER (CONTINUED)
bit 5	 D_A: Data/Address bit (when operating as I²C slave) 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address Hardware clear at device address match. Hardware set by reception of slave byte.
bit 4	P: Stop bit
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I^2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

Figure 26-10: Format of SA_CTRL (Continued)

bit 16-10	ALGO<6:0>: Type of 1xxxxxx = HMAC 1 x1xxxxx = SHA-256 xx1xxxx = SHA1 xxx1xxx = MD5 xxxx1xx = AES xxxx1xx = TDES xxxx1x = DES	Algorithm to Use
bit 9	ENC: Type of Encrypt 1 = Encryption 0 = Decryption	tion Setting
bit 8-7	KEYSIZE<1:0>: Size 11 = Reserved; do no 10 = 256 bits 01 = 192 bits 00 = 128 bits ⁽¹⁾	of Keys in SA_AUTHKEYx or SA_ENCKEYx t use
bit 6-4	MULTITASK<2:0>: H 111 = Parallel pass (c 101 = Pipe pass (enc 011 = Reserved 010 = Reserved 001 = Reserved 000 = Encryption or a	ow to Combine Parallel Operations in the Crypto Engine decrypt and authenticate incoming data in parallel) rypt the incoming data, and then perform authentication on the encrypted data) uthentication or decryption (no pass)
bit 3-0	CRYPTOALGO<3:0> 1111 = Reserved 1110 = AES_GCM 1101 = RCTR 1100 = RCBC_MAC 1011 = ROFB 1010 = RCFB 1001 = RCBC 1000 = RECB 0111 = TOFB 0110 = TCFB 0101 = TCFB 0101 = TCBC 0100 = TECB 0011 = OFB 0010 = CFB 0001 = CBC 0000 = ECB	: Mode of operation for the Crypto Algorithm (for AES processing) (for Triple-DES processing) (for Triple-DES processing) (for Triple-DES processing) (for Triple-DES processing) (for DES processing)
Note 1:	This setting does not only the number of bi	alter the size of SA_AUTHKEYx or SA_ENCKEYx in the Security Association, ts of SA_AUTHKEYx and SA_ENCKEYx that are used.

REGISTER 28-32: ADCANCON: ADC ANALOG WARM-UP CONTROL REGISTER (CONTINUED)

- bit 7 ANEN7: Shared ADC (ADC7) Analog and Bias Circuitry Enable bit
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled
- bit 5-6 Unimplemented: Read as '0'
- bit 4-0 **ANEN4: ANEN0:** ADC4-ADC0 Analog and Bias Circuitry Enable bits
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
31.24				SID<	10:3>			
22.16	R/W-x	R/W-x	R/W-x	U-0	R/W-0	U-0	R/W-x	R/W-x
23.10		SID<2:0>		—	EXID	—	EID<1	17:16>
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
10.0				EID<	15:8>			
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
7.0				EID<	:7:0>			

REGISTER 29-18: CiRXFn: CAN ACCEPTANCE FILTER 'n' REGISTER 7 ('n' = 0-31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Message address bit SIDx must be '1' to match filter
- 0 = Message address bit SIDx must be '0' to match filter
- bit 20 Unimplemented: Read as '0'
- bit 19 **EXID:** Extended Identifier Enable bits
 - 1 = Match only messages with extended identifier addresses
 - 0 = Match only messages with standard identifier addresses
- bit 18 Unimplemented: Read as '0'
- bit 17-0 EID<17:0>: Extended Identifier bits
 - 1 = Message address bit EIDx must be '1' to match filter
 - 0 = Message address bit EIDx must be '0' to match filter

Note: This register can only be modified when the filter is disabled (FLTENn = 0).

