

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efg064t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS

Note 1: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

2.1 Basic Connection Requirements

Getting started with the PIC32MZ EF family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- MCLR pin (see 2.3 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **2.4** "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.7 "External Oscillator Pins")

The following pin(s) may be required as well:

VREF+/VREF- pins, used when external voltage reference for the ADC module is implemented.

Note: The AVDD and AVSS pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

TABLE 4-13: SYSTEM BUS TARGET 5 REGISTER MAP

sse											Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI	_		_		CODE	<3:0>		_		_	_	_	_	_	_	0000
9420	SBT5ELOG1	15:0				INI	ΓID<7:0>				•	REGIO	N<3:0>	•	—	C	MD<2:0>	•	0000
0424	SBT5ELOG2	31:16	_	—	_	—	_	_	_	_	_	_	_	—	_	_	—	_	0000
9424	SB15ELUG2	15:0	_	_	_	—	_	_	_	_	_	_	_	—	_	_	GROU	P<1:0>	0000
0.400	SBT5ECON	31:16		_	_	_	_	_	_	ERRP	-	_	_	_	_	_	—	_	0000
9428	SBISECON	15:0	_	—	_	_	—		_	—	_		—	_	—	_	—	—	0000
9430	SBT5ECLRS	31:16	_	_		—	_		_	-	_		_	_	_	_	—		0000
9430	SBISECLKS	15:0	_	_		—	_		_	-	_		_	_	_	_	—	CLEAR	0000
9438	SBT5ECLRM	31:16	_	—	_	—	—	—	—	—	_	_	—	—	—	—		—	0000
9430	SBISECERM	15:0	_	—	_	_	—	_	—	_	_	_		—	—	_	—	CLEAR	0000
9440	SBT5REG0	31:16								BA	SE<21:6>								xxxx
3440	OBTOREOU	15:0		_	BA	ASE<5:0>	-		PRI	—			SIZE<4:0	>	_	—		—	xxxx
9450	SBT5RD0	31:16	—	—	_	_	_		—	_	—	_		—	—	_	—	_	xxxx
0 100	OBTORES	15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9458	SBT5WR0	31:16	_	—	-	—	—		—	—	—		—	—	—	_	—	—	xxxx
0 100	obronnic	15:0	_	—	—	—	—			—	—	_	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9460	SBT5REG1	31:16							1	BA	SE<21:6>								xxxx
		15:0			BA	\SE<5:0>			PRI	—			SIZE<4:0	>		—		—	XXXX
9470	SBT5RD1	31:16	—	_		_		_	_		_	_		_	-	_		_	XXXX
		15:0	—	—		_			_		_			_	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
9478	SBT5WR1	31:16	—	—		_			_		_			_	_	_			XXXX
		15:0	—	—	—	_	—			—	_	_	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9480	SBT5REG2	31:16								BA	SE<21:6>								XXXX
		15:0			BA	ASE<5:0>			PRI	—			SIZE<4:0	>		—		—	XXXX
9490	SBT5RD2	31:16	_	_	—	—	—	—	—	—	_	—	—	—	—	—	—	—	XXXX
		15:0	_	_	—	—	—	—	—	—	_	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9498	SBT5WR2	31:16		_	—	—	—	_		—	_	_	—	_	—	—	—	—	XXXX
		15:0	—	—	—	—	—	—	—	—	—	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

DS60001320D-page 82

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

(1)	XODO Vester Nerre	IRQ			Interru	pt Bit Locatior	n	Persistent
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
Output Compare 4	_OUTPUT_COMPARE_4_VECTOR	22	OFF022<17:1>	IFS0<22>	IEC0<22>	IPC5<20:18>	IPC5<17:16>	No
External Interrupt 4	_EXTERNAL_4_VECTOR	23	OFF023<17:1>	IFS0<23>	IEC0<23>	IPC5<28:26>	IPC5<25:24>	No
Timer5	_TIMER_5_VECTOR	24	OFF024<17:1>	IFS0<24>	IEC0<24>	IPC6<4:2>	IPC6<1:0>	No
Input Capture 5 Error	_INPUT_CAPTURE_5_ERROR_VECTOR	25	OFF025<17:1>	IFS0<25>	IEC0<25>	IPC6<12:10>	IPC6<9:8>	Yes
Input Capture 5	_INPUT_CAPTURE_5_VECTOR	26	OFF026<17:1>	IFS0<26>	IEC0<26>	IPC6<20:18>	IPC6<17:16>	Yes
Output Compare 5	_OUTPUT_COMPARE_5_VECTOR	27	OFF027<17:1>	IFS0<27>	IEC0<27>	IPC6<28:26>	IPC6<25:24>	No
Timer6	_TIMER_6_VECTOR	28	OFF028<17:1>	IFS0<28>	IEC0<28>	IPC7<4:2>	IPC7<1:0>	No
Input Capture 6 Error	_INPUT_CAPTURE_6_ERROR_VECTOR	29	OFF029<17:1>	IFS0<29>	IEC0<29>	IPC7<12:10>	IPC7<9:8>	Yes
Input Capture 6	_INPUT_CAPTURE_6_VECTOR	30	OFF030<17:1>	IFS0<30>	IEC0<30>	IPC7<20:18>	IPC7<17:16>	Yes
Output Compare 6	_OUTPUT_COMPARE_6_VECTOR	31	OFF031<17:1>	IFS0<31>	IEC0<31>	IPC7<28:26>	IPC7<25:24>	No
Timer7	_TIMER_7_VECTOR	32	OFF032<17:1>	IFS1<0>	IEC1<0>	IPC8<4:2>	IPC8<1:0>	No
Input Capture 7 Error	_INPUT_CAPTURE_7_ERROR_VECTOR	33	OFF033<17:1>	IFS1<1>	IEC1<1>	IPC8<12:10>	IPC8<9:8>	Yes
Input Capture 7	_INPUT_CAPTURE_7_VECTOR	34	OFF034<17:1>	IFS1<2>	IEC1<2>	IPC8<20:18>	IPC8<17:16>	Yes
Output Compare 7	_OUTPUT_COMPARE_7_VECTOR	35	OFF035<17:1>	IFS1<3>	IEC1<3>	IPC8<28:26>	IPC8<25:24>	No
Timer8	_TIMER_8_VECTOR	36	OFF036<17:1>	IFS1<4>	IEC1<4>	IPC9<4:2>	IPC9<1:0>	No
Input Capture 8 Error	_INPUT_CAPTURE_8_ERROR_VECTOR	37	OFF037<17:1>	IFS1<5>	IEC1<5>	IPC9<12:10>	IPC9<9:8>	Yes
Input Capture 8	_INPUT_CAPTURE_8_VECTOR	38	OFF038<17:1>	IFS1<6>	IEC1<6>	IPC9<20:18>	IPC9<17:16>	Yes
Output Compare 8	_OUTPUT_COMPARE_8_VECTOR	39	OFF039<17:1>	IFS1<7>	IEC1<7>	IPC9<28:26>	IPC9<25:24>	No
Timer9	_TIMER_9_VECTOR	40	OFF040<17:1>	IFS1<8>	IEC1<8>	IPC10<4:2>	IPC10<1:0>	No
Input Capture 9 Error	_INPUT_CAPTURE_9_ERROR_VECTOR	41	OFF041<17:1>	IFS1<9>	IEC1<9>	IPC10<12:10>	IPC10<9:8>	Yes
Input Capture 9	_INPUT_CAPTURE_9_VECTOR	42	OFF042<17:1>	IFS1<10>	IEC1<10>	IPC10<20:18>	IPC10<17:16>	Yes
Output Compare 9	_OUTPUT_COMPARE_9_VECTOR	43	OFF043<17:1>	IFS1<11>	IEC1<11>	IPC10<28:26>	IPC10<25:24>	No
ADC Global Interrupt	_ADC_VECTOR	44	OFF044<17:1>	IFS1<12>	IEC1<12>	IPC11<4:2>	IPC11<1:0>	Yes
ADC FIFO Data Ready Interrupt	_ADC_FIFO_VECTOR	45	OFF045<17:1>	IFS1<13>	IEC1<13>	IPC11<12:10>	IPC11<9:8>	Yes
ADC Digital Comparator 1	_ADC_DC1_VECTOR	46	OFF046<17:1>	IFS1<14>	IEC1<14>	IPC11<20:18>	IPC11<17:16>	Yes
ADC Digital Comparator 2	_ADC_DC2_VECTOR	47	OFF047<17:1>	IFS1<15>	IEC1<15>	IPC11<28:26>	IPC11<25:24>	Yes
ADC Digital Comparator 3	_ADC_DC3_VECTOR	48	OFF048<17:1>	IFS1<16>	IEC1<16>	IPC12<4:2>	IPC12<1:0>	Yes
ADC Digital Comparator 4	_ADC_DC4_VECTOR	49	OFF049<17:1>	IFS1<17>	IEC1<17>	IPC12<12:10>	IPC12<9:8>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress f)	N -	Ð								Bi	s								Ś
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	055077(2)	31:16	_	_	_	_		—	—	_	_	_	_	_	_	_	VOFF.	:17:16>	0000
0674	OFF077 ⁽²⁾	15:0						•	•	VOFF<15:1>			•			•	•	—	0000
0670	OFF078 ⁽²⁾	31:16	_	_	_	_	—	—	_	_	_	_	-	_	_	_	VOFF.	:17:16>	0000
0070		15:0								VOFF<15:1>								—	0000
0670	OFF079 ⁽²⁾	31:16	_	—	—	—	_	—	_	_	_	-	—	_	—	_	VOFF.	:17:16>	0000
0070	011073.7	15:0							-	VOFF<15:1>			-			-	-	—	0000
0880	OFF080 ⁽²⁾	31:16	—	—	—	—	_	—	—	—	_	—	—	—	—		VOFF.	:17:16>	0000
0000	011000	15:0								VOFF<15:1>								—	0000
0684	OFF081 ⁽²⁾	31:16	—	—	_	—	—	—		—	—	—	—	—	—	—	VOFF.	:17:16>	0000
0004	011001	15:0								VOFF<15:1>			•					—	0000
0688	OFF082 ⁽²⁾	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	—	VOFF.	:17:16>	0000
0000	011002	15:0								VOFF<15:1>								—	0000
0680	OFF083 ⁽²⁾	31:16	—	—	—	—	_	—	_	—	_	—	—	—	—		VOFF.	:17:16>	0000
0000	011005	15:0								VOFF<15:1>								—	0000
0690	OFF084 ⁽²⁾	31:16	—	—	_	—	—	—		—	—	—	—	—	—	_	VOFF.	:17:16>	0000
0000	011004	15:0								VOFF<15:1>								—	0000
0694	OFF085 ⁽²⁾	31:16	—	—	—	—	—	—	—		_	—	—	—	—	—	VOFF.	:17:16>	0000
0004	011000	15:0								VOFF<15:1>			-						0000
0698	OFF086 ⁽²⁾	31:16	—	—	—	—	—	—	—		_	—	—	—	—	—	VOFF.	:17:16>	0000
	0.1000	15:0								VOFF<15:1>								—	0000
0690	OFF087 ⁽²⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF.	:17:16>	0000
	0.1.001	15:0								VOFF<15:1>			-						0000
06A0	OFF088 ⁽²⁾	31:16	_	—	-	—	_	—	—	—	_	—	-	—	—	—	VOFF.	:17:16>	0000
00,10	0.1000	15:0								VOFF<15:1>								—	0000
06A4	OFF089 ⁽²⁾	31:16	—	—	—	—	—	—	—	—	-	—	-	—	—	—	VOFF.	:17:16>	0000
		15:0								VOFF<15:1>								_	0000
06A8	OFF090 ⁽²⁾	31:16	_	—	—	—	—	—	—	_	_	—	—	—	—	_	VOFF.	:17:16>	0000
00/10	0.7000	15:0								VOFF<15:1>								_	0000
0640	OFF091 ⁽²⁾	31:16	_	—	-	—	—	—	—	—	_	—	—	—	—	—	VOFF.	:17:16>	0000
	011001	15:0								VOFF<15:1>								_	0000

DS60001320D-page 136

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	—	_	-	—	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_		—			—
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	ON	—	_	SUSPEND	DMABUSY	_	_	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0		_		_	_			_

REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** DMA On bit
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 Unimplemented: Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally
- bit 11 DMABUSY: DMA Module Busy bit
 - 1 = DMA module is active and is transferring data
 - 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	—	_	—	—
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	—	_	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

REGISTER 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23	CHSDIE: Channel Source Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 22	CHSHIE: Channel Source Half Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit
	1 = Interrupt is enabled
1.11.40	0 = Interrupt is disabled
bit 19	CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
	 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 18	
DIL TO	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit 1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 17	CHTAIE: Channel Transfer Abort Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 16	CHERIE: Channel Address Error Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 15-8	Unimplemented: Read as '0'
bit 7	CHSDIF: Channel Source Done Interrupt Flag bit
	1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)
	0 = No interrupt is pending
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit
	1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)
	0 = No interrupt is pending

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

ŝ											Bits								
(BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	13/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0						16/0	All Recete
	USB	31:16	_	RXHUBPRT<6:0> MULTTRAN RXHUBADD<6:0>												00			
09C	E3RXA	15:0		<u>− − − − − − − RXFADDR<6:0></u> 00															
0A0	US	31:16	1			ТХ	HUBPRT<6	:0>	-	-	MULTTRAN			TXHU	BADD<6:0>				0 0
	BE4TXA	15:0	-	_											00				
0A4	USB	31:16	_			RX	HUBPRT<6	:0>		1	MULTTRAN				BADD<6:0>				00
	E4RXA	15:0	_	-	-	—	—		-	-	—				DDR<6:0>				00
0A8	USB	31:16	—				HUBPRT<6			-	MULTTRAN				BADD<6:0>				00
	E5TXA	15:0	_	-	—	-	—	_	-	-	—				DDR<6:0>				00
DAC	USB E5RXA	31:16	_			RX	HUBPRT<6	:0>			MULTTRAN				BADD<6:0>				00
		15:0			—		-		_	-	-				DDR<6:0>				00
0В0	USB E6TXA	31:16					HUBPRT<6:			1	MULTTRAN				BADD<6:0>				00
		15:0	_	_	-		HUBPRT<6	-	_	—					DDR<6:0>				00
0B4	USB E6RXA	31:16 15:0	_	<u> </u>		r	HUBPRIS				MULTTRAN				BADD<6:0>				00
		31:16			—	— 	HUBPRT<6	-	_	—	— MULTTRAN				DDR<6:0>				00
0B8	USB E7TXA	15:0			_			.0>		_	MULTIRAN				DDR<6:0>				00
		31:16				RX	HUBPRT<6	·0>		_	MULTTRAN				BADD<6:0>				00
0BC	USB E7RXA	15:0			_	_	_		_	_					DDR<6:0>				00
	USB	31:16																	00
100	E0CSR0	15:0							Inde	exed by the	same bits in U	SBIE0CSR0							00
3108	USB	31:16							Ind	avad by the	oomo hito in Ll								00
108	E0CSR2	15:0							Inde	exed by the	same bits in U	SBIEUCSKZ							00
10C	USB	31:16							Inde	aved by the	same bits in U	SBIEOCSR3							00
100	E0CSR3	15:0							Inde	sked by the	Same bits in O	SDIE0001(3							00
3110	USB	31:16							Inde	exed by the	same bits in U	SBIE1CSR0							00
/0	E1CSR0	15:0								5,00 5) 110		00.2100110							00
3114	USB	31:16							Inde	exed by the	same bits in U	SBIE1CSR1							00
	E1CSR1	15:0																	00
3118	USB	31:16		Indexed by the same bits in USBIE1CSR2															
	E1CSR2	15:0		000															
11C	USB E1CSR3	31:16		Indexed by the same bits in USBIE1CSR3															
		15:0																	00
120	USB E2CSR0	31:16							Inde	exed by the	same bits in U	SBIE2CSR0							000
		15:0																	000
3124	USB E2CSR1	31:16							Inde	exed by the	same bits in U	SBIE2CSR1							000
		15:0		Reset; — = un															000

2: 3: 4:

Host mode.

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).

REGISTER 11-6:	USBIE0CSR2: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 2
	(ENDPOINT 0)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	_	_	_		NAKLIM<4:0>				
00.40	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	SPEED<1:0>		_	—	—		—	—	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.0	_	_	_	_	—	_	_	—	
7:0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
	_				RXCNT<6:0>				

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 NAKLIM<4:0>: Endpoint 0 NAK Limit bits

The number of frames/microframes (Hi-Speed transfers) after which Endpoint 0 should time-out on receiving a stream of NAK responses.

- bit 23-22 SPEED<1:0>: Operating Speed Control bits
 - 11 = Low-Speed
 - 10 = Full-Speed
 - 01 = Hi-Speed
 - 00 = Reserved
- bit 21-7 Unimplemented: Read as '0'
- bit 6-0 **RXCNT<6:0>:** Receive Count bits

The number of received data bytes in the Endpoint 0 FIFO. The value returned changes as the contents of the FIFO change and is only valid while RXPKTRDY is set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_		_	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—						_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_		_	—
7.0	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	SWAPOEN	SWRST	SWAPEN			BDPCHST	BDPPLEN	DMAEN

REGISTER 26-2: CECON: CRYPTO ENGINE CONTROL REGISTER

Legend:		HC = Hardware Cleare	HC = Hardware Cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

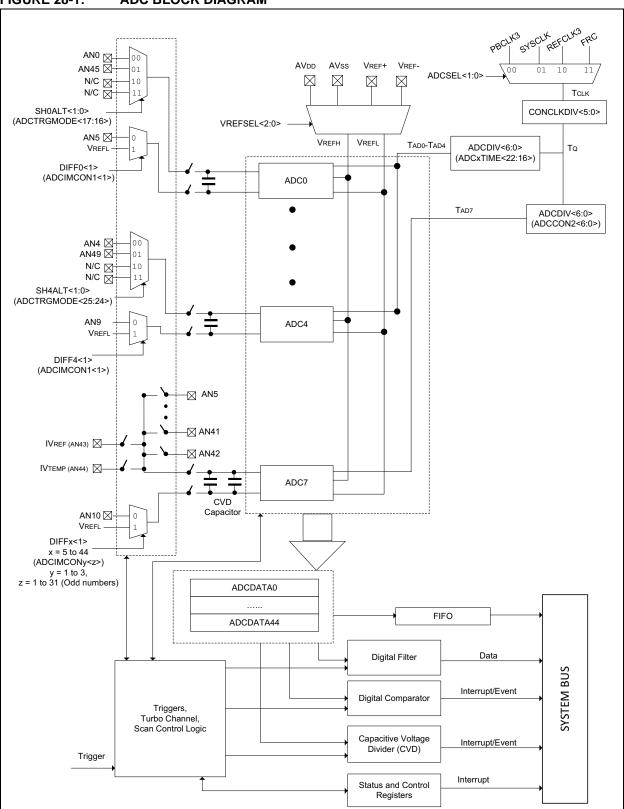
bit 31-8 Unimplemented: Read as '0'

- bit 7 SWAPOEN: Swap Output Data Enable bit
 - 1 = Output data is byte swapped when written by dedicated DMA
 - 0 = Output data is not byte swapped when written by dedicated DMA
- bit 6 SWRST: Software Reset bit
 - 1 = Initiate a software reset of the Crypto Engine
 - 0 = Normal operation
- bit 5 **SWAPEN:** Input Data Swap Enable bit
 - 1 = Input data is byte swapped when read by dedicated DMA
 - 0 = Input data is not byte swapped when read by dedicated DMA
- bit 4-3 Unimplemented: Read as '0'

bit 2 BDPCHST: Buffer Descriptor Processor (BDP) Fetch Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

- 1 = BDP descriptor fetch is enabled
- 0 = BDP descriptor fetch is disabled


bit 1 **BDPPLEN:** Buffer Descriptor Processor Poll Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

- 1 = Poll for descriptor until valid bit is set
- 0 = Do not poll

bit 0 DMAEN: DMA Enable bit

- 1 = Crypto Engine DMA is enabled
- 0 = Crypto Engine DMA is disabled

FIGURE 28-1: ADC BLOCK DIAGRAM

REGISTER 28-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2 (CONTINUED)

REGISTER	20-0. ADCINICONZ. ADC INFUT IN
bit 21	DIFF26: AN26 Mode bit ⁽¹⁾
	1 = AN26 is using Differential mode
	0 = AN26 is using Single-ended mode
bit 20	SIGN26: AN26 Signed Data Mode bit ⁽¹⁾
	1 = AN26 is using Signed Data mode
	0 = AN26 is using Unsigned Data mode
bit 19	DIFF25: AN25 Mode bit ⁽¹⁾
	1 = AN25 is using Differential mode
	0 = AN25 is using Single-ended mode
bit 18	SIGN25: AN25 Signed Data Mode bit ⁽¹⁾
	1 = AN25 is using Signed Data mode
	0 = AN25 is using Unsigned Data mode
bit 17	DIFF24: AN24 Mode bit ⁽¹⁾
	1 = AN24 is using Differential mode
	0 = AN24 is using Single-ended mode
bit 16	SIGN24: AN24 Signed Data Mode bit ⁽¹⁾
	1 = AN24 is using Signed Data mode
	0 = AN24 is using Unsigned Data mode
bit 15	DIFF23: AN23 Mode bit ⁽¹⁾
	1 = AN23 is using Differential mode
	0 = AN23 is using Single-ended mode
bit 14	SIGN23: AN23 Signed Data Mode bit ⁽¹⁾
	1 = AN23 is using Signed Data mode
	0 = AN23 is using Unsigned Data mode
bit 13	DIFF22: AN22 Mode bit ⁽¹⁾
	1 = AN22 is using Differential mode
	0 = AN22 is using Single-ended mode
bit 12	SIGN22: AN22 Signed Data Mode bit ⁽¹⁾
	1 = AN22 is using Signed Data mode
	0 = AN22 is using Unsigned Data mode
bit 11	DIFF21: AN21 Mode bit ⁽¹⁾
	1 = AN21 is using Differential mode
	0 = AN21 is using Single-ended mode
bit 10	SIGN21: AN21 Signed Data Mode bit ⁽¹⁾
	1 = AN21 is using Signed Data mode
	0 = AN21 is using Unsigned Data mode
bit 9	DIFF20: AN20 Mode bit ⁽¹⁾
	1 = AN20 is using Differential mode
	0 = AN20 is using Single-ended mode
bit 8	SIGN20: AN20 Signed Data Mode bit ⁽¹⁾
	1 = AN20 is using Signed Data mode
	0 = AN20 is using Unsigned Data mode
bit 7	DIFF19: AN19 Mode bit ⁽¹⁾
	1 = AN19 is using Differential mode
	0 = AN19 is using Single-ended mode

Note 1: This bit is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24				PTV<	15:8>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	PTV<7:0>								
15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	
15:8	ON	—	SIDL	_	—	_	TXRTS	RXEN ⁽¹⁾	
7:0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	
7:0	AUTOFC		—	MANFC	_	—	_	BUFCDEC	

REGISTER 30-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

	PAUSE Timer Value used for Flow Control. This register should only be written when RXEN (ETHCON1<8>) is not set.
	These bits are only used for Flow Control operations.
bit 15	ON: Ethernet ON bit
	1 = Ethernet module is enabled0 = Ethernet module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Ethernet Stop in Idle Mode bit
	 1 = Ethernet module transfers are paused during Idle mode 0 = Ethernet module transfers continue during Idle mode
bit 12-10	Unimplemented: Read as '0'
bit 9	TXRTS: Transmit Request to Send bit
	 1 = Activate the TX logic and send the packet(s) defined in the TX EDT 0 = Stop transmit (when cleared by software) or transmit done (when cleared by hardware)
	After the bit is written with a '1', it will clear to a '0' whenever the transmit logic has finished transmitting the requested packets in the Ethernet Descriptor Table (EDT). If a '0' is written by the CPU, the transmit logic finishes the current packet's transmission and then stops any further.
	This bit only affects TX operations.
bit 8	RXEN: Receive Enable bit ⁽¹⁾
	1 Frankla DV largin manufactor and received and started in the DV hyther as controlled by the filter

- 1 = Enable RX logic, packets are received and stored in the RX buffer as controlled by the filter configuration
- $\ensuremath{\scriptscriptstyle 0}$ = Disable RX logic, no packets are received in the RX buffer

This bit only affects RX operations.

PTV<15:0>: PAUSE Timer Value bits

bit 31-16

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24		—	-	-	—	—	-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	—	_	_	—	—	_	—
15.0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
15:8	_	—	_	_	RESETRMII ⁽¹⁾	—	_	SPEEDRMII ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0		_		_	_	_	_	

REGISTER 30-29: EMAC1SUPP: ETHERNET CONTROLLER MAC PHY SUPPORT REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

- bit 31-12 Unimplemented: Read as '0'
- bit 11 **RESETRMII:** Reset RMII Logic bit⁽¹⁾
 - 1 = Reset the MAC RMII module
 - 0 = Normal operation.
- bit 10-9 Unimplemented: Read as '0'
- bit 8 SPEEDRMII: RMII Speed bit⁽¹⁾
 - This bit configures the Reduced MII logic for the current operating speed.
 - 1 = RMII is running at 100 Mbps
 - 0 = RMII is running at 10 Mbps
- bit 7-0 Unimplemented: Read as '0'
- Note 1: This bit is only used for the RMII module.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
51.24		_		—	—			—		
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	-	—		
15.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P		
15:8	STNADDR6<7:0>									
7.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P		
7:0		STNADDR5<7:0>								

REGISTER 30-37: EMAC1SA0: ETHERNET CONTROLLER MAC STATION ADDRESS 0 REGISTER

Legend:		P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15-8 **STNADDR6<7:0>:** Station Address Octet 6 bits These bits hold the sixth transmitted octet of the station address.
- bit 7-0 **STNADDR5<7:0>:** Station Address Octet 5 bits These bits hold the fifth transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—			-	_	-	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—			_	_			_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—			_	_			_
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
			_			_	C2OUT	C1OUT

REGISTER 31-2: CMSTAT: COMPARATOR STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-2 Unimplemented: Read as '0'

bit 1 C2OUT: Comparator Output bit

1 = Output of Comparator 2 is a '1'

0 = Output of Comparator 2 is a '0'

bit 0 **C1OUT:** Comparator Output bit

1 = Output of Comparator 1 is a '1'

0 =Output of Comparator 1 is a '0'

36.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

36.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

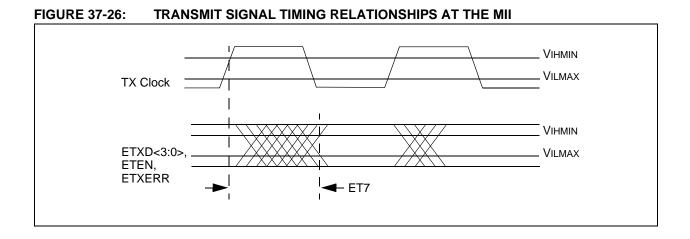
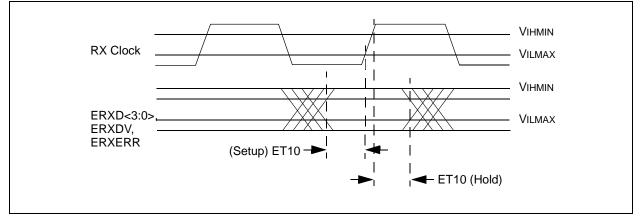

AC CHARACTERISTICS				Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param. No.	Symbol Tr:scl	Characteristics		Min. ⁽¹⁾	Max.	Units	Conditions	
IM21		SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)		300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—	
		Setup Time	400 kHz mode	100		ns		
			1 MHz mode (Note 2)	100	_	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μs	—	
		Hold Time	400 kHz mode	0	0.9	μs	1	
			1 MHz mode (Note 2)	0	0.3	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	Only relevant for	
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	Repeated Start	
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	After this period, the	
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	first clock pulse is	
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	μs	generated	
IM33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	—	
			400 kHz mode	TPBCLK2 * (BRG + 2)		μs		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	μs		
IM34	THD:STO	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	ns	—	
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	ns		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	ns		
IM40	TAA:SCL	Output Valid from Clock	100 kHz mode	—	3500	ns	_	
			400 kHz mode	—	1000	ns	—	
			1 MHz mode (Note 2)	—	350	ns	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	The amount of time	
			400 kHz mode	1.3	—	μs	the bus must be free	
			1 MHz mode (Note 2)	0.5		μs	before a new transmission can start	
IM50	Св	Bus Capacitive Loading		—	— — pF See p		See parameter DO58	
IM51	TPGD	Pulse Gobbler De	elay	52	312	ns	See Note 3	

TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)


Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

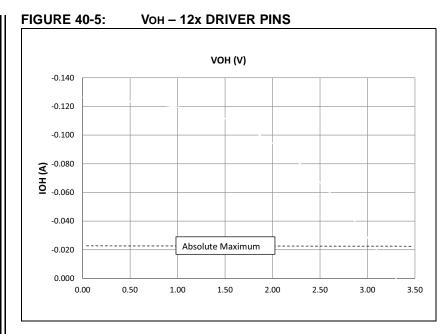
3: The typical value for this parameter is 104 ns.

38.0 EXTENDED TEMPERATURE ELECTRICAL CHARACTERISTICS

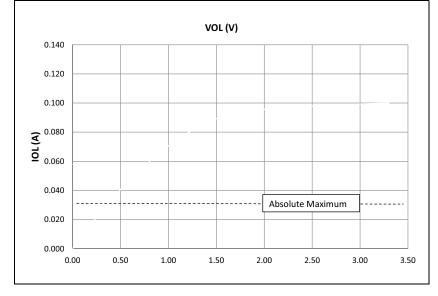
This section provides an overview of the PIC32MZ EF electrical characteristics for devices running up to 125°C. Additional information will be provided in future revisions of this document as it becomes available.

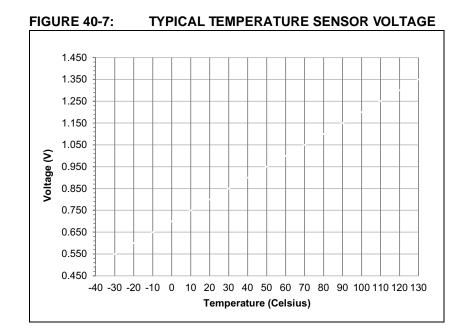
The specifications for Extended Temperature are identical to those shown in **37.0** "Electrical Characteristics", with the exception of the parameters listed in this chapter.

Parameters in this chapter begin with the letter "E", which denotes Extended Temperature operation. For example, parameter DC28 in **37.0** "Electrical Characteristics", is the Extended Temperature operation equivalent for EDC28.


Absolute maximum ratings for the PIC32MZ EF devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings


(See Note 1)


Ambient temperature under bias.....-40°C to +125°C

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 40-6: VoL – 12x DRIVER PINS

