

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efm144-i-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
					PO	RTG	
RG0	_	88	B50	128	I/O	ST	PORTG is a bidirectional I/O port
RG1	—	87	A60	127	I/O	ST	
RG6	4	10	B6	14	I/O	ST	
RG7	5	11	A8	15	I/O	ST	
RG8	6	12	B7	16	I/O	ST	
RG9	10	16	B9	21	I/O	ST	
RG12	—	96	A65	140	I/O	ST	
RG13	—	97	B55	141	I/O	ST	
RG14	—	95	B54	139	I/O	ST	
RG15	—	1	A2	1	I/O	ST	
					PO	RTH	
RH0	—	_	B17	43	I/O	ST	PORTH is a bidirectional I/O port
RH1	—	—	A22	44	I/O	ST	
RH2				45	I/O	ST	
RH3	—	—	_	46	I/O	ST	
RH4	—	—	A30	65	I/O	ST	
RH5	—	—	B26	66	I/O	ST	
RH6	—	—	A31	67	I/O	ST	
RH7	—	—	_	68	I/O	ST	
RH8	—	—	B32	81	I/O	ST	
RH9	—	—	A40	82	I/O	ST	
RH10	—	—	B33	83	I/O	ST	
RH11	—	—	—	84	I/O	ST	
RH12	—	—	A47	100	I/O	ST	
RH13	—	—	B40	101	I/O	ST	
RH14	—	—	—	102	I/O	ST	
RH15	—	—		103	I/O	ST	
			-			RTJ	-
RJ0	—	_	B44	114	I/O	ST	PORTJ is a bidirectional I/O port
RJ1	—		A55	115	I/O	ST	1
RJ2	—		B45	116	I/O	ST	1
RJ3	—		—	117	I/O	ST	1
RJ4			A62	131	I/O	ST	1
RJ5			—	132	I/O	ST	1
RJ6	—		—	133	I/O	ST	1
RJ7			—	134	I/O	ST	1
RJ8			A5	7	I/O	ST	1
RJ9			B4	8	I/O	ST	1
RJ10	—			10	I/O	ST	4
RJ11	—	—	B12	27	I/O	ST	1
RJ12	—	—	—	9	I/O	ST	
RJ13	—	—	—	28	I/O	ST	1
RJ14		—	—	29	I/O	ST	1
RJ15	—	—	—	30	I/O	ST	

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog input O = Output P = Power

REGISTER 3-10: FCSR: FLOATING POINT CONTROL AND STATUS REGISTER; CP1 REGISTER 31

- bit 16 V: Invalid Operation bit
- bit 15 Z: Divide-by-Zero bit
- bit 14 **O:** Overflow bit
- bit 13 U: Underflow bit
- bit 12 I: Inexact bit
- bit 11-7 ENABLES<4:0>: FPU Exception Enable bits

These bits control whether or not a trap is taken when an IEEE exception condition occurs for any of the five conditions. The trap occurs when both an enable bit and its corresponding cause bit are set either during an FPU arithmetic operation or by moving a value to the FCSR or one of its alternative representations.

- bit 11 V: Invalid Operation bit
- bit 10 Z: Divide-by-Zero bit
- bit 9 Overflow bit
- bit 8 U: Underflow bit
- bit 7 I: Inexact bit
- bit 6-2 **FLAGS<4:0>:** FPU Flags bits These bits show any exception conditions that have occurred for completed instructions since the flag was last reset by software.
- bit 6 V: Invalid Operation bit
- bit 5 **Z:** Divide-by-Zero bit
- bit 4 **O:** Overflow bit
- bit 3 U: Underflow bit
- bit 2 I: Inexact bit
- bit 1-0 **RM<1:0>:** Rounding Mode control bits
 - 11 = Round towards Minus Infinity $(-\infty)$
 - 10 = Round towards Plus Infinity (+ ∞)
 - 01 = Round toward Zero (0)
 - 00 = Round to Nearest

TABLE 4-12: SYSTEM BUS TARGET 4 REGISTER MAP

ess		0									Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9020	SBT4ELOG1	31:16	MULTI	—	—	_		CODE	<3:0>		_	_	—		—	_	—	—	0000
9020	361422001	15:0				INI	۲ID<7:0>					REGIO	N<3:0>		—	C	MD<2:0>		0000
9024	SBT4ELOG2	31:16	_	_	—	—	_	-	—	_	_	—	—	_	—	_	—	—	0000
9024	361422002	15:0	_	_	—	—	_	-	—	_	_	—	—	_	—	_	GROU	P<1:0>	0000
9028	SBT4ECON	31:16	_	_	—	—	_	-	—	ERRP	_	—	—	_	—	_	—	—	0000
9020	3BT4LCON	15:0	_	_	—	—	_	-	—	_	_	—	—	_	—	_	—	—	0000
9030	SBT4ECLRS	31:16	_	_	—	—	_	-	—	_	_	—	—	_	—	_	—	—	0000
9030	3BT4ECEK3	15:0	_	_	—	—	_	-	—	_	_	—	—	_	—	_	—	CLEAR	0000
9038	SBT4ECLRM	31:16	_	_	—	—	—	_	—	_	_	—	—	_	—	_	—	—	0000
9030	3B14ECERW	15:0	_	_	—	—	_	-	—	_	_	—	—	_	—	_	—	CLEAR	0000
9040	SBT4REG0	31:16								BAS	SE<21:6>								xxxx
9040	3B14REG0	15:0			BA	\SE<5:0>			PRI	_			SIZE<4:0:	>		_	—	—	xxxx
9050	SBT4RD0	31:16	_	—	—	—	—	_	—	—	—	—	—	_	—	—	—	—	xxxx
3030	00141000	15:0	_	—	—	—	—	_	—	—	—	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9058	SBT4WR0	31:16	_	—	—	—	—	_	—	—	—	—	—	_	—	—	—	—	xxxx
3030	3014010	15:0	_		_	—	—	—	_	—	—			—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9080 SBT4REG2 31:16 BASE					SE<21:6>					-			xxxx						
3000	3DT4ICEO2	15:0		-	BA	SE<5:0>			PRI	—		-	SIZE<4:0:	>		—	—	—	xxxx
9090	SBT4RD2	31:16	_	—	—	—	—	_	—	—	—	—	—	_	—	—	—	—	xxxx
9090	3B14KD2	15:0	_	_	—	—	_	-	—	_	_	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9098	SBT4WR2	31:16	_	_	—	—	—	_	—	_	_	—	—	_	_	_	—	—	xxxx
3080	0014WKZ	15:0	_	_	_	—	—	—	—	_	_	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	_		_	_
45.0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
15:8	LBWPULOCK	—	_	LBWP4 ⁽¹⁾	LBWP3 ⁽¹⁾	LBWP2 ⁽¹⁾	LBWP1 ⁽¹⁾	LBWP0 ⁽¹⁾
7.0	R/W-1	r-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
7:0	UBWPULOCK	_		UBWP4 ⁽¹⁾	UBWP3 ⁽¹⁾	UBWP2 ⁽¹⁾	UBWP1 ⁽¹⁾	UBWP0 ⁽¹⁾

REGISTER 5-8: NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER

Legend:		r = Reserved	
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15		LBWPULOCK: Lower Boot Alias Write-protect Unlock bit
		1 = LBWPx bits are not locked and can be modified
		0 = LBWPx bits are locked and cannot be modified
		This bit is only clearable and cannot be set except by any reset.
bit 14-	-13	Unimplemented: Read as '0'
bit 12		LBWP4: Lower Boot Alias Page 4 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF enabled 0 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF disabled
bit 11		LBWP3: Lower Boot Alias Page 3 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF enabled 0 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF disabled
bit 10		LBWP2: Lower Boot Alias Page 2 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF enabled 0 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF disabled
bit 9		LBWP1: Lower Boot Alias Page 1 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF enabled 0 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF disabled
bit 8		LBWP0: Lower Boot Alias Page 0 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF enabled 0 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF disabled
bit 7		UBWPULOCK: Upper Boot Alias Write-protect Unlock bit
		 1 = UBWPx bits are not locked and can be modified 0 = UBWPx bits are locked and cannot be modified This bit is only user-clearable and cannot be set except by any reset.
bit 6		Reserved: This bit is reserved for use by development tools
bit 5		Unimplemented: Read as '0'
Note	1:	These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

REGISTE	R 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER (CONTINUED)
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit
	 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ) 0 = No interrupt is pending
bit 4	CHDHIF: Channel Destination Half Full Interrupt Flag bit
	 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2) 0 = No interrupt is pending
bit 3	CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
	1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
1.11.0	0 = No interrupt is pending
bit 2	CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
	 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred) 0 = No interrupt is pending
bit 1	CHTAIF: Channel Transfer Abort Interrupt Flag bit
	 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted 0 = No interrupt is pending
bit 0	CHERIF: Channel Address Error Interrupt Flag bit
	1 = A channel address error has been detected
	Either the source or the destination address is invalid. 0 = No interrupt is pending

ŝ											Bits								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3028	USB	31:16									ATA<31:16>								00
020	FIFO2	15:0									ATA<15:0>								00
02C	USB FIFO3	31:16									ATA<31:16>								00
		15:0									ATA<15:0> ATA<31:16>								00
8030	USB FIFO4	31:16 15:0									ATA<31:16> ATA<15:0>								00
	USB	31:16		DATA<31:16> 00															
3034	FIFO5	15:0		DATA<15:0> 00															
	USB	31:16		DATA<31:16> 00															
3038	FIFO6	15:0		DATA<15:0> 000															
	USB	31:16								D	ATA<31:16>								0(
03C	FIF07	15:0	DATA<15:0> 00																
	USBOTG 31:16 RXDPB RXFIFOSZ<3:0> TXDPB TXFIFOSZ<3:0>				0 (
8060	USBOIG	15:0 TXEDMA RXEDMA BDEV FSDEV LSDEV VBUS<1:0> HOSTMODE HOSTREQ SES						SESSIO	N 00										
8064	USB	31:16	_									0(
004	FIFOA	15:0	—	-	—							TXFIFOAD<1	2:0>						00
806C	USB			—	—	00													
	HWVER	15:0	RC									08							
3078	USB	31:16				VPLEN	l<7:0>						DN<3:0>			WTID<3			30
	INFO	15:0		DMACHAN	IS<3:0>			RAMBI	TS<3:0>	· · ·		RXEND	PTS<3:0>			TXENDPTS	<3:0>		8C
307C	USB EOFRST	31:16	—	_	_	-		-	NRSTX	NRST				LSEOF<7:					00
		15:0				FSEOF	-<7:0> (HUBPRT<6							HSEOF<7:					77
3080	USB E0TXA	31:16 15:0			_			>	_	_	MULTTRAN				BADD<6:0> DDR<6:0>				00
		31:16		_	_		HUBPRT<6		_	_	— MULTTRAN				BADD<6:0>				00
3084	USB E0RXA	15:0			_	_			_	_		_	_	_		_	_	_	00
	USB	31:16	_			ТХ	HUBPRT<6	:0>			MULTTRAN			TXHU	BADD<6:0>				0.0
3088	E1TXA	15:0	_	_	_	_	_	_		_	_				DDR<6:0>				0.0
	USB	31:16	_			RX	HUBPRT<6	6:0>			MULTTRAN			RXHU	BADD<6:0>				00
08C	E1RXA	15:0	15:0 — — — — — — — — — — RXFADDR<6:0>							0.0									
0000	USB	31:16	_		•	ТХ	HUBPRT<6	:0>			MULTTRAN			TXHU	BADD<6:0>				0.0
3090	E2TXA	15:0	_	_	_	_	—	—	_	—				TXFA	DDR<6:0>				0.0
3094	USB	31:16	—			RX	(HUBPRT<6	6:0>			MULTTRAN			RXHU	BADD<6:0>				00
JU 34	E2RXA	15:0	—		—	—	—	-	—	_	_				DDR<6:0>				00
3098	USB	31:16	_			ТХ	HUBPRT<6	:0>			MULTTRAN				BADD<6:0>				00
	E3TXA	15:0	_	_	_	_		_	_					TXFA	DDR<6:0>				00

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
31:24	DATA<31:24>														
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
23.10		DATA<23:16>													
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
15:8				DATA	<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7:0				DATA	<7:0>										

REGISTER 11-12: USBFIFOX: USB FIFO DATA REGISTER 'x' ('x' = 0-7)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DATA<31:0>: USB Transmit/Receive FIFO Data bits

Writes to this register loads data into the TxFIFO for the corresponding endpoint. Reading from this register unloads data from the RxFIFO for the corresponding endpoint.

Transfers may be 8-bit, 16-bit or 32-bit as required, and any combination of access is allowed provided the data accessed is contiguous. However, all transfers associated with one packet must be of the same width so that data is consistently byte-, word- or double-word aligned. The last transfer may contain fewer bytes than the previous transfers in order to complete an odd-byte or odd-word transfer.

TABLE 12-9: PORTD REGISTER MAP FOR 100-PIN DEVICES ONLY

ess		0								Bits									
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0300	ANSELD	31:16	_	_		—	_	_	—	_	_	_	—	—					0000
0000	-	15:0	ANSD15	ANSD14	-	—	—	—	—	—	—	—	—	—	-	_	-	_	C000
0310	TRISD	31:16	_	—	—	_	—	_	—	-	_	_	_	_	—	_	_	—	0000
00.0		15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	—	—	—	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FE3F
0320	PORTD	31:16	—		-	_		—		—		—	_	—	—	_	—	_	0000
		15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	—	_	_	RD5	RD4	RD3	RD2	RD1	RD0	XXXX
0330	LATD	31:16							—	—	—	_	—	_	—	—	—	—	0000
		15:0	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	_	—	—	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX
0340	ODCD	31:16	_	—	—	—	—	_	—	_	_	—	—	_	—	—	—	—	0000
		15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	_	_	—	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
0350	CNPUD	31:16		-	—	—	-	-	—	-		_	—	-	—	—	-	—	0000
			CNPUD15	CNPUD14	CNPUD13	CNPUD12	CNPUD11	CNPUD10	CNPUD9	_	_		CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
0360	CNPDD	31:16					-			_	_		-	-	-	-	-	-	0000
			CNPDD15	CNPDD14	CNPDD13	CNPDD12	CNPDD11	CNPDD10	CNPDD9	_	_		CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
0370	CNCOND	31:16	-			_	— EDGE	_			_	_	_			_		_	0000
		15:0	ON	_	_		DETECT	_	—	—	—	-	—			_		_	0000
0380	CNEND	31:16	—	—	—	—	—	—	—	—	—	_	—	—	-	-	-	-	0000
0300	CINEIND	15:0	CNEND15	CNEND14	CNEND13	CNEND12	CNEND11	CNEND10	CNEND9	—	_	_	CNEND5	CNEND4	CNEND3	CNEND2	CNEND1	CNEND0	0000
		31:16	—	—	_	—	—	—	—	—	—		—	_	_	_	_		0000
0390	CNSTATD	15:0	CN STATD15	CN STATD14	CN STATD13	CN STATD12	CN STATD11	CN STATD10	CN STATD9	_	_	—	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	0000
00.4.0		31:16	_	_		_	_	_	—		_	_	_	_	-	-	_	-	0000
03A0	CNNED	15:0	CNNED15	CNNED14	CNNED13	CNNED12	CNNED11	CNNED10	CNNED9	_	_	_	CNNED5	CNNED4	CNNED3	CNNED2	CNNED1	CNNED0	0000
0200	CNFD	31:16	_	_	_	—	—	_	—	_	—	_	—	—	_		_		0000
03B0	CNFD	15:0	CNFD15	CNFD14	CNFD13	CNFD12	CNFD11	CNFD10	CNFD9	_	—	_	CNFD5	CNFD4	CNFD3	CNFD2	CNFD1	CNFD0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER ('x' = 2-9) (CONTINUED)

bit 2 Unimplemented: Read as '0'

- bit 1 TCS: Timer Clock Source Select bit⁽¹⁾
 - 1 = External clock from TxCK pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
 - 2: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.
 - 3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).

REGISTE		SPI CONTROL REGISTER (CONTINUED)								
bit 17		lse Edge Select bit (Framed SPI mode only)								
		tion pulse coincides with the first bit clock								
	-	tion pulse precedes the first bit clock								
bit 16	ENHBUF: Enhanced Bu									
	1 = Enhanced Buffer me									
	0 = Enhanced Buffer me									
bit 15	ON: SPI/I ² S Module On									
	$1 = SPI/I^2S$ module is e $0 = SPI/I^2S$ module is c									
1.1.4.4										
bit 14	Unimplemented: Read									
bit 13	SIDL: Stop in Idle Mode									
		ion when CPU enters in Idle mode								
h:+ 40	0 = Continue operation									
bit 12	DISSDO: Disable SDO									
	1 = SDOx pin is not use 0 = SDOx pin is control	ed by the module. Pin is controlled by associated PORT register								
hi+ 11 10		-								
bit 11-10	•	Bit Communication Select bits								
	When AUDEN = 1:	Communication								
	MODE32 MODE16	Communication								
	1 1 1 0	24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame								
	0 1	16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame								
	0 0	16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame								
		· · · · · · · · · · · · · · · · · · ·								
	When AUDEN = 0:									
	MODE32 MODE16	Communication								
	1 x	32-bit								
	0 1	16-bit								
	0 0	8-bit								
bit 9	SMP: SPI Data Input Sa	ample Phase bit								
	Master mode (MSTEN =									
		at end of data output time								
	Slave mode (MSTEN =	at middle of data output time								
		<u>o).</u> hen SPI is used in Slave mode. The module always uses SMP = 0.								
bit 8	CKE: SPI Clock Edge S									
DILO		changes on transition from active clock state to Idle clock state (see CKP bit)								
	•	changes on transition from Idle clock state to active clock state (see CKP bit)								
bit 7	SSEN: Slave Select En									
	$1 = \overline{SSx}$ pin is used for									
		for Slave mode, pin is controlled by the port function.								
bit 6	CKP: Clock Polarity Sel	ect bit ⁽³⁾								
		s a high level; active state is a low level								
	0 = Idle state for clock	s a low level; active state is a high level								
Note 1:	•	tten when the ON bit = 0. Refer to Section 37.0 "Electrical Characteristics" for								
0	maximum clock frequer									
2:	This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).									
э.		SPI/I ² S module functions as if the CKP bit is equal to '1', regardless of the actual								
3:	value of the CKP bit.	Single of the difference of the the one of the equal to \pm , regardless of the actual								
4:		acy compatibility and is superseded by PPS functionality on these devices (see								
7.		ral Pin Select (PPS)" for more information).								

26.0 CRYPTO ENGINE

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246) in the "PIC32 Family Reference Manual". which is available from the Microchip web site (www.microchip.com/PIC32).

The Crypto Engine is intended to accelerate applications that need cryptographic functions. By executing these functions in the hardware module, software overhead is reduced and actions, such as encryption, decryption, and authentication can execute much more quickly.

The Crypto Engine uses an internal descriptor-based DMA for efficient programming of the security association data and packet pointers (allowing scatter/ gather data fetching). An intelligent state machine schedules the Crypto Engines based on the protocol selection and packet boundaries. The hardware engines can perform the encryption and authentication in sequence or in parallel.

The following are key features of the Crypto Engine:

- Bulk ciphers and hash engines
- Integrated DMA to off-load processing:
 - Buffer descriptor-based
 - Secure association per buffer descriptor
- Some functions can execute in parallel

Bulk ciphers that are handled by the Crypto Engine include:

- AES:
 - 128-bit, 192-bit, and 256-bit key sizes
 - CBC, ECB, CTR, CFB, and OFB modes
- DES/TDES:
 - CBC, ECB, CFB, and OFB modes

Authentication engines that are available through the Crypto Engine include:

- SHA-1
- SHA-256
- MD-5
- AES-GCM
- HMAC operation (for all authentication engines)

The rate of data that can be processed by the Crypto Engine depends on these factors:

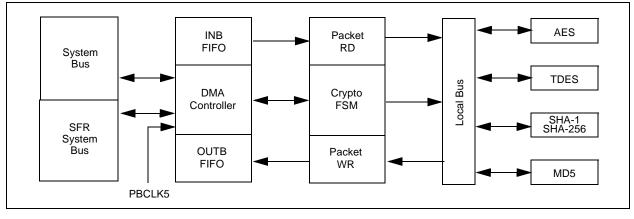

- Which engine is in use
- Whether the engines are used in parallel or in series
- The demands on source and destination memories by other parts of the system (i.e., CPU, DMA, etc.)
- The speed of PBCLK5, which drives the Crypto Engine

Table 26-1 shows typical performance for various engines.

TABLE 26-1: CRYPTO ENGINE PERFORMANCE

Engine/ Algorithm	Performance Factor (Mbps/MHz)	Maximum Mbps (PBCLK5 = 100 MHz)
DES	14.4	1440
TDES	6.6	660
AES-128	9.0	900
AES-192	7.9	790
AES-256	7.2	720
MD5	15.6	1560
SHA-1	13.2	1320
SHA-256	9.3	930

FIGURE 26-1: CRYPTO ENGINE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	—	_	-	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	-	—	-	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		—	_	_	_	_	—	—
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
				_	AREIE	PKTIE	BDPIE	PENDIE ⁽¹⁾

REGISTER 26-7: CEINTEN: CRYPTO ENGINE INTERRUPT ENABLE REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-4 Unimplemented: Read as '0'
- bit 3 AREIE: Access Response Error Interrupt Enable bit
 - 1 = Access response error interrupts are enabled
 - 0 = Access response error interrupts are not enabled
- bit 2 **PKTIE:** DMA Packet Completion Interrupt Enable bit
 - 1 = DMA packet completion interrupts are enabled
 - 0 = DMA packet completion interrupts are not enabled
- bit 1 BDPIE: DMA Buffer Descriptor Processor Interrupt Enable bit
 - 1 = BDP interrupts are enabled
 - 0 = BDP interrupts are not enabled
- bit 0 **PENDIE:** Master Interrupt Enable bit⁽¹⁾
 - 1 = Crypto Engine interrupts are enabled
 - 0 = Crypto Engine interrupts are not enabled

Note 1: The PENDIE bit is a global enable bit and must be enabled together with the other interrupts desired.

REGISTER 29-2: CICFG: CAN BAUD RATE CONFIGURATION REGISTER (CONTINUED) bit 10-8 **PRSEG<2:0>:** Propagation Time Segment bits⁽⁴⁾ 111 = Length is 8 x Tq000 = Length is 1 x TqSJW<1:0>: Synchronization Jump Width bits⁽³⁾ bit 7-6 11 =Length is $4 \times TQ$ 10 = Length is 3 x TQ 01 =Length is 2 x TQ 00 = Length is 1 x TQBRP<5:0>: Baud Rate Prescaler bits bit 5-0 111111 = TQ = (2 x 64)/TPBCLK5 111110 = TQ = (2 x 63)/TPBCLK5 000001 = TQ = (2 x 2)/TPBCLK5 $000000 = TQ = (2 \times 1)/TPBCLK5$ Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically. 2: 3 Time bit sampling is not allowed for BRP < 2. **3:** SJW \leq SEG2PH. 4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—		_	_	_	_	—		
23:16	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0		
23.10	—	—	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN		
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8		TERRCNT<7:0>								
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
		RERRCNT<7:0>								

REGISTER 29-5: CITREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Legend:

R = Readable bit V	N = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

- bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT \geq 256)
- bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT ≥ 128)
- bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT \geq 128)
- bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)
- bit 17 **RXWARN:** Receiver in Error State Warning (128 > RERRCNT ≥ 96)
- bit 16 EWARN: Transmitter or Receiver is in Error State Warning
- bit 15-8 TERRCNT<7:0>: Transmit Error Counter
- bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 29-6: CIFSTAT: CAN FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24
23:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 FIFOIP<31:0>: FIFOx Interrupt Pending bits

1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN11	MSEL11<1:0>			F	SEL11<4:0>		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN10	MSEL10<1:0>		FSEL10<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	FLTEN9	MSEL9<1:0>		FSEL9<4:0>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN8	MSEL8<1:0>		FSEL8<4:0>				

REGISTER 29-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN11: Filter 11 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL11<1:0>: Filter 11 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL11<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN10: Filter 10 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 22-21	MSEL10<1:0>: Filter 10 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL10<4:0>: FIFO Selection bits
51120 10	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 29-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED) bit 15 FLTEN9: Filter 9 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL9<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL8<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'. Note:

AC CHA	RACTER	ISTICS		Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param. No.	Symbol	Characteristics		Min. ⁽¹⁾	Max.	Units	Conditions	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—	
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode (Note 2)	100		ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μs	—	
		Hold Time	400 kHz mode	0	0.9	μs]	
			1 MHz mode (Note 2)	0	0.3	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	Only relevant for	
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	Repeated Start	
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	After this period, the	
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	first clock pulse is	
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	μs	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	—	
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs		
IM34	THD:STO	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		ns	—	
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)		ns		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns		
		from Clock	400 kHz mode	—	1000	ns	—	
			1 MHz mode (Note 2)	—	350	ns	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time	
			400 kHz mode	1.3	—	μs	the bus must be free	
			1 MHz mode (Note 2)	0.5		μs	before a new transmission can start	
IM50	Св	Bus Capacitive L	oading	—	_	pF	See parameter DO58	
IM51	TPGD	Pulse Gobbler De	elay	52	312	ns	See Note 3	

TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)

Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

TABLE 37-38:	ADC MODULE SPECIFICATIONS
---------------------	---------------------------

		STICS	Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS			Operating ter	$-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
$-40^{\circ}C \le TA \le +125^{\circ}C \text{ for Extended}$							
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions
Device	Supply						
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 2.1	_	Lesser of VDD + 0.3 or 3.6	V	_
AD02	AVss	Module Vss Supply	Vss	_	Vss + 0.3	V	—
Referen	ce Inputs						
AD05	Vrefh	Reference Voltage High	VREFL + 1.8	—	AVdd	V	(Note 1)
AD06	Vrefl	Reference Voltage Low	AVss	_	VREFH – 1.8	V	(Note 1)
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	1.8	—	AVdd	V	(Note 2)
AD08	IREF	Current Drain	—	102	_	μA	Per ADCx ('x' = 0-4, 7)
Analog	Input				•		
AD12	VINH-VINL	Full-Scale Input Span	VREFL		Vrefh	V	—
AD13	Vinl	Absolute Vın∟ Input Voltage	AVss	_	VREFL	V	_
AD14	Vinh	Absolute Vімн Input Voltage	AVss	—	Vrefh	V	_
ADC Ac	curacy – N	Measurements with Exte	rnal VREF+/V	REF-			•
AD20c	Nr	Resolution	6	—	12	bits	Selectable 6, 8, 10, 12 Resolution Ranges
AD21c	INL	Integral Nonlinearity	—	±3	_	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V
AD22c	DNL	Differential Nonlinearity	—	±1	—	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V
AD23c	Gerr	Gain Error	—	±8	—	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V
AD24c	EOFF	Offset Error	—	±2	—	LSb	VINL = AVSS = 0V, AVDD = 3.3V
Dynami	c Perform	ance	. 1				•
AD31b	SINAD	Signal to Noise and Distortion	—	67	_	dB	Single-ended (Notes 2,3)
AD34b	ENOB	Effective Number of bits		10.5	—	bits	(Notes 2,3)

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but not tested in manufacturing.

3: Characterized with a 1 kHz sine wave.

4: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

A.9 Other Peripherals and Features

Most of the remaining peripherals on PIC32MZ EF devices act identical to their counterparts on PIC32MX-5XX/6XX/7XX devices. The main differences have to do with handling the increased peripheral bus clock speed and additional clock sources. Table A-10 lists the differences (indicated by **Bold** type) that will affect software and hardware migration.

TABLE A-10: PERIPHERAL DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature						
l ² C							
On PIC32MX devices, all pins are 5V-tolerant.	On PIC32MZ EF devices, the I2C4 port uses non-5V tolerant pins, and will have different VoL/VoH specifications.						
	The Baud Rate Generator register has been expanded from 12 bits to 16 bits.						
I2CxBRG<11:0>	I2CxBRG<15:0>						
Watchdog Timer							
Clearing the Watchdog Timer on PIC32MX5XX/6XX/7XX devices required writing a '1' to the WDTCLR bit.	On PIC32MZ EF devices, the WDTCLR bit has been replaced with the 16-bit WDTCLRKEY, which must be written with a spe- cific value (0x5743) to clear the Watchdog Timer. In addition, the WDTSPGM (DEVCFG1<21>) bit is used to control operation of the Watchdog Timer during Flash programming.						
WDTCLR (WDTCON<0>)	WDTCLRKEY<15:0> (WDTCON<31:16>)						
RT	cc						
On PIC32MX devices, the output of the RTCC pin was selected between the Seconds Clock or the Alarm Pulse.	On PIC32MZ EF devices, the RTCC Clock is added as an option. RTCSECSEL has been renamed RTCOUTSEL and expanded to two bits.						
RTCSECSEL (RTCCON<7>) 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin	RTCOUTSEL<1:0> (RTCCON<8:7>) 11 = Reserved 10 = RTCC Clock is presented on the RTCC pin 01 = Seconds Clock is presented on the RTCC pin 00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered						
On PIC32MX devices, the Secondary Oscillator (Sosc) serves as the input clock for the RTCC module.	On PIC32MZ EF devices, an additional clock source, LPRC, is available as a choice for the input clock.						
	RTCCLKSEL<1:0> (RTCCON<10:9>) 11 = Reserved 10 = Reserved 01 = RTCC uses the external 32.768 kHz Sosc 00 = RTCC uses the internal 32 kHz oscillator (LPRC)						

Revision C (March 2016)

In this revision, the Preliminary status was removed from the document footer.

The revision also includes the following major changes, which are referenced by their respective chapter in Table C-2. In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE C-2: MAJOR SECTION UPDATES

Section Name	Update Description				
2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	2.9.1.3 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" and Figure 2-5 were updated.				
4.0 "Memory Organization"	The names of the Boot Flash Words were updated from BFxSEQ0 to BFxSEQ3 (see 4.1.1 "Boot Flash Sequence and Configuration Spaces").				
	The ABFxSEQx registers were removed from the Boot Flash Sequence and Configuration tables (see Table 4-2 and Table 4-3).				
7.0 "CPU Exceptions and Interrupt Controller"	The Cache Error exception type was removed from the MIPS32 M-Class Microprocessor Core Exception Types (see Table 7-1).				
8.0 "Oscillator Configuration"	The PLLODIV<2:0> bit value settings were updated in the SPLLCON register (see Register 8-3).				
12.0 "I/O Ports"	The SIDL bit was removed from the CNCONx registers (see Table 12-4 through Table 12-21 and Register 12-3).				
20.0 "Serial Quad Interface (SQI)"	The following bits were removed from the SQI1XCON1 register (see Table 20-1 and Register 20-1): DDRDATA, DDRDUMMY, DDRMODE, DDRADDR, and DDRCMD.				
	The DDRMODE bit was removed from the SQI1CON register (see Table 20-1 and Register 20-4).				
28.0 "12-bit High-Speed Successive Approximation	A note was added to the SELRES<1:0> bits in the ADCCON1 and ADCxTIME registers (see Register 28-1 and Register 28-27).				
Register (SAR) Analog-to-Digital Converter (ADC)"	The ADCID<2:0 bit values were updated in the ADCFSTAT register (see Register 28-22).				
34.0 "Special Features"	The bit value definitions for the POSCGAIN<1:0> and SOSCGAIN<1:0> bits were updated (see Register 34-3).				
	The Device ADC Calibration Word (DEVADCx) register was added (see Table 34-5 and Register 34-13).				