30.1 **Ethernet Control Registers**

TABLE 30-5: ETHERNET CONTROLLER REGISTER SUMMARY

ess										В	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16								PTV-	<15:0>								0000
2000	ETHCON1	15:0	ON	—	SIDL	_	—	—	TXRTS	RXEN	AUTOFC	—	—	MANFC	—	_	_	BUFCDEC	0000
2010	ETHCON2	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
2010	ETHCONZ	15:0		—	—					7	XBUFSZ<6:0)>			—	—	_	—	0000
2020	FTHTXST	31:16								TXSTAD	DR<31:16>								0000
2020	LIIIXOI	15:0							TXSTAD	DR<15:2>								—	0000
2030	FTHRXST	31:16								RXSTADI	DR<31:16>								0000
2000	21110.01	15:0							RXSTAD	DR<15:2>								—	0000
2040	ETHHT0	31:16								HT<	31:0>								0000
		15:0																	0000
2050	ETHHT1	31:16								HT<6	63:32>								0000
		15:0																	
2060	ETHPMM0	15.0								PMM	<31:0>								0000
		31.16																	0000
2070	ETHPMM1	15:0								PMM<	:63:32>								0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
2080	ETHPMCS	15:0		•					•	PMCS	<15:0>	•				•		•	0000
2000	FTUDMO	31:16	_	_	—	—	_		_		_	_	_	—		_		_	0000
2090	ETHPMO	15:0								PMO	<15:0>		-						0000
		31:16	_	-	—	_	_	—	-		_	-	_	—	—	-	_	-	0000
20A0	ETHRXFC	15:0	HTEN	MPEN	_	NOTPM		PMMO	DE<3:0>		CRC ERREN	CRC OKEN	RUNT ERREN	RUNTEN	UCEN	NOT MEEN	MCEN	BCEN	0000
20B0	FTHRXWM	31:16	_	_	—	—	_	—	_	—				RXFW	M<7:0>				0000
2000		15:0	—	-	—	_	-	—	-	—		•		RXEW	M<7:0>				0000
		31:16		-	_	_	_	_	-		_	-		_	_	_		_	0000
2000	ETHIEN	15:0	_	TX BUSEIE	RX BUSEIE	_	_	_	EW MARKIE	FW MARKIE	RX DONEIE	PK TPENDIE	RX ACTIE	_	TX DONEIE	TX ABORTIE	RX BUFNAIE	RX OVFLWIE	0000
20D0	ETHIRQ	31:16	_	-	—	_	_	—	-	—	—	-	—	—	—	-	—	-	0000
		15:0	—	TXBUSE	RXBUSE	—	—	—	EWMARK	FWMARK	RXDONE	PKTPEND	RXACT	—	TXDONE	TXABORT	RXBUFNA	RXOVFLW	0000
20E0	ETHSTAT	31:16	_	-	—	_	_	—	-	_		1		BUFCN	NT<7:0>				0000
		15:0	—	-	—	_	—	—	-	—	BUSY	TXBUSY	RXBUSY	—	—	-	—	-	0000
2100		31:16	—	-	—	—	—	—	-	—		-	—	—	—	-	—	-	0000
	NAOVELOW	15:0								RXOVFLW	CNT<15:0>								0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

Reset values default to the factory programmed value. 2:

АС СНА	RACTERIS	STICS		(unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param. No.	Symbol	Characte	ristics	Min.	Max.	Units	Conditions				
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from				
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF				
			1 MHz mode		100	ns					
			(Note 1)								
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from				
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF				
			1 MHz mode (Note 1)	—	300	ns					
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns					
		Setup Time	400 kHz mode	100	—	ns					
			1 MHz mode (Note 1)	100	—	ns					
IS26	THD:DAT	Data Input	100 kHz mode	0	—	ns	_				
		Hold Time	400 kHz mode	0	0.9	μs					
			1 MHz mode (Note 1)	0	0.3	μs					
IS30	TSU:STA	Start Condition	100 kHz mode	4700	—	ns	Only relevant for Repeated				
		Setup Time	400 kHz mode	600	—	ns	Start condition				
			1 MHz mode (Note 1)	250	—	ns					
IS31	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first				
		Hold Time	400 kHz mode	600	—	ns	clock pulse is generated				
			1 MHz mode (Note 1)	250		ns					
IS33	Tsu:sto	Stop Condition	100 kHz mode	4000	—	ns	—				
		Setup Time	400 kHz mode	600	—	ns					
			1 MHz mode (Note 1)	600	—	ns					
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	—				
		Hold Time	400 kHz mode	600	—	ns					
			1 MHz mode (Note 1)	250		ns					
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3500	ns	—				
		Clock	400 kHz mode	0	1000	ns					
			1 MHz mode (Note 1)	0	350	ns					
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus				
			400 kHz mode	1.3	—	μs	must be free before a new				
			1 MHz mode (Note 1)	0.5	—	μs	transmission can start				
IS50	Св	Bus Capacitive Lo	ading	—	—	pF	See parameter DO58				

TABLE 37-36: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 37-22: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 37-43: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq T_A \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq T_A \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 TPBCLK2	_	_	_
PM2	TADSU	Address Out Valid to PMALL/ PMALH Invalid (address setup time)		2 TPBCLK2	—	_	
PM3	TADHOLD	PMALL/PMALH Invalid to Address Out Invalid (address hold time)		1 TPBCLK2	_	_	
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	—	_	ns	_
PM5	Trd	PMRD Pulse Width	—	1 TPBCLK2	—	—	—
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	_		ns	
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)		80		ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

NOTES: