

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efg100-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The FPU implements a high-performance 7-stage pipeline:

- Decode, register read and unpack (FR stage)
- Multiply tree, double pumped for double (M1 stage)
- Multiply complete (M2 stage)
- Addition first step (A1 stage)
- Addition second and final step (A2 stage)
- Packing to IEEE format (FP stage)
- Register writeback (FW stage)

The FPU implements a bypass mechanism that allows the result of an operation to be forwarded directly to the instruction that needs it without having to write the result to the FPU register and then read it back.

Table 3-5 lists the Coprocessor 1 Registers for the FPU.

Register Number	Register Name	Function
0	FIR	Floating Point implementation register. Contains information that identifies the FPU.
25	FCCR	Floating Point condition codes register.
26	FEXR	Floating Point exceptions register.
28	FENR	Floating Point enables register.
31	FCSR	Floating Point Control and Status register.

TABLE 3-5: FPU (CP1) REGISTERS

3.2 Power Management

The processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during Idle periods.

3.2.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 33.0 "Power-Saving Features".

3.2.2 LOCAL CLOCK GATING

The majority of the power consumed by the processor core is in the clock tree and clocking registers. The PIC32MZ family makes extensive use of local gatedclocks to reduce this dynamic power consumption.

3.3 L1 Instruction and Data Caches

3.3.1 INSTRUCTION CACHE (I-CACHE)

The I-Cache is an on-core memory block of 16 Kbytes. Because the I-Cache is virtually indexed, the virtual-tophysical address translation occurs in parallel with the cache access rather than having to wait for the physical address translation. The tag holds 22 bits of physical address, a valid bit, and a lock bit. The LRU replacement bits are stored in a separate array.

The I-Cache block also contains and manages the instruction line fill buffer. Besides accumulating data to be written to the cache, instruction fetches that reference data in the line fill buffer are serviced either by a bypass of that data, or data coming from the external interface. The I-Cache control logic controls the bypass function.

The processor core supports I-Cache locking. Cache locking allows critical code or data segments to be locked into the cache on a per-line basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache locking function is always available on all I-Cache entries. Entries can then be marked as locked or unlocked on a per entry basis using the CACHE instruction.

3.3.2 DATA CACHE (D-CACHE)

The D-Cache is an on-core memory block of 4 Kbytes. This virtually indexed, physically tagged cache is protected. Because the D-Cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access. The tag holds 22 bits of physical address, a valid bit, and a lock bit. There is an additional array holding dirty bits and LRU replacement algorithm bits for each set of the cache.

In addition to I-Cache locking, the processor core also supports a D-Cache locking mechanism identical to the I-Cache. Critical data segments are locked into the cache on a per-line basis. The locked contents can be updated on a store hit, but cannot be selected for replacement on a cache miss.

The D-Cache locking function is always available on all D-Cache entries. Entries can then be marked as locked or unlocked on a per-entry basis using the CACHE instruction.

3.3.3 ATTRIBUTES

The processor core I-Cache and D-Cache attributes are listed in the Configuration registers (see Register 3-1 through Register 3-4).

TABLE 4-14: SYSTEM BUS TARGET 6 REGISTER MAP

ess			Bits																
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI	—	—	_		CODE	<3:0>		_	_	_	_	—	—	—	—	0000
9820	SBIGELOGI	15:0				INI	TID<7:0>					REGIO	N<3:0>	•	—	C	MD<2:0>	•	0000
0004		31:16	_		—	—	_	_	_	—	_	_	_	_	_	_	_	—	0000
9824	SB16ELOG2	15:0	_	_	—	—	_	_	_	_	_	_	_	_	_	_	GROU	P<1:0>	0000
0020	SPIECON	31:16	_	_	—	_	_	_		ERRP	_		—	_	—	—	_		0000
9020	SBIECON	15:0	—	_	—	—	—	_	_	—	_	_	—	—	—	—	—	—	0000
9830		31:16	—	—	_	—	_	_	_	—	—	_	_	_	_	_	—	—	0000
3030	OBTOLCENO	15:0	—	—	_	_	—	_	_	—	_	_		_	_	_	_	CLEAR	0000
9838	SBT6ECLRM	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	OBTOLOLIU	15:0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	CLEAR	0000
9840	SBT6REG0	31:16								BAS	SE<21:6>								xxxx
00.0	021011200	15:0		BASE<5:0> PRI			—			SIZE<4:0	>		_	—	—	xxxx			
9850	SBT6RD0	31:16	—	—	—	—	—	_	_	—	_	_	_	—	—	—	—	—	xxxx
	0210120	15:0	_	_	—	—	—	_	—	—	_	_		_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9858	SBT6WR0	31:16	—	—	—	—	—	_		—					—	_	—	—	xxxx
		15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
9860	SBT6REG1	31:16								BAS	SE<21:6>								xxxx
		15:0			BA	\SE<5:0>			PRI	_			SIZE<4:0	>		_	_	_	XXXX
9870	SBT6RD1	31:16	—	_	_	_	—	_		_	_			_	_				XXXX
		15:0	—	—	—	_	—	—	_	—	—	_	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9878	SBT6WR1	31:16	—	—	—	_	—	—	_	—	—	_	—	—	—	—	—	—	XXXX
		15:0	—	—	—	-	—	_	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y			
31.24	—	—	—	—		F	PLLODIV<2:0>				
22.16	U-0	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y			
23.10	—	PLLMULT<6:0>									
15.0	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y			
15.0	—						PLLIDIV<2:0>				
7:0	R/W-y	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y			
	PLLICLK				_	Pl	LRANGE<2:	0>			

REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER

Legend:	y = Value set from Configuration bits on POR					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-27 Unimplemented: Read as '0'

bit 26-24 PLLODIV<2:0>: System PLL Output Clock Divider bits

111 = Reserved 110 = Reserved 101 = PLL Divide by 32 100 = PLL Divide by 16 011 = PLL Divide by 8 010 = PLL Divide by 4 001 = PLL Divide by 2 000 = Reserved

The default setting is specified by the FPLLODIV<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

bit 23 Unimplemented: Read as '0'

bit 22-16 PLLMULT<6:0>: System PLL Multiplier bits

- 1111111 = Multiply by 128 1111110 = Multiply by 127 1111101 = Multiply by 126 1111100 = Multiply by 125
- •

0000000 = Multiply by 1

The default setting is specified by the FPLLMULT<6:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

bit 15-11 Unimplemented: Read as '0'

Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "*PIC32 Family Reference Manual*" for details.
 Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

REGISTER 11-28: USBLPMR1: USB LINK POWER MANAGEMENT CONTROL REGISTER 1 (CONTINUED)

bit 16 LPMXMT: LPM Transition to the L1 State bit

When in Device mode:

1 = USB module will transition to the L1 state upon the receipt of the next LPM transaction. LPMEN must be set to `0b11. Both LPMXMT and LPMEN must be set in the same cycle.

0 = Maintain current state

When LPMXMT and LPMEN are set, the USB module can respond in the following ways:

- If no data is pending (all TX FIFOs are empty), the USB module will respond with an ACK. The bit will self clear and a software interrupt will be generated.
- If data is pending (data resides in at least one TX FIFO), the USB module will respond with a NYET. In this case, the bit will not self clear however a software interrupt will be generated.

When in Host mode:

- 1 = USB module will transmit an LPM transaction. This bit is self clearing, and will be immediately cleared upon receipt of any Token or three time-outs have occurred.
 0 = Maintain current state
- bit 15-12 ENDPOINT<3:0>: LPM Token Packet Endpoint bits
- This is the endpoint in the token packet of the LPM transaction.
- bit 11-9 Unimplemented: Read as '0'
- bit 8 **RMTWAK:** Remote Wake-up Enable bit

This bit is applied on a temporary basis only and is only applied to the current suspend state.

- 1 = Remote wake-up is enabled
- 0 = Remote wake-up is disabled
- bit 7-4 HIRD<3:0>: Host Initiated Resume Duration bits

The minimum time the host will drive resume on the bus. The value in this register corresponds to an actual resume time of:

Resume Time = 50 μ s + HIRD * 75 μ s. The resulting range is 50 μ s to 1200 μ s.

bit 3-0 LNKSTATE<3:0>: Link State bits

This value is provided by the host to the peripheral to indicate what state the peripheral must transition to after the receipt and acceptance of a LPM transaction. The only valid value for this register is '1' for Sleep State (L1). All other values are reserved.

TABLE 12-3:	OUTPUT PIN SELECTION
-------------	----------------------

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect
RPG8	RPG8R	RPG8R<3:0>	0001 = <u>U3TX</u>
RPF4	RPF4R	RPF4R<3:0>	0010 = U4RTS
RPD10	RPD10R	RPD10R<3:0>	0011 = Reserved
RPF1	RPF1R	RPF1R<3:0>	0100 = Reserved 0101 = SDO1
RPB9	RPB9R	RPB9R<3:0>	0110 = SD02
RPB10	RPB10R	RPB10R<3:0>	0111 = SDO3
RPC14	RPC14R	RPC14R<3:0>	1000 = Reserved
RPB5	RPB5R	RPB5R<3:0>	$1001 = SDO5^{(1)}$
RPC1 ⁽¹⁾	RPC1R ⁽¹⁾	RPC1R<3:0> ⁽¹⁾	1010 = SS6''
RPD14 ⁽¹⁾	RPD14R ⁽¹⁾	RPD14R<3:0> ⁽¹⁾	1100 = 003
RPG1 ⁽¹⁾	RPG1R ⁽¹⁾	RPG1R<3:0> ⁽¹⁾	1101 = REFCLKO4
RPA14 ⁽¹⁾	RPA14R ⁽¹⁾	RPA14R<3:0> ⁽¹⁾	1110 = C2OUT
RPD6 ⁽²⁾	RPD6R ⁽²⁾	RPD6R<3:0> ⁽²⁾	1111 = C1TX ⁽³⁾
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect
RPG7	RPG7R	RPG7R<3:0>	0001 = <u>U1TX</u>
RPF5	RPF5R	RPF5R<3:0>	0010 = U2RTS
RPD11	RPD11R	RPD11R<3:0>	0011 = 051X
RPF0	RPF0R	RPF0R<3:0>	0100 = SDO1
RPB1	RPB1R	RPB1R<3:0>	0110 = SDO2
RPE5	RPE5R	RPE5R<3:0>	0111 = SDO3
RPC13	RPC13R	RPC13R<3:0>	1000 = SDO4
RPB3	RPB3R	RPB3R<3:0>	$1001 = SDO5^{(1)}$
RPC4 ⁽¹⁾	RPC4R ⁽¹⁾	RPC4R<3:0> ⁽¹⁾	1010 = Reserved
RPD15 ⁽¹⁾	RPD15R ⁽¹⁾	RPD15R<3:0> ⁽¹⁾	1100 = 007
RPG0 ⁽¹⁾	RPG0R ⁽¹⁾	RPG0R<3:0> ⁽¹⁾	1101 = Reserved
RPA15 ⁽¹⁾	RPA15R ⁽¹⁾	RPA15R<3:0> ⁽¹⁾	1110 = Reserved
RPD7 ⁽²⁾	RPD7R ⁽²⁾	RPD7R<3:0> ⁽²⁾	1111 = REFCLKO1
RPD9	RPD9R	RPD9R<3:0>	0000 = <u>No Con</u> nect
RPG6	RPG6R	RPG6R<3:0>	0001 = U3RTS
RPB8	RPB8R	RPB8R<3:0>	0010 = 041X 0011 = Reserved
RPB15	RPB15R	RPB15R<3:0>	0100 = U6TX
RPD4	RPD4R	RPD4R<3:0>	0101 = SS1
RPB0	RPB0R	RPB0R<3:0>	$0110 = \frac{\text{Reserved}}{2111 - \frac{882}{2}}$
RPE3	RPE3R	RPE3R<3:0>	1000 = SS4
RPB7	RPB7R	RPB7R<3:0>	$1001 = \overline{SS5}^{(1)}$
RPF12 ⁽¹⁾	RPF12R ⁽¹⁾	RPF12R<3:0> ⁽¹⁾	$1010 = SDO6^{(1)}$
RPD12 ⁽¹⁾	RPD12R ⁽¹⁾	RPD12R<3:0> ⁽¹⁾	1011 = 005 1100 = 008
RPF8 ⁽¹⁾	RPF8R ⁽¹⁾	RPF8R<3:0> ⁽¹⁾	1101 = Reserved
RPC3 ⁽¹⁾	RPC3R ⁽¹⁾	RPC3R<3:0> ⁽¹⁾	1110 = C1OUT
RPE9 ⁽¹⁾	RPE9R ⁽¹⁾	RPE9R<3:0> ⁽¹⁾	1111 = REFCLKO3

Note 1: This selection is not available on 64-pin devices.

2: This selection is not available on 64-pin or 100-pin devices.

3: This selection is not available on devices without a CAN module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	_	—	—	—	_	
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	—	_	
	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	
15:8	_	—	—	-	DMA EIF	PKT COMPIF	BD DONEIF	CON THRIF	
	R/W-1, HS	R/W-0, HS	R/W-1, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS	R/W-0, HS	R/W-1, HS	
7:0	CON EMPTYIF	CON FULLIF	RXTHRIF ⁽¹⁾	RXFULLIF	RX EMPTYIF	TXTHRIF	TXFULLIF	TX EMPTYIF	

REGISTER 20-9: SQI1INTSTAT: SQI INTERRUPT STATUS REGISTER

Legend:	HS = Hardware Set			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

b

bit 31-12	Unimplemented: Read as '0'
bit 11	DMAEIF: DMA Bus Error Interrupt Flag bit
	1 = DMA bus error has occurred0 = DMA bus error has not occurred
bit 10	PKTCOMPIF: DMA Buffer Descriptor Processor Packet Completion Int
	1 = DMA BD packet is complete 0 = DMA BD packet is in progress
bit 9	BDDONEIF: DMA Buffer Descriptor Done Interrupt Flag bit
	1 = DMA BD process is done 0 = DMA BD process is in progress
bit 8	CONTHRIF: Control Buffer Threshold Interrupt Flag bit
	1 = The control buffer has more than THRES words of space available $0 =$ The control buffer has less than THRES words of space available
bit 7	CONEMPTYIF: Control Buffer Empty Interrupt Flag bit
	1 = Control buffer is empty0 = Control buffer is not empty
bit 6	CONFULLIF: Control Buffer Full Interrupt Flag bit
	1 = Control buffer is full0 = Control buffer is not full
bit 5	RXTHRIF: Receive Buffer Threshold Interrupt Flag bit ⁽¹⁾
	1 = Receive buffer has more than RXINTTHR words of space available $0 = $ Receive buffer has less than RXINTTHR words of space available
bit 4	RXFULLIF: Receive Buffer Full Interrupt Flag bit
	1 = Receive buffer is full0 = Receive buffer is not full

b terrupt Flag bit

b

b

b

b

- b

bit 3 **RXEMPTYIF:** Receive Buffer Empty Interrupt Flag bit

- 1 = Receive buffer is empty
- 0 = Receive buffer is not empty

Note 1: In Boot/XIP mode, the POR value of the receive buffer threshold is zero. Therefore, this bit will be set to a '1', immediately after a POR until a read request on the System Bus is received.

Note: The bits in the register are cleared by writing a '1' to the corresponding bit position.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	-	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	-	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	_	—	—
7.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0		_		_	_	START	POLLEN	DMAEN

REGISTER 20-14: SQI1BDCON: SQI BUFFER DESCRIPTOR CONTROL REGISTER

Legend:

bit 0

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

- bit 2 START: Buffer Descriptor Processor Start bit
 - 1 = Start the buffer descriptor processor
 - 0 = Disable the buffer descriptor processor
- bit 1 POLLEN: Buffer Descriptor Poll Enable bit
 - 1 = BDP poll is enabled
 - 0 = BDP poll is not enabled
 - DMAEN: DMA Enable bit
 - 1 = DMA is enabled
 - 0 = DMA is disabled

REGISTER 20-15: SQI1BDCURADD: SQI BUFFER DESCRIPTOR CURRENT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
31.24				BDCURRAD	DR<31:24>				
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
23:16	BDCURRADDR<23:16>								
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8	BDCURRADDR<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7.0				BDCURRAD	DDR<7:0>				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BDCURRADDR<31:0>: Current Buffer Descriptor Address bits

These bits contain the address of the current descriptor being processed by the Buffer Descriptor Processor.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	R/W-0, HC	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
23:16	RDSTART	—	—	—	—	—	DUALBUF	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON	—	SIDL	ADRML	JX<1:0>	PMPTTL	PTWREN	PTRDEN
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7:0	CSF<	1:0> ⁽¹⁾	ALP ⁽¹⁾	CS2P ⁽¹⁾	CS1P ⁽¹⁾	_	WRSP	RDSP

REGISTER 23-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23 RDSTART: Start Read on PMP Bus bit This bit is cleared by hardware at the end of the read cycle. 1 = Start a read cycle on the PMP bus 0 = No effect
bit 22-18 Unimplemented: Read as '0'
bit 17 DUALBUF: Dual Read/Write Buffers enable bit

This bit is valid in Master mode only.

1 = PMP uses separate registers for reads and writes (PMRADDR, PMDATAIN, PMWADDR, PMDATAOUT)

0 = PMP uses legacy registers (PMADDR, PMDATA)

- bit 16 Unimplemented: Read as '0'
- bit 15 **ON:** Parallel Master Port Enable bit

1 = PMP is enabled

- 0 = PMP is disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode

bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits

- 11 = Lower 8 bits of address are multiplexed on PMD<15:0> pins; upper 8 bits are not used
- 10 = All 16 bits of address are multiplexed on PMD<15:0> pins
- 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8>
- 00 = Address and data appear on separate pins
- bit 10 PMPTTL: PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port is enabled
 - 0 = PMWR/PMENB port is disabled
- bit 8 **PTRDEN:** Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port is enabled
 - 0 = PMRD/PMWR port is disabled

Note 1: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
31:24				BDPADDR	<31:24>				
22.16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
23:16	BDPADDR<23:16>								
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8	BDPADDR<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0				BDPADD	R<7:0>				

REGISTER 26-3: CEBDADDR: CRYPTO ENGINE BUFFER DESCRIPTOR REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BDPADDR<31:0>:** Current Buffer Descriptor Process Address Status bits These bits contain the current descriptor address that is being processed by the Buffer Descriptor Processor (BDP).

REGISTER 26-4: CEBDPADDR: CRYPTO ENGINE BUFFER DESCRIPTOR PROCESSOR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24				BASEADDI	२<३१:२४>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	BASEADDR<23:16>								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	BASEADDR<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				BASEADE)R<7:0>				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BASEADDR<31:0>: Buffer Descriptor Base Address bits

These bits contain the physical address of the first Buffer Descriptor in the Buffer Descriptor chain. When enabled, the Crypto DMA begins fetching Buffer Descriptors from this address.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y		
31:24		AN<31:23>								
22:40	R-y	R-y	R-y	R-y	R-y	R-1	R-1	R-1		
23:16	AN<23:16>									
45.0	R-1	R-1	R-1	R-1	R-1	R-1	R-1	R-1		
15:8	AN<15:8>									
7:0	R-1	R-1	R-1	R-1	R-1	R-1	R-1	R-1		
				AN<	7:0>					

REGISTER 28-34: ADCSYSCFG1: ADC SYSTEM CONFIGURATION REGISTER 1

Legend:		y = POR value is determ	ined by the specific device
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 AN<31:0>: ADC Analog Input bits

