

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024efm144t-i-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description			
CLKI	31	49	B28	71	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.			
CLKO	32	50	A33	72	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.			
OSC1	31	49	B28	71	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.			
OSC2	32	50	A33	72	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.			
SOSCI	47	72	B41	105	Ι	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.			
SOSCO	48	73	A49	106	0	— —	32.768 low-power oscillator crystal output.			
REFCLKI1	PPS	PPS	PPS	PPS	I	—	Reference Clock Generator Inputs 1-4			
REFCLKI3	PPS	PPS	PPS	PPS	I	_				
REFCLKI4	PPS	PPS	PPS	PPS	Ι	-	1			
REFCLKO1	PPS	PPS	PPS	PPS	0	-	Reference Clock Generator Outputs 1-4			
REFCLKO3	PPS	PPS	PPS	PPS	0	—]			
REFCLKO4	PPS	PPS	PPS	PPS	0	—	1			
Legend: (CMOS = CI	MOS-compa	atible input	or output		Analog =	Analog input P = Power			

TABLE 1-2: OSCILLATOR PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog input P O = Output I = PPS = Peripheral Pin Select

I = Input

TABLE 1-3: IC1 THROUGH IC9 PINOUT I/O DESCRIPTIONS

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
					Input	Capture	
IC1	PPS	PPS	PPS	PPS	Ι	ST	Input Capture Inputs 1-9
IC2	PPS	PPS	PPS	PPS	Ι	ST	1
IC3	PPS	PPS	PPS	PPS	Ι	ST	1
IC4	PPS	PPS	PPS	PPS	Ι	ST]
IC5	PPS	PPS	PPS	PPS	I	ST	
IC6	PPS	PPS	PPS	PPS	I	ST	
IC7	PPS	PPS	PPS	PPS	Ι	ST	1
IC8	PPS	PPS	PPS	PPS	Ι	ST	1
IC9	PPS	PPS	PPS	PPS	Ι	ST	1
Legend:	CMOS = CI	MOS-comp	atible input	or output		Analog =	Analog input P = Power

Legend:

CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select P = Power I = Input

		Pin Nu	mber								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
VBUS	33	51	A35	73	I	Analog	USB bus power monitor				
VUSB3V3	34	52	A36	74	Р	_	USB internal transceiver supply. If the USB module is not used, this pin must be connected to Vss. When connected, the shared pin functions on USBID will no be available.				
D+	37	55	B30	77	I/O	Analog	USB D+				
D-	36	54	A37	76	I/O	Analog	USB D-				
USBID	38	56	A38	78	I	ST	USB OTG ID detect				
Legend:	CMOS = CI ST = Schm	•	•	•		Analog = O = Outpu	Analog input P = Power ut I = Input				

TABLE 1-14: **USB PINOUT I/O DESCRIPTIONS**

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output

PPS = Peripheral Pin Select

TABLE 1-15: **CAN1 AND CAN2 PINOUT I/O DESCRIPTIONS**

		Pin Nu	mber					
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description	
C1TX	PPS	PPS	PPS	PPS	0	—	CAN1 Bus Transmit Pin	
C1RX	PPS	PPS	PPS	PPS	I	ST	CAN1 Bus Receive Pin	
C2TX	PPS	PPS	PPS	PPS	0	_	CAN2 Bus Transmit Pin	
C2RX	PPS	PPS	PPS	PPS	I	ST	CAN2 Bus Receive Pin	
Legend:	CMOS = CI	MOS-comp	atible input	or output		Analog =	Analog input P = Power	
	ST = Schmitt Trigger input with CMOS lev				S	O = Outpu	I = Input	
	TTL = Trans	sistor-transi	stor Logic	input buffe	er	PPS = Peripheral Pin Select		

TABLE 4-10: SYSTEM BUS TARGET 2 REGISTER MAP

ess		0									Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI		—	_		CODE	<3:0>		-	_	_	_	—	_	_	—	0000
8820	SBT2ELOG1	15:0				INI	ΓID<7:0>					REGIO	N<3:0>		—	C	MD<2:0>		0000
0004	SBT2ELOG2	31:16	_	—	_	—	_	_	_	_	_	_	—	_	_	—	_	_	0000
8824	SBIZELUGZ	15:0	_	_	_	_	_	_	_	_	-	_	_	_	_	_	GROU	P<1:0>	0000
8828	SBT2ECON	31:16			—	_	—		_	ERRP	_	_			—		—	—	0000
0020	3BT2ECON	15:0		-	-	_	-		_	_	_	_					_	-	0000
8830	SBT2ECLRS	31:16	_	_	—	—	—	_	—	—	_	_	—	_	—	_	—		0000
0030	SBIZLOLKS	15:0	_	_	—	—	—	_	—	—	_	_	—	_	—	_	—	CLEAR	0000
8838	SBT2ECLRM	31:16	—	—	_	_	_	_	—	_	—	_	_	_	_	_	_	_	0000
0000	OBTZEOER	15:0	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	CLEAR	0000
8840	SBT2REG0	31:16				BASE<21:6>								xxxx					
0010	OBTEREOU	15:0			BA	ASE<5:0>			PRI	—			SIZE<4:0:	>		—	—	—	xxxx
8850	SBT2RD0	31:16	_	_	—	—	—	_	—	—	—		_	_	—	_	—	—	xxxx
	0012:00	15:0	_	_	—	_	—	—	_	—	—	_	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8858	SBT2WR0	31:16	_	—	—	—	—		—	—	—	—			—	—	—	—	xxxx
		15:0	—		—	—	<u> </u>	—	_	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8860	SBT2REG1	31:16							1	BAS	SE<21:6>								xxxx
		15:0			BA	\SE<5:0>			PRI	_			SIZE<4:0:	>		_	_		xxxx
8870	SBT2RD1	31:16	—	—	_	_			_	_	_	_	_	_	—	—	—		xxxx
	-	15:0	—	_	_	_		_	_	_	_	_	_		GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8878	SBT2WR1	31:16		_	—	—	—	—	—	—	—	—	—	_	—	—	_	—	XXXX
	-	15:0		—	—	_	—	—		—		_	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8880	SBT2REG2	31:16			BASE<21:6>								xxxx						
		15:0			BA	\SE<5:0>			PRI	—			SIZE<4:0:	>		_	—	—	XXXX
8890	SBT2RD2	31:16	_	_	—	—	—	—	—	—	_	_	—	—	—	—	—	—	xxxx
		15:0	_	_	—	—	—	—	—	—	_	_	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8898	SBT2WR2	31:16	_	_	—	—	—	—	—	—	_	_	—	—	—	—	—	—	xxxx
		15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress)		e								Bi	ts								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OFF107 ⁽⁷⁾	31:16	_		—	_	_	—	_	—	_	_	_	_	—	_	VOFF<	17:16>	0000
06EC	OFF107	15:0								VOFF<15:1>								_	0000
0654	OFF109	31:16	_	—	_	-		—	_	—	—	_		-	—	_	VOFF<	17:16>	0000
001 4	011109	15:0								VOFF<15:1>								—	0000
0658	OFF110	31:16	—	_	—	—	_	—	—	—	_	—	—	—	—	—	VOFF<	17:16>	0000
001 0		15:0						-	-	VOFF<15:1>					-			-	0000
06EC	OFF111	31:16	—		—	—	_	—	_	—	—	—	—	—	—	_	VOFF<	17:16>	0000
0010		15:0						-	-	VOFF<15:1>					-			—	0000
0700	OFF112	31:16	_	_	—	—	_	—	_	—	_	—	-	_	—	_	VOFF<	17:16>	0000
0700		15:0								VOFF<15:1>								—	0000
0704	OFF113	31:16	—	_	—	—	_	—	—	—	_	—	—	—	—	—	VOFF<	17:16>	0000
0704	011113	15:0								VOFF<15:1>								—	0000
0709	OFF114	31:16	-	—	—	-		_	_	—	—	—			—	-	VOFF<	17:16>	0000
0708	OFF114	15:0								VOFF<15:1>								—	0000
0700	OFF115	31:16	_	_	—	—	_	_	_	—	—	—	-	_	—	_	VOFF<	17:16>	0000
0700	011113	15:0								VOFF<15:1>								—	0000
0710	OFF116	31:16	-	—	—	-		_	_	—	—	—			_		VOFF<	17:16>	0000
0710	OFFIIO	15:0								VOFF<15:1>								—	0000
0714	OFF117	31:16	_	_	—	—	_	_	_	—	—	—	-	_	—	_	VOFF<	17:16>	0000
0714		15:0						-	-	VOFF<15:1>					-			—	0000
0718	OFF118 ⁽²⁾	31:16	_	_	—	—	_	—	_	—	_	—	-	_	—	_	VOFF<	17:16>	0000
0710		15:0								VOFF<15:1>								—	0000
0710	OFF119	31:16	—	_	—	_		—	—	—	_	—		_	—		VOFF<	17:16>	0000
0/10	OFFII9	15:0						-	-	VOFF<15:1>		-			-	-	-	—	0000
0720	OFF120	31:16	—	—	—	—	—	—	-	-	—	—	-	_	—	_	VOFF<	17:16>	0000
0120		15:0								VOFF<15:1>								—	0000
0724	OFF121	31:16	_	_	_	_	_	_	_	—			_		_	_	VOFF<	17:16>	0000
0724		15:0								VOFF<15:1>								_	0000
0700	055400	31:16	—		_	—	_	—	—	—	_	—	_	_	—	_	VOFF<	17:16>	0000
0728	OFF122	15:0								VOFF<15:1>								_	0000

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER (CONTINUED) bit 15-12 PRI3SS<3:0>: Interrupt with Priority Level 3 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 3 uses Shadow Set 0) 0111 = Interrupt with a priority level of 3 uses Shadow Set 7 0110 = Interrupt with a priority level of 3 uses Shadow Set 6 0001 = Interrupt with a priority level of 3 uses Shadow Set 1 0000 = Interrupt with a priority level of 3 uses Shadow Set 0 bit 11-8 **PRI2SS<3:0>:** Interrupt with Priority Level 2 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 2 uses Shadow Set 0) 0111 = Interrupt with a priority level of 2 uses Shadow Set 7 0110 = Interrupt with a priority level of 2 uses Shadow Set 6 0001 = Interrupt with a priority level of 2 uses Shadow Set 1 0000 = Interrupt with a priority level of 2 uses Shadow Set 0 PRI1SS<3:0>: Interrupt with Priority Level 1 Shadow Set bits⁽¹⁾ bit 7-4 1xxx = Reserved (by default, an interrupt with a priority level of 1 uses Shadow Set 0) 0111 = Interrupt with a priority level of 1 uses Shadow Set 7 0110 = Interrupt with a priority level of 1 uses Shadow Set 6 0001 = Interrupt with a priority level of 1 uses Shadow Set 1 0000 = Interrupt with a priority level of 1 uses Shadow Set 0 bit 3-1 Unimplemented: Read as '0' bit 0 SS0: Single Vector Shadow Register Set bit 1 = Single vector is presented with a shadow set 0 = Single vector is not presented with a shadow set

Note 1: These bits are ignored if the MVEC bit (INTCON<12>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	—	_	_	—	—	—	_	
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	—	—	_	—		SYSDIV<3:0> ⁽¹⁾			
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	
15:8	—	_	_	_	—	SLWDIV<2:0>			
7.0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R-0, HS, HC	
7:0		_			_	UPEN	DNEN	BUSY	

REGISTER 8-7: SLEWCON: OSCILLATOR SLEW CONTROL REGISTER

Legend:	HC = Hardware Cleared	HS = Hardware Set				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-20 Unimplemented: Read as '0'

```
bit 19-16 SYSDIV<3:0>: System Clock Divide Control bits<sup>(1)</sup>
```

- bit 15-11 Unimplemented: Read as '0'
- bit 10-8 **SLWDIV<2:0>:** Slew Divisor Steps Control bits

These bits control the maximum division steps used when slewing during a frequency change.

- 111 = Steps are divide by 128, 64, 32, 16, 8, 4, 2, and then no divisor
- 110 = Steps are divide by 64, 32, 16, 8, 4, 2, and then no divisor
- 101 = Steps are divide by 32, 16, 8, 4, 2, and then no divisor
- 100 = Steps are divide by 16, 8, 4, 2, and then no divisor
- 011 = Steps are divide by 8, 4, 2, and then no divisor
- 010 = Steps are divide by 4, 2, and then no divisor
- 001 = Steps are divide by 2, and then no divisor
- 000 = No divisor is used during slewing

Note: The steps apply in reverse order (i.e., 2, 4, 8, etc.) during a downward frequency change.

- bit 7-3 **Unimplemented:** Read as '0'
- bit 2 UPEN: Upward Slew Enable bit
 - 1 = Slewing enabled for switching to a higher frequency
 - 0 = Slewing disabled for switching to a higher frequency
- bit 1 **DNEN:** Downward Slew Enable bit
 - 1 = Slewing enabled for switching to a lower frequency
 - 0 = Slewing disabled for switching to a lower frequency
- bit 0 BUSY: Clock Switching Slewing Active Status bit
 - 1 = Clock frequency is being actively slewed to the new frequency
 - 0 = Clock switch has reached its final value

Note 1: The SYSDIV<3:0> bit settings are ignored if both UPEN and DNEN = 0, and SYSCLK will be divided by 1.

		OOBLAND					OTEN	_				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	—		RXHUBPRT<6:0>									
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	MULTTRAN	RXHUBADD<6:0>										
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
10.0	—	_	—	_	—	—	_	—				
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	_	RXFADDR<6:0>										

REGISTER 11-19: USBExRXA: USB ENDPOINT 'x' RECEIVE ADDRESS REGISTER

Legend:	HC = Hardware Cleared	HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30-24 RXHUBPRT<6:0>: RX Hub Port bits (Host mode)

When a Low-Speed or Full-Speed device is connected to this endpoint via a Hi-Speed USB 2.0 hub, this field records the port number of that USB 2.0 hub.

- bit 23 **MULTTRAN:** RX Hub Multiple Translators bit (*Host mode*) 1 = The USB 2.0 hub has multiple transaction translators 0 = The USB 2.0 hub has a single transaction translator
- bit 22-16 **TXHUBADD<6:0>:** RX Hub Address bits (*Host mode*)

When a Low-Speed or Full-Speed device is connected to this endpoint via a Hi-Speed USB 2.0 hub, these bits record the address of the USB 2.0 hub.

bit 15-7 Unimplemented: Read as '0'

bit 6-0 **RXFADDR<6:0>:** RX Functional Address bits (*Host mode*)

Specifies the address for the target function that is be accessed through the associated endpoint. It needs to be defined for each RX endpoint that is used.

		-	-					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	_	_	—	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	_	_	_	_	-	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0		-			_			—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_		[pin name	?]R<3:0>	

REGISTER 12-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 [*pin name*]R<3:0>: Peripheral Pin Select Input bits Where [*pin name*] refers to the pins that are used to configure peripheral input mapping. See Table 12-2 for input pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

REGISTER 12-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_		-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	-			_			—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_		_	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_				RPnR	<3:0>	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 **RPnR<3:0>:** Peripheral Pin Select Output bits See Table 12-3 for output pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

NOTES:

REGISTER 19-3: SPIxSTAT: SPI STATUS REGISTER

- bit 3 **SPITBE:** SPI Transmit Buffer Empty Status bit 1 = Transmit buffer, SPIxTXB is empty 0 = Transmit buffer, SPIxTXB is not empty Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.
- bit 2 Unimplemented: Read as '0'
- bit 1 SPITBF: SPI Transmit Buffer Full Status bit
 - 1 = Transmit is not yet started, SPITXB is full
 - 0 = Transmit buffer is not full

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

Enhanced Buffer Mode:

Set when CWPTR + 1 = SRPTR; cleared otherwise

- bit 0 SPIRBF: SPI Receive Buffer Full Status bit
 - 1 = Receive buffer, SPIxRXB is full
 - 0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	—	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	_	—	—
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	_		T.	XINTTHR<4:0	>	
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_			R	XINTTHR<4:0	>	

REGISTER 20-7: SQI1INTTHR: SQI INTERRUPT THRESHOLD REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8 **TXINTTHR<4:0>:** Transmit Interrupt Threshold bits A transmit interrupt is set when the transmit FIFO has more space than the set number of bytes. For 16-bit mode, the value should be a multiple of 2.

bit 7-5 Unimplemented: Read as '0'

bit 4-0 RXINTTHR<4:0>: Receive Interrupt Threshold bits

A receive interrupt is set when the receive FIFO count is larger than or equal to the set number of bytes. For 16-bit mode, the value should be multiple of 2.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_		_	_
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	_	_	STATPOS	STATTY	′PE<1:0>	STATBY	FES<1:0>
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				STATDAT	A<7:0>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				STATCM	D<7:0>			

REGISTER 20-24: SQI1MEMSTAT: SQI MEMORY STATUS REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

 bit 20 STATPOS: Status Bit Position in Flash bit Indicates the BUSY bit position in the Flash Status register. This bit is added to support all Flash types (with BUSY bit at 0 and at 7).
 1 = BUSY bit position is bit 7 in status register
 0 = BUSY bit position is bit 0 in status register

- bit 19-18 STATTYPE<1:0>: Status Command/Read Lane Mode bits
 - 11 = Reserved
 - 10 = Status command and read are executed in Quad Lane mode
 - O1 = Status command and read are executed in Dual Lane mode
 - 00 = Status command and read are executed in Single Lane mode

bit 17-16 STATBYTES<1:0>: Number of Status Bytes bits

- 11 = Reserved
- 10 = Status command/read is 2 bytes long
- 01 = Status command/read is 1 byte long
- 00 = Reserved
- bit 15-8 **STATDATA<7:0>:** Status Data bits

These bits contain the status value of the Flash device

bit 7-0 STATCMD<7:0>: Status Command bits

The status check command is written into these bits

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	_	_	_	—	_	_	—	
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—		_	_	—	_	—	—	
	R/W-0	R/W-0	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0						
15:8	WCS2 ⁽¹⁾	WCS1 ⁽³⁾	WADDR<13:8>						
	WADDR15 ⁽²⁾	WADDR14 ⁽⁴⁾			WADDF	<<13.0>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				WADDR<	7:0>				

REGISTER 23-8: PMWADDR: PARALLEL PORT WRITE ADDRESS REGISTER

Legend:

- 5			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 WCS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
- bit 15 WADDR<15>: Target Address bit 15⁽²⁾
- bit 14 WCS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active 0 = Chip Select 1 is inactive
- bit 14 WADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 WADDR<13:0>: Address bits
- **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - 3: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0						
31:24	ADCSE	L<1:0>		CONCLKDIV<5:0>				
00.40	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	DIGEN7	—	_	DIGEN4	DIGEN3	DIGEN2	DIGEN1	DIGEN0
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R-0, HS, HC
15:8	V	REFSEL<2:0	>	TRGSUSP	UPDIEN	UPDRDY	SAMP ^(1,2,3,4)	RQCNVRT
7.0	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	GLSWTRG	GSWTRG			ADINS	SEL<5:0>		

REGISTER 28-3: ADCCON3: ADC CONTROL REGISTER 3

Legend:	HC = Hardware Set	HS = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 ADCSEL<1:0>: Analog-to-Digital Clock Source (TCLK) bits

11 = FRC 10 = REFCLK3 01 = System Clock (Tcy) 00 = PBCLK3

bit 29-24 CONCLKDIV<5:0>: Analog-to-Digital Control Clock (TQ) Divider bits

	111111 = 64 * TCLK = TQ
	•
	•
	000011 = 4 * TCLK = TQ
	000010 = 3 * TCLK = TQ
	000001 = 2 * TCLK = TQ
	000000 = TCLK = TQ
bit 23	DIGEN7: Shared ADC (ADC7) Digital Enable
	1 = ADC7 is digital enabled
	0 = ADC7 is digital disabled
1-1-00 OA	Halman Jamaan (ash. Daashaa (o)

bit 22-21 **Unimplemented:** Read as '0'

bit 20 DIGEN4: ADC4 Digital Enable bit

- 1 = ADC4 is digital enabled
- 0 = ADC4 is digital disabled

bit 19 **DIGEN3:** ADC3 Digital Enable bit

- 1 = ADC3 is digital enabled
- 0 = ADC3 is digital disabled
- **Note 1:** The SAMP bit has the highest priority and setting this bit will keep the S&H circuit in Sample mode until the bit is cleared. Also, usage of the SAMP bit will cause settings of SAMC<9:0> bits (ADCCON2<25:16>) to be ignored.

bit

- 2: The SAMP bit only connects Class 2 and Class 3 analog inputs to the shared ADC, ADC7. All Class 1 analog inputs are not affected by the SAMP bit.
- **3:** The SAMP bit is not a self-clearing bit and it is the responsibility of application software to first clear this bit and only after setting the RQCNVRT bit to start the analog-to-digital conversion.
- 4: Normally, when the SAMP and RQCNVRT bits are used by software routines, all TRGSRCx<4:0> bits and STRGSRC<4:0> bits should be set to '00000' to disable all external hardware triggers and prevent them from interfering with the software-controlled sampling command signal SAMP and with the software-controlled trigger RQCNVRT.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	
31:24	AFEN	DATA16EN	DFMODE	C	VRSAM<2:0	AFGIEN	AFRDY		
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16		_	—	CHNLID<4:0>					
45.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC						
15:8				FLTRDATA	\<15:8>				
7.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC						
7:0				FLTRDAT	A<7:0>				

REGISTER 28-16: ADCFLTRx: ADC DIGITAL FILTER 'x' REGISTER ('x' = 1 THROUGH 6)

Legend:	HS = Hardware Set	HC = Hardware Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared x = Bit is unknown

bit 31 **AFEN:** Digital Filter 'x' Enable bit

- 1 = Digital filter is enabled
- 0 = Digital filter is disabled and the AFRDY status bit is cleared
- bit 30 DATA16EN: Filter Significant Data Length bit
 - 1 = AII 16 bits of the filter output data are significant
 - 0 =Only the first 12 bits are significant, followed by four zeros
 - **Note:** This bit is significant only if DFMODE = 1 (Averaging Mode) and FRACT (ADCCON1<23>) = 1 (Fractional Output Mode).

bit **DFMODE:** ADC Filter Mode bit

- 1 = Filter 'x' works in Averaging mode
- 0 = Filter 'x' works in Oversampling Filter mode (default)

bit 28-26 **OVRSAM<2:0>:** Oversampling Filter Ratio bits

If DFMODE is '0':

- 111 = 128 samples (shift sum 3 bits to right, output data is in 15.1 format)
- 110 = 32 samples (shift sum 2 bits to right, output data is in 14.1 format)
- 101 = 8 samples (shift sum 1 bit to right, output data is in 13.1 format)
- 100 = 2 samples (shift sum 0 bits to right, output data is in 12.1 format)
- 011 = 256 samples (shift sum 4 bits to right, output data is 16 bits)
- 010 = 64 samples (shift sum 3 bits to right, output data is 15 bits)
- 001 = 16 samples (shift sum 2 bits to right, output data is 14 bits)
- 000 = 4 samples (shift sum 1 bit to right, output data is 13 bits)

If DFMODE is '1':

- 111 = 256 samples (256 samples to be averaged)
- 110 = 128 samples (128 samples to be averaged)
- 101 = 64 samples (64 samples to be averaged)
- 100 = 32 samples (32 samples to be averaged)
- 011 = 16 samples (16 samples to be averaged)
- 010 = 8 samples (8 samples to be averaged)
- 001 = 4 samples (4 samples to be averaged)
- 000 = 2 samples (2 samples to be averaged)
- bit 25 **AFGIEN:** Digital Filter 'x' Interrupt Enable bit
 - 1 = Digital filter interrupt is enabled and is generated by the AFRDY status bit
 - 0 = Digital filter is disabled

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

- 10100 = 1:1048576
- 10011 = 1:524288 10010 = 1:262144 10001 = 1:13107210000 = 1:65536 01111 = 1:3276801110 = 1:16384 01101 = 1:8192 01100 = 1:4096 01011 = 1:2048 01010 = 1:102401001 = 1:512 01000 = 1:25600111 = 1:128 00110 **= 1:64** 00101 = 1:3200100 = 1:1600011 = 1:8 00010 = 1:4
- 00010 = 1.400001 = 1.2
- 000001 = 1.2000000 = 1.1

All other combinations not shown result in operation = 10100

- bit 15-14 FCKSM<1:0>: Clock Switching and Monitoring Selection Configuration bits
 - 11 = Clock switching is enabled and clock monitoring is enabled
 - 10 = Clock switching is disabled and clock monitoring is enabled
 - 01 = Clock switching is enabled and clock monitoring is disabled
 - 00 = Clock switching is disabled and clock monitoring is disabled
- bit 13-11 Reserved: Write as '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output disabled
 - 0 = CLKO output signal active on the OSC2 pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)
- bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Posc disabled
 - 10 = HS Oscillator mode selected
 - 01 = Reserved
 - 00 = EC mode selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)

bit 6 FSOSCEN: Secondary Oscillator Enable bit

- 1 = Enable Sosc
- 0 = Disable Sosc
- bit 5-3 **DMTINTV<2:0>:** Deadman Timer Count Window Interval bits
 - 111 = Window/Interval value is 127/128 counter value
 - 110 = Window/Interval value is 63/64 counter value
 - 101 = Window/Interval value is 31/32 counter value
 - 100 = Window/Interval value is 15/16 counter value
 - 011 = Window/Interval value is 7/8 counter value
 - 010 = Window/Interval value is 3/4 counter value
 - 001 = Window/Interval value is 1/2 counter value
 - 000 = Window/Interval value is zero

REGISTER 34-9: CFGEBIC: EXTERNAL BUS INTERFACE CONTROL PIN CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0
31:24	EBI RDYINV3	EBI RDYINV2	EBI RDYIN1	_	EBI RDYEN3	EBI RDYEN2	EBI RDYEN1	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16	_	_	_	_	_	_	EBIRDYLVL	EBIRPEN
45-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
15:8	-	-	EBIWEEN	EBIOEEN	—		EBIBSEN1	EBIBSEN0
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
7:0	EBICSEN3	EBICSEN2	EBICSEN1	EBICSEN0	_		EBIDEN1	EBIDEN0

· J · · ·			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	EBIRDYINV3: EBIRDY3 Inversion Control bit
	1 = Invert EBIRDY3 pin before use
	0 = Do not invert EBIRDY3 pin before use
bit 30	EBIRDYINV2: EBIRDY2 Inversion Control bit
	1 = Invert EBIRDY2 pin before use
	0 = Do not invert EBIRDY2 pin before use
bit 29	EBIRDYINV1: EBIRDY1 Inversion Control bit
	1 = Invert EBIRDY1 pin before use
	0 = Do not invert EBIRDY1 pin before use
bit 28	Unimplemented: Read as '0'
bit 27	EBIRDYEN3: EBIRDY3 Pin Enable bit
	1 = EBIRDY3 pin is enabled for use by the EBI module
	0 = EBIRDY3 pin is available for general use
bit 26	EBIRDYEN2: EBIRDY2 Pin Enable bit
	1 = EBIRDY2 pin is enabled for use by the EBI module
	0 = EBIRDY2 pin is available for general use
bit 25	EBIRDYEN1: EBIRDY1 Pin Enable bit
	1 = EBIRDY1 pin is enabled for use by the EBI module
	0 = EBIRDY1 pin is available for general use
	Unimplemented: Read as '0'
bit 17	EBIRDYLVL: EBIRDYx Pin Sensitivity Control bit
	1 = Use level detect for EBIRDYx pins
	0 = Use edge detect for EBIRDYx pins
bit 16	EBIRPEN: EBIRP Pin Sensitivity Control bit
	1 = EBIRP pin is enabled for use by the EBI module
	0 = EBIRP pin is available for general use
	Unimplemented: Read as '0'
bit 13	EBIWEEN: EBIWE Pin Enable bit
	1 = EBIWE pin is enabled for use by the EBI module
	0 = EBIWE pin is available for general use

Note: When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.

DC CHARACTI	ERISTICS		Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Parameter No.	Typical ⁽²⁾	Maximum ⁽⁴⁾	Units	Conditions		
Idle Current (III	DLE): Core Of	f, Clock on Ba	ase Curren	t (Note 1)		
DC30a	7	22	mA	4 MHz (Note 3)		
DC31a	8	24	mA	10 MHz		
DC32a	13	32	mA	60 MHz (Note 3)		
DC33a	21	42	mA	130 MHz (Note 3)		
DC34	26	48	mA	180 MHz (Note 3)		
DC35	28	52	mA	200 MHz		

TABLE 37-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE current measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBPMD = 1), VUSB3V3 is connected to VSS, PBCLKx divisor = 1:128 ('x' ≠ 7)
- CPU is in Idle mode (CPU core Halted)
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared (except USBPMD)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: Data in the "Maximum" column is at 3.3V, +85°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	Max.	Units	Conditions	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)		300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	—	
		Setup Time	400 kHz mode	100		ns		
			1 MHz mode (Note 2)	100		ns		
IM26	THD:DAT	Data Input	100 kHz mode	0		μs	—	
		Hold Time	400 kHz mode	0	0.9	μs	1	
			1 MHz mode (Note 2)	0	0.3	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	Only relevant for	
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)		μs	Repeated Start	
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	After this period, the	
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)		μs	first clock pulse is	
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	—	
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs		
IM34	THD:STO	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		ns	—	
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)		ns		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	_	
		from Clock	400 kHz mode	—	1000	ns	—	
			1 MHz mode (Note 2)	—	350	ns	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time	
			400 kHz mode	1.3	—	μs	the bus must be free	
			1 MHz mode (Note 2)	0.5		μs	before a new transmission can start	
IM50	Св	Bus Capacitive L	oading	—	_	pF	See parameter DO58	
IM51	TPGD	Pulse Gobbler De	elay	52	312	ns	See Note 3	

TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)

Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

A.10 Package Differences

In general, PIC32MZ EF devices are mostly pin compatible with PIC32MX5XX/6XX/7XX devices; however, some pins are not. In particular, the VDD and Vss pins have been added and moved to different pins. In addition, I/O functions that were on fixed pins now will largely be on remappable pins.

TABLE A-11: PACKAGE DIFFERENCES

P Pin
On PIC32MZ EF devices, this requirement has been removed.
No VCAP pin.
I Vss Pins
There are more VDD pins on PIC32MZ EF devices, and many are located on different pins.
VDD on 64-pin packages: 8, 26, 39, 54, 60 VDD on 100-pin packages: 14, 37, 46, 62, 74, 83, 93
There are more Vss pins on PIC32MZ EF devices, and many are located on different pins.
Vss on 64-pin packages: 7, 25, 35, 40, 55, 59 Vss on 100-pin packages: 13, 36, 45, 53, 63, 75, 84, 92
/O Pins
Peripheral functions on PIC32MZ EF devices are now routed through a PPS module, which routes the signals to the desired pins. When migrating software, it is necessary to initialize the PPS I/O functions in order to get the signal to and from the correct pin.
 PPS functionality for the following peripherals: CAN UART SPI (except SCK) Input Capture Output Compare External Interrupt (except INT0) Timer Clocks (except Timer1)