

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efg064-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description		
Timer1 through Timer9									
T1CK	48	73	A49	106	Ι	ST	Timer1 External Clock Input		
T2CK	PPS	PPS	PPS	PPS	I	ST	Timer2 External Clock Input		
T3CK	PPS	PPS	PPS	PPS	I	ST	Timer3 External Clock Input		
T4CK	PPS	PPS	PPS	PPS	I	ST	Timer4 External Clock Input		
T5CK	PPS	PPS	PPS	PPS	I	ST	Timer5 External Clock Input		
T6CK	PPS	PPS	PPS	PPS	I	ST	Timer6 External Clock Input		
T7CK	PPS	PPS	PPS	PPS	I	ST	Timer7 External Clock Input		
T8CK	PPS	PPS	PPS	PPS	I	ST	Timer8 External Clock Input		
T9CK	PPS	PPS	PPS	PPS	I	ST	Timer9 External Clock Input		
Real-				Real-	Time Clo	ck and Cale	endar		
RTCC	46	71	A48	104	0 — Real-Time Clock Alarm/Seconds Output				
Legend:	CMOS = CMOS-compatible input or output Analog = Analog input P = Power								

TABLE 1-7: TIMER1 THROUGH TIMER9 AND RTCC PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select

I = Input

		Pin Nu	mber							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description			
AERXD0	- 1	18	_	—	Ι	ST	Alternate Ethernet Receive Data 0			
AERXD1	—	19	_	—	Ι	ST	Alternate Ethernet Receive Data 1			
AERXD2	—	28	_	—	Ι	ST	Alternate Ethernet Receive Data 2			
AERXD3	—	29	—	—	I	ST	Alternate Ethernet Receive Data 3			
AERXERR	—	1	—	—	I	ST	Alternate Ethernet Receive Error Input			
AERXDV	—	12	—	—	I	ST	Alternate Ethernet Receive Data Valid			
AERXCLK	—	16	—	—	I	ST	Alternate Ethernet Receive Clock			
AETXD0	—	47	—	—	0	—	Alternate Ethernet Transmit Data 0			
AETXD1	—	48	—	—	0	—	Alternate Ethernet Transmit Data 1			
AETXD2	—	44	—	—	0	—	Alternate Ethernet Transmit Data 2			
AETXD3	—	43	—	—	0	—	Alternate Ethernet Transmit Data 3			
AETXERR	—	35	—	—	0	—	Alternate Ethernet Transmit Error			
AECOL	—	42	—	—	I	ST	Alternate Ethernet Collision Detect			
AECRS	—	41	—	—	I	ST	Alternate Ethernet Carrier Sense			
AETXCLK	—	66	—	—	I	ST	Alternate Ethernet Transmit Clock			
AEMDC	—	70	—	—	0	—	Alternate Ethernet Management Data Clock			
AEMDIO	—	71	_	—	I/O	—	Alternate Ethernet Management Data			
AETXEN	—	67	—	—	0	O — Alternate Ethernet Transmit Enable				
Legend:	CMOS = CMOS-compatible input or output Analog = Analog input P = Power									

TABLE 1-18: ALTERNATE ETHERNET MII PINOUT I/O DESCRIPTIONS

CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output

I = Input

PPS = Peripheral Pin Select

TABLE 1-19: ALTERNATE ETHERNET RMII PINOUT I/O DESCRIPTIONS

	Pin Nu	mber	er					
64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description		
43	18	-	_	Ι	ST	Alternate Ethernet Receive Data 0		
46	19		—	I	ST	Alternate Ethernet Receive Data 1		
51	1		—	I	ST	Alternate Ethernet Receive Error Input		
57	47		—	0		Alternate Ethernet Transmit Data 0		
56	48		—	0		Alternate Ethernet Transmit Data 1		
30	70		—	0		Alternate Ethernet Management Data Clock		
49	71		—	I/O		Alternate Ethernet Management Data		
50	67		—	0		Alternate Ethernet Transmit Enable		
45	16	—	—	Ι	ST	Alternate Ethernet Reference Clock		
62	12	—	—	I	ST	Alternate Ethernet Carrier Sense Data Valid		
	QFN/ TQFP 43 46 51 57 56 30 49 50 45	64-pin QFN/ TQFP 100-pin TQFP 43 18 46 19 51 1 57 47 56 48 30 70 49 71 50 67 45 16	QFN/ TQFP 100-pin TQFP 124-pin VTLA 43 18 46 19 51 1 57 47 56 48 30 70 49 71 50 67 45 16	64-pin QFN/ TQFP 100-pin TQFP 124-pin VTLA 144-pin TQFP/ LQFP 43 18 - - 46 19 - - 51 1 - - 57 47 - - 56 48 - - 30 70 - - 49 71 - - 50 67 - - 45 16 - -	64-pin QFN/ TQFP 100-pin TQFP 124-pin VTLA 144-pin TQFP/ LQFP Pin Type 43 18 1 46 19 1 51 1 1 57 47 0 56 48 0 30 70 0 49 71 0 50 67 0 45 16 1	64-pin QFN/ TQFP 100-pin TQFP 124-pin VTLA 144-pin TQFP/ LQFP Pin TQFP/ LQFP Buffer Type 43 18 1 ST 46 19 1 ST 51 1 I ST 57 47 0 56 48 0 30 70 0 49 71 N/O 50 67 0 45 16 I ST		

CMOS = CMOS-compatible input or output Legend: ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = OutputPPS = Peripheral Pin Select

P = Power I = Input

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	_	—
22.46	U-0	R-0	R-1	R-0	R-0	R-0	R-1	R/W-y
23:16	—	IPLW	<1:0>		MMAR<2:0>	MCU	ISAONEXC ⁽¹⁾	
15.0	R-y	R-y	R-1	R-1	R-1	R-1	U-0	R-1
15:8	ISA<1	:0> ⁽¹⁾	ULRI	RXI	DSP2P	DSPP	_	ITL
7.0	U-0	R-1	R-1	R-0	R-1	U-0	U-0	R-0
7:0	_	VEIC	VINT	SP	CDMM	_	—	TL
	•	•		•	-			

REGISTER 3-3: CONFIG3: CONFIGURATION REGISTER 3; CP0 REGISTER 16, SELECT 3

Legend:	r = Reserved bit	y = Value set from Co	alue set from Configuration bits on POR			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31 **Reserved:** This bit is hardwired as '1' to indicate the presence of the Config4 register

- bit 30-23 Unimplemented: Read as '0'
- bit 22-21 **IPLW<1:0>:** Width of the Status IPL and Cause RIPL bits 01 = IPL and RIPL bits are 8-bits in width
- bit 20-18 **MMAR<2:0>:** microMIPS Architecture Revision Level bits 000 = Release 1
- bit 17 MCU: MIPS[®] MCU[™] ASE Implemented bit
 - 1 = MCU ASE is implemented
- bit 16 **ISAONEXC:** ISA on Exception bit⁽¹⁾ 1 = microMIPS is used on entrance to an exception vector 0 = MIPS32 ISA is used on entrance to an exception vector
- bit 15-14 **ISA<1:0>:** Instruction Set Availability bits⁽¹⁾ 11 = Both MIPS32 and microMIPS are implemented; microMIPS is used when coming out of reset
 - 10 = Both MIPS32 and microMIPS are implemented; MIPS32 ISA used when coming out of reset
- bit 13 ULRI: UserLocal Register Implemented bit
- 1 = UserLocal Coprocessor 0 register is implemented
- bit 12 RXI: RIE and XIE Implemented in PageGrain bit
- 1 = RIE and XIE bits are implemented
- bit 11 **DSP2P:** MIPS DSP ASE Revision 2 Presence bit 1 = DSP Revision 2 is present
- bit 10 **DSPP:** MIPS DSP ASE Presence bit
- 1 = DSP is present
- bit 9 Unimplemented: Read as '0'
- bit 8 ITL: Indicates that iFlowtrace[®] hardware is present
 - $1 = \text{The iFlowtrace}^{\mathbb{R}}$ is implemented in the core
- bit 7 Unimplemented: Read as '0'
- bit 6 **VEIC:** External Vector Interrupt Controller bit
 - 1 = Support for an external interrupt controller is implemented
- bit 5 **VINT:** Vector Interrupt bit
- 1 = Vector interrupts are implemented
- bit 4 SP: Small Page bit
- 0 = 4 KB page size
- bit 3 CDMM: Common Device Memory Map bit
- 1 = CDMM is implemented
- bit 2-1 Unimplemented: Read as '0'
- bit 0 **TL:** Trace Logic bit
 - 0 = Trace logic is not implemented

Note 1: These bits are set based on the value of the BOOTISA Configuration bit (DEVCFG0<6>).

TABLE 4-19: SYSTEM BUS TARGET 11 REGISTER MAP

SSS											Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
AC20	SBT11ELOG1	31:16	MULTI	—	—	—		CODE	<3:0>		_	—			—	—	—		0000
AC20	SBITTELOGI	15:0				INI	ΓID<7:0>					REGIO	N<3:0>		—	C	MD<2:0>		0000
AC24 S	SBT11ELOG2	31:16	_	-	_	—	-	-	_	-	_	-			—	-	-		0000
AC24	3BTTTELOG2	15:0	_	-	_	—	-	-	_	-	_	-			—	-	GROU	P<1:0>	0000
AC28	SBT11ECON	31:16	_	-	_	—	-	-	_	ERRP	_	-			—	-	-		0000
AC20	SBITTECON	15:0	_	-	_	—	-	-	_	-	_	-			—	-	-		0000
AC30	SBT11ECLRS	31:16	—	—	—	—	_	—	—	_	_	—	_	_	—	_	—	-	0000
AC30	SBITTECERS	15:0	—	_	—	—	—	—	—	—	_	—	_	_	—	_	—	CLEAR	0000
AC 38	3 SBT11ECLRM	31:16	—	_	—	—	—	—	—	—	_	—	_	_	—	_	—	_	0000
AC30		15:0	—	-	_	—	_	_	—	_	_	—	_	_	_	—	—	CLEAR	0000
AC40	SBT11REG0	31:16								BA	SE<21:6>					-			xxxx
7040	SBITIKEGO	15:0		_	BA	ASE<5:0>	-	-	PRI	—		-	SIZE<4:0	>		—	—		xxxx
AC50	SBT11RD0	31:16	—	—	_	_	_	_	—	_	_	_	_	_	_	_	_	_	xxxx
7030	30111120	15:0	—	—	_	_	_	_	—	_	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
AC58	SBT11WR0	31:16	—	—	—	—	—	—	—	—	—	—	_		—	—	—		xxxx
//000	OBIIII	15:0	—	—	—	—	—	—	—	—	—	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
AC60	SBT11REG1	31:16	31:16 BASE<21:6>						xxxx										
/.000	OBTINEOT	15:0			BA	ASE<5:0>			PRI				SIZE<4:0	>		_	_	_	xxxx
AC70	SBT11RD1	31:16	—	—	—	—	—	—	—	—	—	—	_	_	—	—	—	—	xxxx
	55111151	15:0	—	—	—	—	—	—	—	—	—	—	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
AC78	SBT11WR1	31:16	—	—	—	—	—	—	—	—	—	—	_	_	—	—	—	—	xxxx
	021110101	15:0	_	—	_	—	_	_	_	_	_	_	-	-	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_		—	—			—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_		_	—	_		_	_
45.0	R/W-0, HC	R/W-0	R-0, HS, HC	R-0, HS, HC	U-0	U-0	U-0	U-0
15:8	WR ⁽¹⁾	WREN ⁽¹⁾	WRERR ⁽¹⁾	LVDERR ⁽¹⁾	_		_	_
7.0	R/W-0	R/W-x	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	PFSWAP	BFSWAP	—			NVMOP	<3:0>	

REGISTER 5-1: NVMCON: FLASH PROGRAMMING CONTROL REGISTER

Legend:	HC = Hardware Set	HC = Hardware Cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

bit 15 WR: Write Control bit⁽¹⁾

This bit cannot be cleared and can be set only when WREN = 1 and the unlock sequence has been performed.

- 1 = Initiate a Flash operation
- 0 = Flash operation is complete or inactive

bit 14 WREN: Write Enable bit⁽¹⁾

- 1 = Enable writes to the WR bit and disables writes to the NVMOP<3:0> bits
- 0 = Disable writes to WR bit and enables writes to the NVMOP<3:0> bits

bit 13 WRERR: Write Error bit⁽¹⁾

This bit can be cleared only by setting the NVMOP<3:0> bits = 0000 and initiating a Flash operation.

- 1 = Program or erase sequence did not complete successfully
- 0 = Program or erase sequence completed normally

bit 12 LVDERR: Low-Voltage Detect Error bit⁽¹⁾

This bit can be cleared only by setting the NVMOP<3:0> bits = 0000 and initiating a Flash operation. 1 = Low-voltage detected (possible data corruption, if WRERR is set)

0 =Voltage level is acceptable for programming

bit 11-8 Unimplemented: Read as '0'

bit 7 **PFSWAP:** Program Flash Bank Swap Control bit

This bit is only writable when WREN = 0 and the unlock sequence has been performed.

- 1 = Program Flash Bank 2 is mapped to the lower mapped region and program Flash Bank 1 is mapped to the upper mapped region
- 0 = Program Flash Bank 1 is mapped to the lower mapped region and program Flash Bank 2 is mapped to the upper mapped region
- Note 1: These bits are only reset by a Power-on Reset (POR) and are not affected by other reset sources.
 - 2: This operation results in a "no operation" (NOP) when the Dynamic Flash ECC Configuration bits = 00 (FECCCON<1:0> (DVCFG0<9:8>)), which enables ECC at all times. For all other FECCCON<1:0> bit settings, this command will execute, but will not write the ECC bits for the word and can cause DED errors if dynamic Flash ECC is enabled (FECCCON<1:0> = 01). Refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) for information regarding ECC and Flash programming.

TABLE 7-2: INTERRUPT IRQ, VECTOR, AND BIT LOCATION (CONTINUED)

		IRQ	Mastan #		Interru	upt Bit Location	n	Persistent
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
ADC Digital Comparator 5	_ADC_DC5_VECTOR	50	OFF050<17:1>	IFS1<18>	IEC1<18>	IPC12<20:18>	IPC12<17:16>	Yes
ADC Digital Comparator 6	_ADC_DC6_VECTOR	51	OFF051<17:1>	IFS1<19>	IEC1<19>	IPC12<28:26>	IPC12<25:24>	Yes
ADC Digital Filter 1	_ADC_DF1_VECTOR	52	OFF052<17:1>	IFS1<20>	IEC1<20>	IPC13<4:2>	IPC13<1:0>	Yes
ADC Digital Filter 2	_ADC_DF2_VECTOR	53	OFF053<17:1>	IFS1<21>	IEC1<21>	IPC13<12:10>	IPC13<9:8>	Yes
ADC Digital Filter 3	_ADC_DF3_VECTOR	54	OFF054<17:1>	IFS1<22>	IEC1<22>	IPC13<20:18>	IPC13<17:16>	Yes
ADC Digital Filter 4	_ADC_DF4_VECTOR	55	OFF055<17:1>	IFS1<23>	IEC1<23>	IPC13<28:26>	IPC13<25:24>	Yes
ADC Digital Filter 5	_ADC_DF5_VECTOR	56	OFF056<17:1>	IFS1<24>	IEC1<24>	IPC14<4:2>	IPC14<1:0>	Yes
ADC Digital Filter 6	_ADC_DF6_VECTOR	57	OFF057<17:1>	IFS1<25>	IEC1<25>	IPC14<12:10>	IPC14<9:8>	Yes
ADC Fault	_ADC_FAULT_VECTOR	58	OFF058<17:1>	IFS1<26>	IEC1<26>	IPC14<20:18>	IPC14<17:16>	No
ADC Data 0	_ADC_DATA0_VECTOR	59	OFF059<17:1>	IFS1<27>	IEC1<27>	IPC14<28:26>	IPC14<25:24>	Yes
ADC Data 1	_ADC_DATA1_VECTOR	60	OFF060<17:1>	IFS1<28>	IEC1<28>	IPC15<4:2>	IPC15<1:0>	Yes
ADC Data 2	_ADC_DATA2_VECTOR	61	OFF061<17:1>	IFS1<29>	IEC1<29>	IPC15<12:10>	IPC15<9:8>	Yes
ADC Data 3	_ADC_DATA3_VECTOR	62	OFF062<17:1>	IFS1<30>	IEC1<30>	IPC15<20:18>	IPC15<17:16>	Yes
ADC Data 4	_ADC_DATA4_VECTOR	63	OFF063<17:1>	IFS1<31>	IEC1<31>	IPC15<28:26>	IPC15<25:24>	Yes
ADC Data 5	_ADC_DATA5_VECTOR	64	OFF064<17:1>	IFS2<0>	IEC2<0>	IPC16<4:2>	IPC16<1:0>	Yes
ADC Data 6	_ADC_DATA6_VECTOR	65	OFF065<17:1>	IFS2<1>	IEC2<1>	IPC16<12:10>	IPC16<9:8>	Yes
ADC Data 7	_ADC_DATA7_VECTOR	66	OFF066<17:1>	IFS2<2>	IEC2<2>	IPC16<20:18>	IPC16<17:16>	Yes
ADC Data 8	_ADC_DATA8_VECTOR	67	OFF067<17:1>	IFS2<3>	IEC2<3>	IPC16<28:26>	IPC16<25:24>	Yes
ADC Data 9	_ADC_DATA9_VECTOR	68	OFF068<17:1>	IFS2<4>	IEC2<4>	IPC17<4:2>	IPC17<1:0>	Yes
ADC Data 10	_ADC_DATA10_VECTOR	69	OFF069<17:1>	IFS2<5>	IEC2<5>	IPC17<12:10>	IPC17<9:8>	Yes
ADC Data 11	_ADC_DATA11_VECTOR	70	OFF070<17:1>	IFS2<6>	IEC2<6>	IPC17<20:18>	IPC17<17:16>	Yes
ADC Data 12	_ADC_DATA12_VECTOR	71	OFF071<17:1>	IFS2<7>	IEC2<7>	IPC17<28:26>	IPC17<25:24>	Yes
ADC Data 13	_ADC_DATA13_VECTOR	72	OFF072<17:1>	IFS2<8>	IEC2<8>	IPC18<4:2>	IPC18<1:0>	Yes
ADC Data 14	_ADC_DATA14_VECTOR	73	OFF073<17:1>	IFS2<9>	IEC2<9>	IPC18<12:10>	IPC18<9:8>	Yes
ADC Data 15	_ADC_DATA15_VECTOR	74	OFF074<17:1>	IFS2<10>	IEC2<10>	IPC18<20:18>	IPC18<17:16>	Yes
ADC Data 16	_ADC_DATA16_VECTOR	75	OFF075<17:1>	IFS2<11>	IEC2<11>	IPC18<28:26>	IPC18<25:24>	Yes
ADC Data 17	_ADC_DATA17_VECTOR	76	OFF076<17:1>	IFS2<12>	IEC2<12>	IPC19<4:2>	IPC19<1:0>	Yes
ADC Data 18	_ADC_DATA18_VECTOR	77	OFF077<17:1>	IFS2<13>	IEC2<13>	IPC19<12:10>	IPC19<9:8>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS9	IFS8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IFS7	IFS6	IFS5	IFS4	IFS3	IFS2	IFS1	IFS0

REGISTER 7-5: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

5						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 IFS31-IFS0: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-2 for the exact bit definitions.

REGISTER 7-6: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC9	IEC8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IEC7	IEC6	IEC5	IEC4	IEC3	IEC2	IEC1	IEC0

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IEC31-IEC0: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-2 for the exact bit definitions.

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

ss					/ /////////////////////////////////////			-		Bit		,							
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
15B0	DCH7ECON	7ECON 31:16 CHAIRQ<7:0>								00FF									
1300	DOINECON	15:0				CHSIR	Q<7:0>		-	-	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_			FF00
15C0	DCH7INT	31:16	—	—	—	—	—	—	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
1000		15:0	—	—	—	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
15D0	DCH7SSA	31:16								CHSSA-	<31:0>								0000
		15:0																	0000
15E0	DCH7DSA	31:16 15:0	CHDSA<31.0>							0000									
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		0000
15F0	DCH7SSIZ	15:0								CHSSIZ	<15:0>								0000
		31:16						_							_		_		0000
1600	DCH7DSIZ	15:0								CHDSIZ	<15:0>								0000
1010	DCH7SPTR	31:16	—	_	—	_	—	—	—	—	—	—	—	—	_	—	—	_	0000
1010	DCHISPIR	15:0								CHSPTR	<15:0>								0000
1620	DCH7DPTR	31:16	_	-		_			_	_		_	_					_	0000
1020	DOINDEIR	15:0								CHDPTR	<15:0>								0000
1630	DCH7CSIZ	31:16	—	_		_			_	-		_	—					_	0000
1030	DOINCOIL	15:0								CHCSIZ	<15:0>								0000
1640	DCH7CPTR	31:16	—	—	—	_	—	—	—	_	_	_	_	_	_	—	-	_	0000
1010		15:0								CHCPTR	<15:0>								0000
1650	DCH7DAT	31:16		—	—	—	—	—	—	—	—	—	_	—	—	—	—		0000
		15:0								CHPDAT	<15:0>								0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

REGISTER 11-11: USBIENCSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 1-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
31:24		RXFIFC)SZ<3:0>		TXFIFOSZ<3:0>				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	—	—	
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
10.0	RXINTERV<7:0>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	SPEEI	D<1:0>	PROTO	COL<1:0>		TEP	<3:0>		

Leaend:

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 RXFIFOSZ<3:0>: Receive FIFO Size bits

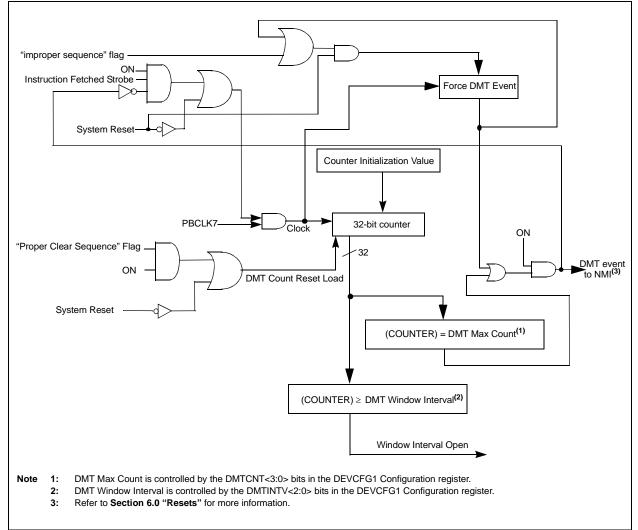
	1111 = Reserved 1110 = Reserved 1101 = 8192 bytes
	1101 = 4096 bytes
	•
	•
	•
	0011 = 8 bytes 0010 = Reserved 0001 = Reserved 0000 = Reserved or endpoint has not been configured
	This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic FIFO sizing is used.
bit 27-24	TXFIFOSZ<3:0>: Transmit FIFO Size bits 1111 = Reserved 1110 = Reserved 1101 = 8192 bytes 1100 = 4096 bytes
	•
	•
	•
	0011 = 8 bytes 0010 = Reserved 0001 = Reserved 0000 = Reserved or endpoint has not been configured

This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic

FIFO sizing is used.

bit 23-16 Unimplemented: Read as '0'

15.0 DEADMAN TIMER (DMT)


Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The primary function of the Deadman Timer (DMT) is to reset the processor in the event of a software malfunction. The DMT is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs until a count match occurs. Instructions are not fetched when the processor is in Sleep mode. The DMT consists of a 32-bit counter with a time-out count match value as specified by the DMTCNT<3:0> bits in the DEVCFG1 Configuration register.

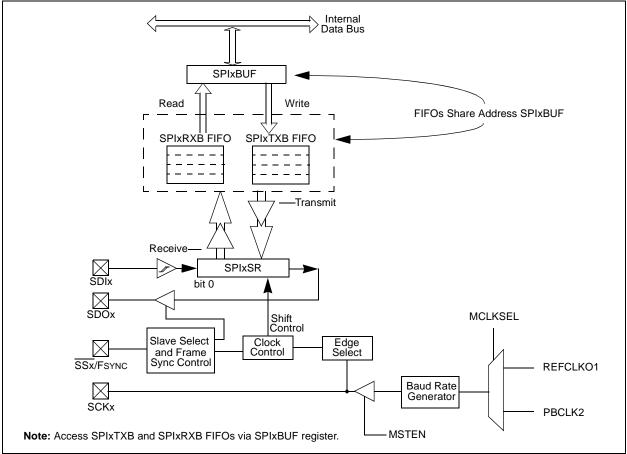
A Deadman Timer is typically used in mission critical and safety critical applications, where any single failure of the software functionality and sequencing must be detected.

Figure 15-1 shows a block diagram of the Deadman Timer module.

FIGURE 15-1: DEADMAN TIMER BLOCK DIAGRAM

19.0 SERIAL PERIPHERAL INTERFACE (SPI) AND INTER-IC SOUND (I²S)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/ PIC32).


The SPI/I²S module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices, as well as digital audio devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters, and so on.

The SPI/I²S module is compatible with Motorola[®] SPI and SIOP interfaces.

The following are key features of the SPI module:

- Master and Slave modes support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during Sleep and Idle modes
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

FIGURE 19-1: SPI/I²S MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	-	—	—	—	_	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	-	—	—	—	_	—	
15:8	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
0.61	SPISGNEXT	—	-	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR	
7.0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	
7:0	AUDEN ⁽¹⁾	—	_	—	AUDMONO ^(1,2)		AUDMOD	<1:0> ^(1,2)	

REGISTER 19-2: SPIxCON2: SPI CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
bit 15	SPISGNEXT: Sign Extend Read Data from the RX FIFO bit

- 1 = Data from RX FIFO is sign extended
- 0 = Data from RX FIFO is not sign extended
- bit 14-13 Unimplemented: Read as '0'

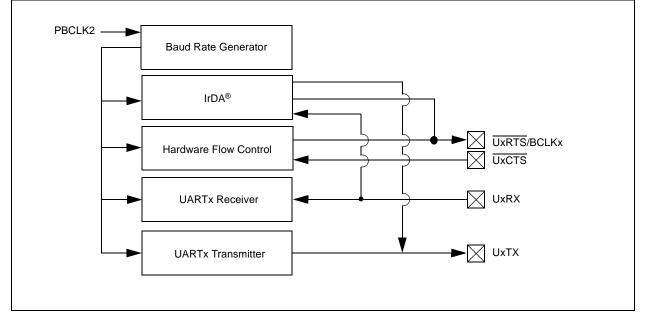
bit 12	FRMERREN: Enable Interrupt Events via FRMERR bit
	1 = Frame Error overflow generates error events
	0 = Frame Error does not generate error events
bit 11	SPIROVEN: Enable Interrupt Events via SPIROV bit
	1 = Receive overflow generates error events
	0 = Receive overflow does not generate error events
bit 10	SPITUREN: Enable Interrupt Events via SPITUR bit
	1 = Transmit Underrun Generates Error Events
	0 = Transmit Underrun Does Not Generates Error Events
bit 9	IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
	1 = A ROV is not a critical error; during ROV data in the FIFO is not overwritten by receive data
	0 = A ROV is a critical error which stop SPI operation
bit 8	IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions)
	1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
	0 = A TUR is a critical error which stop SPI operation
bit 7	AUDEN: Enable Audio CODEC Support bit ⁽¹⁾
	1 = Audio protocol is enabled
	0 = Audio protocol is disabled
bit 6-5	Unimplemented: Read as '0'
bit 3	AUDMONO: Transmit Audio Data Format bit ^(1,2)
	1 = Audio data is mono (Each data word is transmitted on both left and right channels)
	0 = Audio data is stereo
bit 2	Unimplemented: Read as '0'
bit 1-0	AUDMOD<1:0>: Audio Protocol Mode bit ^(1,2)
	11 = PCM/DSP mode
	10 = Right Justified mode

- 01 = Left Justified mode
- $00 = I^2 S \mod$
- **Note 1:** This bit can only be written when the ON bit = 0.
 - **2:** This bit is only valid for AUDEN = 1.

NOTES:

22.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The UART module is one of the serial I/O modules available in the PIC32MZ EF family of devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN, and IrDA[®]. The module also supports the hardware flow control option, with UXCTS and UXRTS pins, and also includes an IrDA encoder and decoder.

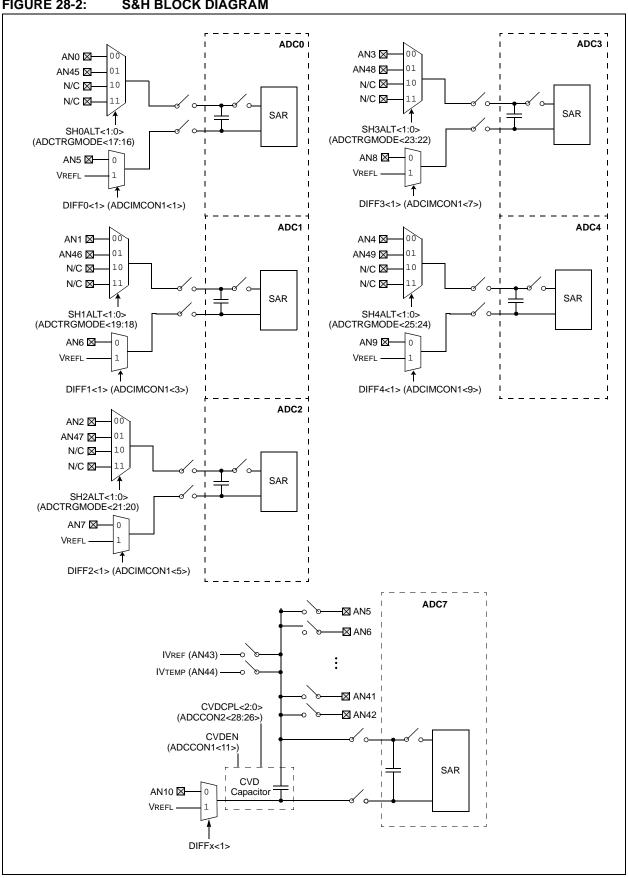
The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- One or two Stop bits
- Hardware auto-baud feature
- Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 25 Mbps at 100 MHz (PBCLK2)
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- LIN Protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 22-1 illustrates a simplified block diagram of the UART module.

RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER REGISTER 25-1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31:24	—	_	_	_	_		CAL	_<9:8>
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	CAL<7:0>							
	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	—		RTCCLK	(SEL<1:0>	RTC OUTSEL<1> ⁽²⁾
	R/W-0	R-0	U-0	U-0	R/W-0	R-0	R-0	R/W-0
7:0	RTC OUTSEL<0> ⁽²⁾	RTC CLKON ⁽⁵⁾			RTC WREN ⁽³⁾	RTC SYNC	HALFSEC ⁽⁴⁾	RTCOE


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

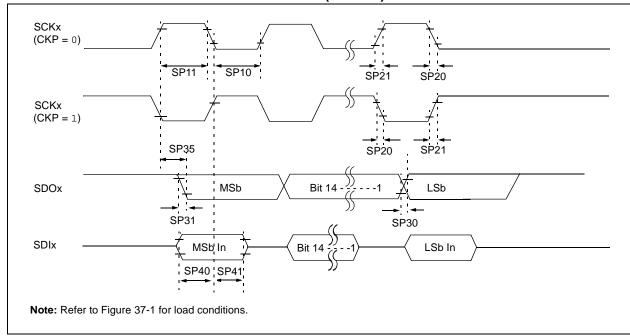
bit 25-16 CAL<9:0>: Real-Time Clock Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 real-time clock pulses every one minute 000000001 = Minimum positive adjustment, adds 1 real-time clock pulse every one minute 000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 real-time clock pulse every one minute 1000000000 = Maximum negative adjustment, subtracts 512 real-time clock pulses every one minute ON: RTCC On bit⁽¹⁾ bit 15 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables RTCC operation when CPU enters Idle mode 0 = Continue normal operation when CPU enters Idle mode bit 12-11 Unimplemented: Read as '0' **Note 1:** The ON bit is only writable when RTCWREN = 1.

- **2:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
- 3: The RTCWREN bit can be set only when the write sequence is enabled.
- 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).
- 5: This bit is undefined when RTCCLKSEL < 1:0 > = 00 (LPRC is the clock source).

Note: This register is reset only on a Power-on Reset (POR).

FIGURE 28-2: S&H BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN11	MSEL11<1:0>		FSEL11<4:0>				
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN10	MSEL10<1:0>		FSEL10<4:0>				
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN9	MSEL9<1:0>		FSEL9<4:0>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN8	MSEL8<1:0>		FSEL8<4:0>				


REGISTER 29-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31	FLTEN11: Filter 11 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL11<1:0>: Filter 11 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL11<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN10: Filter 10 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 22-21	MSEL10<1:0>: Filter 10 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL10<4:0>: FIFO Selection bits
51120 10	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

FIGURE 37-10: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

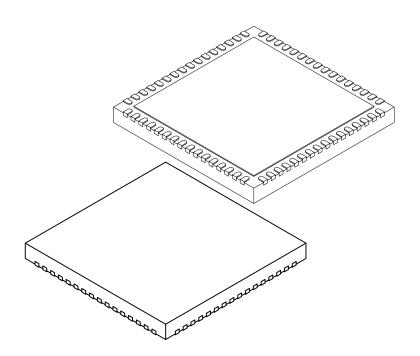
AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
EB10	TEBICLK	Internal EBI Clock Period (PBCLK8)	10	—		ns	—
EB11	TEBIRC	EBI Read Cycle Time (TRC<5:0>)	20	—	_	ns	—
EB12	TEBIPRC	EBI Page Read Cycle Time (TPRC<3:0>)	20	—		ns	—
EB13	TEBIAS	EBI Write Address Setup (TAS<1:0>)	10	—		ns	—
EB14	TEBIWP	EBI Write Pulse Width (TWP<5:0>)	10	—	_	ns	—
EB15	Tebiwr	EBI Write Recovery Time (TWR<1:0>)	10	_		ns	—
EB16	Тевісо	EBI Output Control Signal Delay		—	5	ns	See Note 1
EB17	Tebido	EBI Output Data Signal Delay	_	—	5	ns	See Note 1
EB18	TEBIDS	EBI Input Data Setup	5	—	—	ns	See Note 1
EB19	Tebidh	EBI Input Data Hold	3	_	_	ns	See Note 1, 2

TABLE 37-47: EBI TIMING REQUIREMENTS

Note 1: Maximum pin capacitance = 10 pF.

2: Hold time from EBI Address change is 0 ns.

TABLE 37-48: EBI THROUGHPUT REQUIREMENTS


AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param. No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
EB20	Asynchronous SRAM Read	—	100		Mbps				
EB21	Asynchronous SRAM Write	_	533	_	Mbps	—			

Note 1: Maximum pin capacitance = 10 pF.

2: Hold time from EBI Address change is 0 ns.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Number of Pins		64			
Pitch	е	0.50 BSC			
Overall Height	Α	0.80	0.85	0.90	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	7.60	7.70	7.80	
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	7.60	7.70	7.80	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-213B Sheet 2 of 2