These bits reflect the system configuration and are updated during boot-up time. By reading these readonly bits, the user application can determine whether or not an analog input in the device is available. AN<31:0>: Reflects the presence or absence of the respective analog input (AN31-AN0).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	—	—
45.0	U-0	U-0	U-0	R-1	R-1	R-y	R-y	R-y
15:8	—	—	—	AN<44:40>				
7:0	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y
				AN<3	9:32>			

REGISTER 28-35: ADCSYSCFG2: ADC SYSTEM CONFIGURATION REGISTER 2

Legend:		y = POR value is determined by the specific device		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-13 Unimplemented: Read as '0'

bit 12-0 AN<44:32>: ADC Analog Input bits

These bits reflect the system configuration and are updated during boot-up time. By reading these readonly bits, the user application can determine whether or not an analog input in the device is available. AN<63:32>: Reflects the presence or absence of the respective analog input (AN63-AN32).

TABLE 29-2: CAN2 REGISTER SUMMARY FOR PIC32MZXXXECF AND PIC32MZXXXECH DEVICES

No. Str. Str. Str. Str. Str. Str. Str. Str.	ess										Bi	ts								
1000 C2CN 31:16 - - ABAT REOOP-2:0- OPMOD-2:0- CANCAP - - - - 0.00 1010 C2CFQ 31:6 - - - - - - - 000 000	Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000 C2CRC 160 N - SIDE - CANUSY - - - - - - - - - - - NOME	4000	00001	31:16	—	_	_	_	ABAT		REQOP<2:0	>	(OPMOD<2:0	>	CANCAP	_	_	_	_	0480
1110 2C2C6 31.6 WAKPL WAKPL SEG2PH-2.> 000 102 31.6 INRIE WAKPL CERRIE SERRIE R80VF - - - - - MODIO CTMRIE RBIE TBIE 000 103 31.6 INRIE WAKP CERRIE SERRIE RBOUF - - - - - MODIO CTMRIE RBIE TBIE 000 1030 2016 -	1000	C2CON	15:0	ON	-	SIDLE	—	CANBUSY	_	_	—	—	_	_		[DNCNT<4:0:	>		0000
11100 CLCV Fig. 6 SCOPPENTS SAM SECTIFIEST SAM SECTIFIEST SAM S	1010	00050	31:16	_	—	_	_	_	_	_	_	—	WAKFIL	_	_	_	S	EG2PH<2:0)>	0000
120 21/16 VIRIE WAKE CERRIE SERVE RBOVE — Description Des	1010	02070	15:0	SEG2PHTS	SAM	5	SEG1PH<2:0)>		PRSEG<2:0	>	SJW	<1:0>			BRP	<5:0>			0000
Name OLERN NAME VARIF VARIF CERNIF SERRIF RBOV[F - - - - - MDDF CTMBF RBF TBF 0000 1338 C2VEC 156 - - - - - - - - - - - 0000 1040 C2TREC 15.0 - - - - - - - RDP RXBP RXMR RXMR <td< td=""><td>1020</td><td>C2INT</td><td>31:16</td><td>IVRIE</td><td>WAKIE</td><td>CERRIE</td><td>SERRIE</td><td>RBOVIE</td><td>—</td><td></td><td></td><td>—</td><td></td><td>—</td><td>_</td><td>MODIE</td><td>CTMRIE</td><td>RBIE</td><td>TBIE</td><td>0000</td></td<>	1020	C2INT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	—			—		—	_	MODIE	CTMRIE	RBIE	TBIE	0000
103 C2VEC 116 - - - - - - - - - 000 1040 C2TREC 31:6 - - - - - - - 000 1040 C2TREC 31:6 - - - - - - - 000 1050 C2FSTAT 31:6 FIOP13F FIOP1092 FIOP1292	1020	02INT	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF	—	—	—	_	—	—	_	MODIF	CTMRIF	RBIF	TBIF	0000
1000 0.4 L - - - - - - - - - - 000 1040 2CTREC 16.0 - - - - - - - - - 000 7XBP 7XBR	1030		31:16	—		—	—	—	—	—	—		—	—	—	_	—	—	—	0000
1040 CZTRC 31:16 - - - - - TXBP TXBP TXBRP TXMRN RXMAN RXMAN <t< td=""><td>1030</td><td>02100</td><td>15:0</td><td>—</td><td></td><td>—</td><td></td><td></td><td>FILHIT<4:0:</td><td>></td><td></td><td>—</td><td></td><td></td><td></td><td>CODE<6:0></td><td>></td><td></td><td></td><td>0040</td></t<>	1030	02100	15:0	—		—			FILHIT<4:0:	>		—				CODE<6:0>	>			0040
Number of the sector	1040	C2TREC	31:16	—	—	—	—	—	—	—	—	—	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
1050 C2FSTA 31:16 FHC0P30 FHC0P28 FHC0P27 FHC0P22 FHC0P20 FHC0P20 FHC0P18 FHC0P17 FHC0P16 0000 1060 C2RXVF 31:16 RXOVF31 RXOVF30 RXOVF30 RXOVF208 RXOVF228 RXOVF28 RXOVF3 RXOVF18 RXOVF17 RXOV610 RXOVF18 RXOVF18 RXOVF17 RXOVF18 RXOVF17 RXOVF18 RXOVF17 RXOVF17		0220	15:0			1	TERRO	CNT<7:0>	1	1	1		1	1	RERRC	NT<7:0>	1	1	1	0000
Name 15.0 FIFOIP15 FIFOIP13 FIFOIP12 FIFOIP14 FIF	1050	C2FSTAT	31:16	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16	0000
1000 C2RXOF 31:16 RXOVF20 RXOVF20 RXOVF20 RXOVF20 RXOVF20 RXOVF10 RXOV			15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	0000
15:0 RXOVF16 RXOVF16 RXOVF12 R	1060	C2RXOVF	31:16	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
$ \begin{array}{c c c c c c } \hline 0.0 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			15:0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
$ \begin{array}{ c c c c } \hline 15.0 & \hline CANTSPRE<15.0 \\ \hline 15.0 & \hline SID<10.0 \\ \hline SID<10.0 \\ \hline SID<10.0 \\ \hline SID<10.0 \\ \hline 15.0 & \hline SID<10.0 \\ \hline SID = 10 \\ \hline SID = 11 \\ \hline SI$	1070	C2TMR	31:16								CANTS	<15:0>							1	0000
$ \begin{array}{c c c c c c c } \hline 1080 & C2RXM0 & \hline 31:16 & \hline & SID<10:0> & \hline & & ID<15:0> & & & & & & & & & & & & & & & & & & &$			15:0					CANISPRE<15:0>									0000			
$ \begin{array}{ c c c c c c c } \hline 15:0 & \hline 15:0 &$	1080	C2RXM0	31:16	SID<10:0>										MIDE	—	EID<'	17:16>	XXXX		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			15:0								EID<	15:0>								XXXX
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10A0	C2RXM1	31:16						SID<10:0>							MIDE		EID<'	17:16>	XXXX
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			15:0						010 40.0		EID<	15:0>				MIDE			7.40	XXXX
Image: 15:0 15:0 15:0 15:0 16:0	10B0	C2RXM2	31:16						SID<10:0>			15.0				MIDE	_	EID<"	17:16>	XXXX
10B0 C2RXM3 31.10 Elb E			15:0						SID (10:0)		EID<	15:0>				MIDE			17.16.	XXXX
Instruction	10B0	C2RXM3	31.10						SID<10.0>		EID 4	15:0				MIDE		EID<	17.10>	XXXX
1010 C2FLTCON 31.10 FLTENS INSELSCI.05 FOELSCI.05 FLTEN2 INSELSCI.05 FOELSCI.05 OUTOR 1000 C2FLTCON1 31.16 FLTEN7 MSEL5<1:05			15.0	ELTEN/2	MGEL	2 -1.0			EGEI 2 -4-0		EID<	10.0>	MGEI	2 - 1 • 0 >			ESEI 2 - 4.0			2000
Instruction	1010	C2FLTCON0	15.0		MSEL	1 - 1 - 0 -		FSEL3<4:0>				MSEL	2<1.0>			ESEL 0 - 4.02			0000	
10D0 C2FLTCON1 31:10 FLTEN7 MSEL7(1.05) FOEL7(4:05) FLTEN6 MSEL0(1.05) FSEL0(4:05) 0000 10D0 C2FLTCON2 15:0 FLTEN5 MSEL5(1:05) FSEL5(4:05) FLTEN4 MSEL0(1:05) FSEL4(4:05) 0000 10E0 C2FLTCON2 31:16 FLTEN1 MSEL11(1:05) FSEL11(4:05) FLTEN10 MSEL10(1:05) FSEL10(4:05) 0000 10E0 C2FLTCON2 31:16 FLTEN11 MSEL9(1:05) FSEL9(4:05) FLTEN8 MSEL8(1:05) FSEL8(4:05) 0000 10F0 C2FLTCON3 31:16 FLTEN15 MSEL15(1:05) FSEL15(4:05) FLTEN14 MSEL14(1:05) FSEL14(4:05) 0000 10F0 C2FLTCON3 15:0 FLTEN13 MSEL13(1:05) FSEL14(4:05) 0000 10F0 C2FLTCON3 15:0 FLTEN13 MSEL13(2:05) FSEL13(2:05) FLTEN12 MSEL12(2:105) FSEL14(4:05) 0000			21.16		MSEL	7-1:0>	FOELIC4:U> FLIENU MOELUC1:U> FOELUC4:U> ESEL7.400 ELTENIC MSEL6.400 ESEL6.400							0000						
10:0 10:0 FLENd MSELX:0 FOLLX:0 FOULX:0 FOLLX:0 FOLLX:0 FOLLX:0 FOULX:0 FOLLX:0 FOULX:0 FOLLX:0 FOULX:0 FOULX:	10D0	C2FLTCON1	15.0		MSEL	5-1:0>	FOEL/<4:0> FLIEND MOELO<1:0> FSEL0<4:0> ESEL 5 (4:0) EITEN/A MSEL 4 (10) ESEL 4 (4:0)						0000							
10E0 C2FLTCON2 31:10 FLTEN11 MSEL1(4:0.5) FSEL9(4:0.5) FLTEN10 MSEL1(0:1.0.5) FSEL9(4:0.5) 0000 10F0 C2FLTCON3 31:16 FLTEN13 MSEL15<1:0.5			21.16		MSEL 1	11 -1.0>			EQEL 11 -4.0	-			MGEL	4<1.0>						0000
10F0 C2FLTCON3 31:16 FLTEN13 MSEL13 MSEL13 FSEL13 MSEL13	10E0	C2FLTCON2	15.0	FITENO	MSEL	9~1.0>			FSEL 0-1.0	~		FLTENR				г	FSEL 8-4.0			0000
10F0 C2FLTCON3 15:0 FLTEN13 MSEL13-1:0 FSEL13-4:0 FSEL1			31.16	FITEN15	MSEL 1	15~1.0~			FSEL 15-4.0	-		FITEN14	MSEL 4	4~1.0~			SEL 14-4.02			0000
	10F0	C2FLTCON3	15.0	FLTEN13	MSEL 1	13~1.0>	}		FSEL 13~4.0			FLTEN12	MSEL 1	2~1.0>		г с	SEL 14<4.0			0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

REGISTER 30-17:	ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK
	STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	-	—		
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	-	—		
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.0	FRMTXOKCNT<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				FRMTXOK	(CNT<7:0>					

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FRMTXOKCNT<15:0>:** Frame Transmitted OK Count bits Increment counter for frames successfully transmitted.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	
31.24	FDMTEN		0	> FWDTWINSZ<1:0					
22.16	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	
23.10	FWDTEN	WINDIS	WDTSPGM		WDTPS<4:0>				
15.0	R/P	R/P	r-1	r-1	r-1	R/P	R/P	R/P	
10.0	FCKSN	/<1:0>	—		—	OSCIOFNC	POSCM	OD<1:0>	
7.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	
7.0	IESO	FSOSCEN	DMTINTV<2:0>			FNOSC<2:0>			

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 FDMTEN: Deadman Timer enable bit

1 = Deadman Timer is enabled and *cannot* be disabled by software

0 = Deadman Timer is disabled and *can* be enabled by software

bit 30-26 DMTCNT<4:0>: Deadman Timer Count Select bits

11111 = Reserved . . 11000 = Reserved 10111 = 2^{31} (2147483648) 10110 = 2^{30} (1073741824) 10101 = 2^{29} (536870912) 10100 = 2^{28} (268435456) . . . 00001 = 2^9 (512) 00000 = 2^8 (256)

bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode
- bit 21 WDTSPGM: Watchdog Timer Stop During Flash Programming bit
 - 1 = Watchdog Timer stops during Flash programming
 - 0 = Watchdog Timer runs during Flash programming (for read/execute while programming Flash applications)

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 FNOSC<2:0>: Oscillator Selection bits
 - 111 = FRC divided by FRCDIV<2:0> bits (FRCDIV)
 - 110 = Reserved
 - 101 = LPRC
 - 100 **= S**OSC
 - 011 = Reserved
 - 010 = Posc (HS, EC)
 - 001 = SPLL
 - 000 = FRC divided by FRCDIV<2:0> bits (FRCDIV)

37.1 DC Characteristics

TABLE 37-1: OPERATING MIPS VS. VOLTAGE

	VDD Range	Temp. Range	Max. Frequency	0
Characteristic	(in voits) (Note 1)	(in °C)	PIC32MZ EF Devices	Comment
DC5	2.1V-3.6V	-40°C to +85°C	200 MHz	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

TABLE 37-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD - S IOH)	PD		PINT + PI/C)	w
I/O Pin Power Dissipation: PI/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 37-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θJA	28	—	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θJA	49	—	°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θJA	43		°C/W	1
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θJA	40	—	°C/W	1
Package Thermal Resistance, 124-pin VTLA (9x9x0.9 mm)	θJA	30	—	°C/W	1
Package Thermal Resistance, 144-pin TQFP (16x16x1 mm)	θJA	42		°C/W	1
Package Thermal Resistance, 144-pin LQFP (20x20x1.4 mm)	θJA	39	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

FIGURE 37-3: I/O TIMING CHARACTERISTICS

TABLE 37-25: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

АС СНА	ARACTERIS	TICS	Star (un Ope	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Charac	Characteristics ⁽²⁾		Min.	Тур.	Max.	Units	Conditions
TA10	A10 TTXH TXCK Synchronous High Time with prescale		ous, aler	[(12.5 ns or 1 TPBCLK3) /N] + 20 ns	—		ns	Must also meet parameter TA15 (Note 3)	
			Asynchronous, with prescaler		10	—	—	ns	—
TA11	TTXL	TxCK Low Time	Synchrono with presc	ous, aler	[(12.5 ns or 1 TPBCLK3) /N] + 20 ns	—	_	ns	Must also meet parameter TA15 (Note 3)
		Asynchror with presc		nous, aler	10	—	_	ns	_
TA15	T⊤xP	TxCK Input Period	Synchrono with presc	ous, aler	[(Greater of 20 ns or 2 TPBCLK3)/N] + 30 ns	—	_	ns	VDD > 2.7V (Note 3)
					[(Greater of 20 ns or 2 TPBCLK3)/N] + 50 ns	_	_	ns	VDD < 2.7V (Note 3)
			Asynchror	nous,	20	—	-	ns	Vdd > 2.7V
			with presc	aler	50	—	—	ns	Vdd < 2.7V
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by set TCS bit (T1CON<1>))		r etting	32	—	50	kHz	—
TA20	TCKEXTMRL	Delay from External TxC Clock Edge to Timer Increment		CK	—		1	ТРВСЬКЗ	—

Note 1: Timer1 is a Type A timer.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

A.2 Analog-to-Digital Converter (ADC)

The PIC32MZ EF family of devices has a new 12-bit High-Speed Successive Approximation Register (SAR) ADC module that replaces the 10-bit ADC module in PIC32MX5XX/6XX/7XX devices; therefore, the use of **Bold** type to show differences is *not* used in the following table. Note that not all register differences are described in this section; however, the key feature differences are listed in Table A-3.

TABLE A-3:ADC DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature
Clock Selection and Op	erating Frequency (TAD)
On PIC32MX devices, the ADC clock was derived from either the FRC or from the PBCLK.	On PIC32MZ EF devices, the three possible sources of the ADC clock are FRC, REFCLKO3, and SYSCLK.
ADRC (AD1CON3<15>) 1 = FRC clock 0 = Clock derived from Peripheral Bus Clock (PBCLK)	ADCSEL<1:0> (ADCCON3<31:30>) 11 = FRC 10 = REFCLKO3 01 = SYSCLK 00 = Reserved
On PIC32MX devices, if the ADC clock was derived from the PBCLK, that frequency was divided further down, with a maximum divisor of 512, and a minimum divisor of two.	On PIC32MZ EF devices, any ADC clock source can be divided down separately for each dedicated ADC and the shared ADC, with a maximum divisor of 254. The input clock can also be fed directly to the ADC.
ADCS<7:0> (AD1CON3<7:0>) 11111111 = 512 * TPB = TAD • • 00000001 = 4 * TPB = TAD 00000000 = 2 * TPB = TAD	ADCDIV<6:0> (ADCTIMEx<22:16>) ADCDIV<6:0> (ADCCON2<6:0>) 1111111 = 254 * TQ = TAD • • • 0000011 = 6 * TQ = TAD 0000010 = 4 * TQ = TAD 0000001 = 2 * TQ = TAD 0000000 = TQ = TAD

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Brand — Architecture Flash Memory Size - Family Key Feature Set Pin Count Additional Feature Set Tape and Reel Flag (i Speed Temperature Range Package Pattern	PIC32 MZ XXXX EF E XXX A T - 250 I / PT - XXX PIC32MZ XXXX EF E XXX A T - 250 I / PT - XXX PIC32MZ2048EFH144-I/PT: Embedded Connectivity PIC32, MIPS32 [®] M-Class MPU core, 2048 KB program memory, 144-pin, with Floating Point Unit, Industrial temperature, TQFP package.
Flash Memory Fam	ily
Architecture	MZ = MIPS32 [®] M-Class MPU Core
Flash Memory Size	0512 = 512 KB 1024 = 1024 KB 2048 = 2048 KB
Family	EF = Embedded Connectivity Microcontroller Family with Floating Point Unit
Key Feature	 E = PIC32 EF Family Features (no CAN, no Crypto) F = PIC32 EF Family Features (CAN, no Crypto) G = PIC32 EF Family Features (no CAN, no Crypto) H = PIC32 EF Family Features (CAN, no Crypto) K = PIC32 EF Family Features (Crypto and CAN) M = PIC32 EF Family Features (Crypto and CAN)
Pin Count	064 = 64-pin 100 = 100-pin 124 = 124-pin 144 = 144-pin
Speed	Blank = Up to 200 MHz 250 = Up to 252 MHz
Temperature Range	$ \begin{array}{l} I = -40^{\circ}\text{C to} + 85^{\circ}\text{C (Industrial)} \\ E = -40^{\circ}\text{C to} + 125^{\circ}\text{C (Extended)} \end{array} $
Package	MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flatpack) PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack) TL = 124-Lead (9x9x0.9 mm) VTLA (Very Thin Leadless Array) PH = 144-Lead (16x16x1 mm) TQFP (Thin Quad Flatpack) PL = 144-Lead (20x20x1.40 mm) LQFP (Low Profile Quad Flatpack)
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample