

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

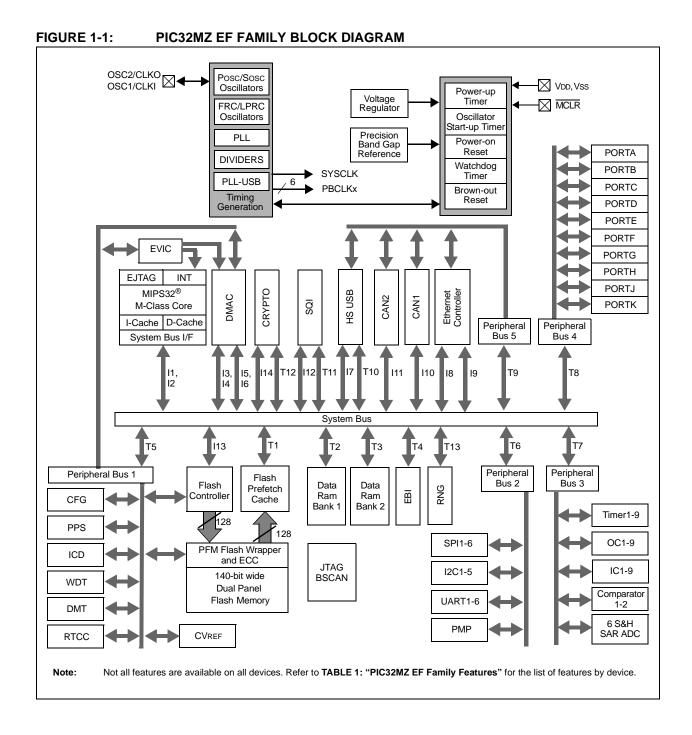
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efg100-i-pt

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32). This data sheet contains device-specific information for PIC32MZ EF devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MZ EF family of devices.

Table 1-21 through Table 1-22 list the pinout I/O descriptions for the pins shown in the device pin tables (see Table 2 through Table 5).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	-	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	-	_	_	
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
				_			GROU	^D <1:0>

REGISTER 4-4: SBTxELOG2: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 2 ('x' = 0-13)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-3 Unimplemented: Read as '0'

- bit 1-0 GROUP<1:0>: Requested Permissions Group bits
 - 11 = Group 3
 - 10 = Group 2
 - 01 = Group 1
 - 00 = Group 0

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

REGISTER 4-5: SBTxECON: SYSTEM BUS TARGET 'x' ERROR CONTROL REGISTER ('x' = 0-13)

		x = 0 = 13						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
31:24	—	—	_	_	-		_	ERRP
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	_	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	-		_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	—							—

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-25 Unimplemented: Read as '0'

bit 24 ERRP: Error Control bit

1 = Report protection group violation errors

0 = Do not report protection group violation errors

bit 23-0 Unimplemented: Read as '0'

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0	U-0
31.24	_	_	_	_	PFMDED	PFMSEC	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	—	_	_	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	—	_	_	_
7:0	R/W-0, HS	R/W-0, HS	R/W-0, HS					
				PFMSEC	CNT<7:0>			

REGISTER 9-2: PRESTAT: PREFETCH MODULE STATUS REGISTER

Legend:		HS = Hardware Set	HS = Hardware Set		
R = Readable bit W = Writable bit		U = Unimplemented bi	t, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-28 Unimplemented: Read as '0'

- bit 27 **PFMDED:** Flash Double-bit Error Detected (DED) Status bit
 This bit is set in hardware and can only be cleared (i.e., set to '0') in software.
 1 = A DED error has occurred
 - 0 = A DED error has not occurred
- bit 26 **PFMSEC:** Flash Single-bit Error Corrected (SEC) Status bit 1 = A SEC error occurred when PFMSECCNT<7:0> was equal to zero 0 = A SEC error has not occurred
- bit 25-8 Unimplemented: Read as '0'
- bit 7-0 **PFMSECCNT<7:0>:** Flash SEC Count bits 11111111 - 00000000 = SEC count

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—				_			—	
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	_	_	_	_	_	_	—	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	CHSSIZ<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				CHSSIZ	<7:0>				

REGISTER 10-12: DCHxSSIZ: DMA CHANNEL x SOURCE SIZE REGISTER

Legend:

Legena.					
R = Readable bit	= Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 10-13: DCHxDSIZ: DMA CHANNEL x DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	_	_	_	_	_	_	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—		—	—	_	—		—	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	CHDSIZ<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				CHDSIZ	<7:0>				

Legend:				
R = Readable bit	W = Writable bit	bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 **CHDSIZ<15:0>:** Channel Destination Size bits

111111111111111 = 65,535 byte destination size $\ensuremath{\cdot}$

REGISTER 11-1: USBCSR0: USB CONTROL STATUS REGISTER 0 (CONTINUED)

- bit 10 **RESUME:** Resume from Suspend control bit
 - 1 = Generate Resume signaling when the device is in Suspend mode
 - 0 = Stop Resume signaling

In *Device mode*, the software should clear this bit after 10 ms (a maximum of 15 ms) to end Resume signaling. In *Host mode*, the software should clear this bit after 20 ms.

- bit 9 **SUSPMODE:** Suspend Mode status bit 1 = The USB module is in Suspend mode
 - 0 = The USB module is in Normal operations

This bit is read-only in Device mode. In Host mode, it can be set by software, and is cleared by hardware.

- bit 8 SUSPEN: Suspend Mode Enable bit
 - 1 = Suspend mode is enabled
 - 0 = Suspend mode is not enabled
- bit 7 Unimplemented: Read as '0'
- bit 6-0 **FUNC<6:0>:** Device Function Address bits

These bits are only available in *Device mode*. This field is written with the address received through a SET_ADDRESS command, which will then be used for decoding the function address in subsequent token packets.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_		—			_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_		—	_		_	_
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—	—	DMAEIE	PKTCOMPIE	BDDONEIE	CONTHRIE
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CONEMPTYIE	CONFULLIE	RXTHRIE	RXFULLIE	RXEMPTYIE	TXTHRIE	TXFULLIE	TXEMPTYIE

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

HS = Hardware Set

W = Writable bit

'1' = Bit is set

REGISTER 20-8: SQI1INTEN: SQI INTERRUPT ENABLE REGISTER

bit 10	DMAEIE: DMA Bus Error Interrupt Enable bit Interrupt is enabled Interrupt is disabled PKTCOMPIE: DMA Buffer Descriptor Packet Complete Interrupt Enable bit Interrupt is enabled Interrupt is disabled BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
bit 10 I	 0 = Interrupt is disabled PKTCOMPIE: DMA Buffer Descriptor Packet Complete Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
bit 10	 PKTCOMPIE: DMA Buffer Descriptor Packet Complete Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
bit 9	 1 = Interrupt is enabled 0 = Interrupt is disabled BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
bit 9	 Interrupt is disabled BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
bit 9 I	BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
:	
l	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 8	CONTHRIE: Control Buffer Threshold Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 7	CONEMPTYIE: Control Buffer Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
	CONFULLIE: Control Buffer Full Interrupt Enable bit
	This bit enables an interrupt when the receive FIFO buffer is full.
	1 = Interrupt is enabled
	0 = Interrupt is disabled
	RXTHRIE: Receive Buffer Threshold Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
	RXFULLIE: Receive Buffer Full Interrupt Enable bit
	 1 = Interrupt is enabled 0 = Interrupt is disabled
	RXEMPTYIE: Receive Buffer Empty Interrupt Enable bit
	 1 = Interrupt is enabled 0 = Interrupt is disabled
	TXTHRIE: Transmit Threshold Interrupt Enable bit
	-
	 1 = Interrupt is enabled 0 = Interrupt is disabled
	TXFULLIE: Transmit Buffer Full Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
	TXEMPTYIE: Transmit Buffer Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled

Legend:

R = Readable bit

-n = Value at POR

REGISTER 24-3:	EBISMTX: EXTERNAL BUS INTERFACE STATIC MEMORY TIMING REGISTER
	('x' = 0-2)

		,		1	1				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
	—	—	—	—	—	RDYMODE	PAGESI	ZE<1:0>	
00.40	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	
23:16	PAGEMODE		TPRC<	<3:0> ⁽¹⁾	TBTA<2:0> ⁽¹⁾				
45.0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1	
15:8		•	TWR<	:1:0> ⁽¹⁾					
7.0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	
7:0	TAS<1	:0> ⁽¹⁾		TRC<5:0> ⁽¹⁾					

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26	RDYMODE: Data Ready Device Select bit
	The device associated with register set 'x' is a data-ready device, and will use the EBIRDYx pin.
	1 = EBIRDYx input is used
	0 = EBIRDYx input is not used
bit 25-24	PAGESIZE<1:0>: Page Size for Page Mode Device bits
	11 = 32-word page
	10 = 16-word page
	01 = 8-word page
	00 = 4-word page
bit 23	PAGEMODE: Memory Device Page Mode Support bit
	1 = Device supports Page mode
	0 = Device does not support Page mode
bit 22-19	TPRC<3:0>: Page Mode Read Cycle Time bits ⁽¹⁾
	Read cycle time is TPRC + 1 clock cycle.
bit 18-16	TBTA<2:0>: Data Bus Turnaround Time bits ⁽¹⁾
	Clock cycles (0-7) for static memory between read-to-write, write-to-read, and read-to-read when Chip
	Select changes.
bit 15-10	TWP<5:0>: Write Pulse Width bits ⁽¹⁾
	Write pulse width is TWP + 1 clock cycle.
bit 9-8	TWR<1:0>: Write Address/Data Hold Time bits ⁽¹⁾

- Number of clock cycles to hold address or data on the bus.bit 7-6TAS<1:0>: Write Address Setup Time bits⁽¹⁾
- TAS<1:0>: Write Address Setup Time bits⁽¹⁾
 Clock cycles for address setup time. A value of '0' is only valid in the case of SSRAM.
- bit 5-0 **TRC<5:0>:** Read Cycle Time bits⁽¹⁾ Read cycle time is TRC + 1 clock cycle.
- Note 1: Refer to the Section 47. "External Bus Interface (EBI)" in the "PIC32 Family Reference Manual" for the EBI timing diagrams and additional information.

26.3 Security Association Structure

Table 26-4 shows the Security Association Structure. The Crypto Engine uses the Security Association to determine the settings for processing a Buffer Descriptor Processor. The Security Association contains:

- · Which algorithm to use
- Whether to use engines in parallel (for both authentication and encryption/decryption)
- The size of the key
- Authentication key
- Encryption/decryption key
- Authentication Initialization Vector (IV)
- Encryption IV

Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
SA_CTRL	31:24	_		VERIFY	_	NO_RX	OR_EN	ICVONLY	IRFLAG		
_	23:16	LNC	LOADIV	FB	FLAGS	_	_		ALGO<6>		
	15:8			ALGO<	:5:0>	1		ENCTYPE	KEYSIZE<1:		
	7:0	KEYSIZE<0>	N	IULTITASK<2:0	>		CRYPTOA	LGO<3:0>	ILE I OILE (
SA_AUTHKEY1	31:24				AUTHKEY<	31:24>					
_	23:16				AUTHKEY<						
	15:8				AUTHKEY<	:15:8>					
	7:0				AUTHKEY	<7:0>					
SA_AUTHKEY2	31:24				AUTHKEY<	31:24>					
	23:16				AUTHKEY<	23:16>					
	15:8				AUTHKEY<	:15:8>					
	7:0				AUTHKEY	<7:0>					
SA_AUTHKEY3	31:24				AUTHKEY<	31:24>					
_	23:16				AUTHKEY<	23:16>					
	15:8				AUTHKEY<	:15:8>					
	7:0	AUTHKEY<7:0>									
SA_AUTHKEY4	31:24				AUTHKEY<	31:24>					
_	23:16	AUTHKEY<23:16>									
	15:8	AUTHKEY<15:8>									
	7:0	AUTHKEY<7:0>									
SA_AUTHKEY5	31:24	AUTHKEY<31:24>									
	23:16	AUTHKEY<23:16>									
	15:8				AUTHKEY<						
	7:0	AUTHKEY<7:0>									
SA_AUTHKEY6	31:24				AUTHKEY<	31:24>					
	23:16	AUTHKEY<23:16>									
	15:8	AUTHKEY<15:8>									
	7:0	AUTHKEY<7:0>									
SA_AUTHKEY7	31:24				AUTHKEY<	31:24>					
	23:16	AUTHKEY<23:16>									
	15:8				AUTHKEY<	:15:8>					
	7:0	AUTHKEY<7:0>									
SA_AUTHKEY8	31:24				AUTHKEY<	31:24>					
	23:16	AUTHKEY<23:16>									
	15:8				AUTHKEY<	:15:8>					
	7:0				AUTHKEY	<7:0>					
SA_ENCKEY1	31:24				ENCKEY<3	31:24>					
	23:16				ENCKEY<2	23:16>					
	15:8				ENCKEY<	15:8>					
	7:0				ENCKEY<	:7:0>					
SA_ENCKEY2	31:24				ENCKEY<3	31:24>					
	23:16				ENCKEY<2	23:16>					

TABLE 26-4: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN19	MSEL19<1:0>		FSEL19<4:0>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN18	MSEL18<1:0>		FSEL18<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	FLTEN17	MSEL17<1:0>		FSEL17<4:0>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN16	MSEL16<1:0>		FSEL16<4:0>				

REGISTER 29-14: CIFLTCON4: CAN FILTER CONTROL REGISTER 4

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31	FLTEN19: Filter 19 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL19<1:0>: Filter 19 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL19<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN18: Filter 18 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL18<1:0>: Filter 18 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL18<4:0>: FIFO Selection bits
511 20 10	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN23	MSEL23<1:0>		FSEL23<4:0>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN22	MSEL22<1:0>		FSEL22<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	FLTEN21	MSEL21<1:0>		FSEL21<4:0>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN20	MSEL20<1:0>		FSEL20<4:0>				

REGISTER 29-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31	FLTEN23: Filter 23 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL23<1:0>: Filter 23 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL23<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN22: Filter 22 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 22-21	MSEL22<1:0>: Filter 22 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 20-16	FSEL22<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.
Note.	The bits in this register can only be modified if the corresponding little enable (I EI EI III) bit is 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	—	—	—	—	—
00.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
10.0	—	—	_	—	—	R	XBUFSZ<6:	4>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
7:0	RXBUFSZ<3:0>			—	_	—	—	

REGISTER 30-2: ETHCON2: ETHERNET CONTROLLER CONTROL REGISTER 2

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

bit 10-4	RXBUFSZ<6:0>: RX Data Buffer Size for All RX Descriptors (in 16-byte increments) bits 1111111 = RX data Buffer size for descriptors is 2032 bytes
	•
	•
	1100000 = RX data Buffer size for descriptors is 1536 bytes
	•
	•
	•
	0000011 = RX data Buffer size for descriptors is 48 bytes 0000010 = RX data Buffer size for descriptors is 32 bytes 0000001 = RX data Buffer size for descriptors is 16 bytes 0000000 = Reserved
bit 3-0	Unimplemented: Read as '0'
Note 1:	This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

REGISTER 30-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER VLANPAD: VLAN Pad Enable bit^(1,2) bit 6 1 = The MAC will pad all short frames to 64 bytes and append a valid CRC 0 = The MAC does not perform padding of short frames PADENABLE: Pad/CRC Enable bit^(1,3) bit 5 1 = The MAC will pad all short frames 0 = The frames presented to the MAC have a valid length bit 4 CRCENABLE: CRC Enable1 bit 1 = The MAC will append a CRC to every frame whether padding was required or not. Must be set if the PADENABLE bit is set. 0 = The frames presented to the MAC have a valid CRC bit 3 DELAYCRC: Delayed CRC bit This bit determines the number of bytes, if any, of proprietary header information that exist on the front of the IEEE 802.3 frames. 1 = Four bytes of header (ignored by the CRC function) 0 = No proprietary header bit 2 HUGEFRM: Huge Frame enable bit 1 = Frames of any length are transmitted and received 0 = Huge frames are not allowed for receive or transmit bit 1 LENGTHCK: Frame Length checking bit 1 = Both transmit and receive frame lengths are compared to the Length/Type field. If the Length/Type field represents a length then the check is performed. Mismatches are reported on the transmit/receive statistics vector. 0 = Length/Type field check is not performed bit 0 FULLDPLX: Full-Duplex Operation bit 1 = The MAC operates in Full-Duplex mode

- 0 = The MAC operates in Half-Duplex mode
- **Note 1:** Table 30-6 provides a description of the pad function based on the configuration of this register.
 - **2:** This bit is ignored if the PADENABLE bit is cleared.
 - 3: This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware

TABLE 30-6:PAD OPERATION

Туре	AUTOPAD	VLANPAD	PADENABLE	Action
Any	x	x	0	No pad, check CRC
Any	0	0	1	Pad to 60 Bytes, append CRC
Any	x	1	1	Pad to 64 Bytes, append CRC
Any	1	0	1	If untagged: Pad to 60 Bytes, append CRC If VLAN tagged: Pad to 64 Bytes, append CRC

RE	REGISTER 30-31: EMAC1MCFG: ETHERNET CONTROLLER MAC MII MANAGEMENT								
	CONFIGURATION REGISTER								
	Dit	5.4	D'/	D .'	D'/	D'1	D ''	D.1	

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24		—	_	_	_	_	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	_	_	_	_	—	—
15:8	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	RESETMGMT	—	_	_	_	_	—	—
7:0	U-0	U-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		_		CLKSEL	_<3:0> ⁽¹⁾		NOPRE	SCANINC

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **RESETMGMT:** Test Reset MII Management bit 1 = Reset the MII Management module 0 = Normal Operation
- bit 14-6 Unimplemented: Read as '0'

bit 1 NOPRE: Suppress Preamble bit

- 1 = The MII Management will perform read/write cycles without the 32-bit preamble field. Some PHYs support suppressed preamble
- 0 = Normal read/write cycles are performed

bit 0 SCANINC: Scan Increment bit

- 1 = The MII Management module will perform read cycles across a range of PHYs. The read cycles will start from address 1 through the value set in EMAC1MADR<PHYADDR>
- 0 = Continuous reads of the same PHY
- **Note 1:** Table 30-7 provides a description of the clock divider encoding.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

TABLE 30-7: MIIM CLOCK SELECTION

MIIM Clock Select	EMAC1MCFG<5:2>
TPBCLK5 divided by 4	000x
TPBCLK5 divided by 6	0010
TPBCLK5 divided by 8	0011
TPBCLK5 divided by 10	0100
TPBCLK5 divided by 14	0101
TPBCLK5 divided by 20	0110
TPBCLK5 divided by 28	0111
TPBCLK5 divided by 40	1000
TPBCLK5 divided by 48	1001
TPBCLK5 divided by 50	1010
Undefined	Any other combination

bit 5-2 **CLKSEL<3:0>:** MII Management Clock Select 1 bits⁽¹⁾ These bits are used by the clock divide logic in creating the MII Management Clock (MDC), which the IEEE 802.3 Specification defines to be no faster than 2.5 MHz. Some PHYs support clock rates up to 12.5 MHz.

33.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS60001130) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes power-saving features for the PIC32MZ EF devices. These devices offer various methods and modes that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

33.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the speed of PBCLK7, or selecting a lower power clock source (i.e., LPRC or Sosc).

In addition, the Peripheral Bus Scaling mode is available for each peripheral bus where peripherals are clocked at reduced speed by selecting a higher divider for the associated PBCLKx, or by disabling the clock completely.

33.2 Power-Saving with CPU Halted

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

33.2.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted and the associated clocks are disabled. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- · On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the peripheral bus clocks will start running and the device will enter into Idle mode.

33.2.2 IDLE MODE

In Idle mode, the CPU is Halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31:24	—	—	—	—	—	—	DMAPRI ⁽¹⁾	CPUPRI ⁽¹⁾
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16	—	—	—	—	—	—	ICACLK ⁽¹⁾	OCACLK ⁽¹⁾
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
15:8	—	—	IOLOCK ⁽¹⁾	PMDLOCK ⁽¹⁾	PGLOCK ⁽¹⁾	_	_	USBSSEN ⁽¹⁾
7:0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	U-0	R/W-1
	IOANCPEN	—	ECCC	ON<1:0>	JTAGEN	TROEN	_	TDOEN

REGISTER 34-7: CFGCON: CONFIGURATION CONTROL REGISTER

Legend:

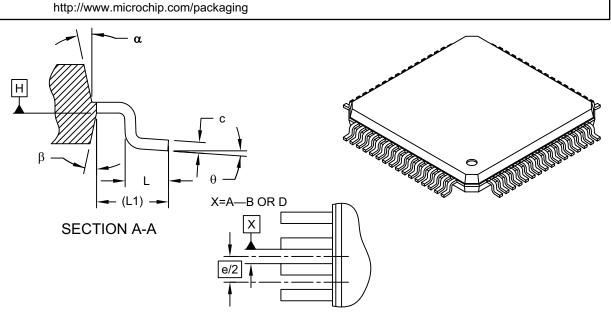
U			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

DIT 31-26	Unimplemented: Read as 10 [°]
bit 25	DMAPRI: DMA Read and DMA Write Arbitration Priority to SRAM bit ⁽¹⁾
	1 = DMA gets High Priority access to SRAM
	0 = DMA uses Least Recently Serviced Arbitration (same as other initiators)
bit 24	CPUPRI: CPU Arbitration Priority to SRAM When Servicing an Interrupt bit ⁽¹⁾
	1 = CPU gets High Priority access to SRAM
	0 = CPU uses Least Recently Serviced Arbitration (same as other initiators)
bit 23-18	Unimplemented: Read as '0'
bit 17	ICACLK: Input Capture Alternate Clock Selection bit ⁽¹⁾
	 1 = Input Capture modules use an alternative Timer pair as their timebase clock 0 = All Input Capture modules use Timer2/3 as their timebase clock
bit 16	OCACLK: Output Compare Alternate Clock Selection bit ⁽¹⁾
	 1 = Output Compare modules use an alternative Timer pair as their timebase clock 0 = All Output Compare modules use Timer2/3 as their timebase clock
bit 15-14	Unimplemented: Read as '0'
bit 13	IOLOCK: Peripheral Pin Select Lock bit ⁽¹⁾
	 1 = Peripheral Pin Select is locked. Writes to PPS registers are not allowed 0 = Peripheral Pin Select is not locked. Writes to PPS registers are allowed
bit 12	PMDLOCK: Peripheral Module Disable bit ⁽¹⁾
	 1 = Peripheral module is locked. Writes to PMD registers are not allowed 0 = Peripheral module is not locked. Writes to PMD registers are allowed
bit 11	PGLOCK: Permission Group Lock bit ⁽¹⁾
	 1 = Permission Group registers are locked. Writes to PG registers are not allowed 0 = Permission Group registers are not locked. Writes to PG registers are allowed
bit 10-9	Unimplemented: Read as '0'
bit 8	USBSSEN: USB Suspend Sleep Enable bit ⁽¹⁾
	Enables features for USB PHY clock shutdown in Sleep mode.
	1 = USB PHY clock is shut down when Sleep mode is active
	0 = USB PHY clock continues to run when Sleep is active
Note 1:	To change this bit, the unlock sequence must be performed. Refer to Section 42. "O

e 1: To change this bit, the unlock sequence must be performed. Refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R	R	R	R	R	R	R	R
31:24 ADCFG<31:24>				<31:24>				
23:16	R	R	R	R	R	R	R	R
23.10	ADCFG<23:16>							
15:8	R	R	R	R	R	R	R	R
10.0	ADCFG<15:8>							
7:0	R	R	R	R	R	R	R	R
7.0	ADCFG<7:0>							


REGISTER 34-13: DEVADCx: DEVICE ADC CALIBRATION WORD 'x' ('x' = 0-4, 7)

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 ADCFG<31:0>: Calibration Data for the ADC Module bits

This data must be copied to the corresponding ADCxCFG register. Refer to **28.0** "**12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)**" for more information.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

For the most current package drawings, please see the Microchip Packaging Specification located at

DETAIL 1

	Units	Ν	MILLIMETER	S
Dimensi	on Limits	MIN	NOM	MAX
Number of Leads	Ν		64	
Lead Pitch	е	0.50 BSC		
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	¢	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature				
Flash Programming					
	The op codes for programming the Flash memory have been changed to accommodate the new quad-word programming and dual-panel features. The row size has changed to 2 KB (512 IW) from 128 IW. The page size has changed to 16 KB (4K IW) from 4 KB (1K IW). Note that the NVMOP register is now protected, and requires the WREN bit be set to enable modification.				
NVMOP<3:0> (NVMCON<3:0>)	NVMOP<3:0> (NVMCON<3:0>)				
1111 = Reserved	1111 = Reserved				
0111 = Reserved	1000 = Reserved				
0110 = No operation	0111 = Program erase operation				
0101 = Program Flash (PFM) erase operation	0110 = Upper program Flash memory erase operation				
0100 = Page erase operation	0101 = Lower program Flash memory erase operation				
0011 = Row program operation	0100 = Page erase operation				
0010 = No operation	0011 = Row program operation				
0001 = Word program operation	0010 = Quad Word (128-bit) program operation				
0000 = No operation	0001 = Word program operation				
	0000 = No operation				
PIC32MX devices feature a single NVMDATA register for word programming.	On PIC32MZ EF devices, to support quad word programming, the NVMDATA register has been expanded to four words.				
NVMDATA	NVMDATA x , where 'x' = 0 through 3				
Flash Endurance	e and Retention				
PIC32MX devices support Flash endurance and retention of up to 20K E/W cycles and 20 years.	On PIC32MZ EF devices, ECC must be enabled to support the same endurance and retention as PIC32MX devices.				
Configuration Words					
On PIC32MX devices, Configuration Words can be programmed with Word or Row program operation.	On PIC32MZ EF devices, all Configuration Words must be programmed with Quad Word or Row Program operations.				
Configuration We	ords Reserved Bit				
On PIC32MX devices, the DEVCFG0<15> bit is Reserved and must be programmed to '0'.	On PIC32MZ EF devices, this bit is DEVSIGN0<31> .				

TABLE A-9: FLASH PROGRAMMING DIFFERENCES (CONTINUED)

B.12 Crypto Engine

Table B-7 lists the changes available for the Crypto Engine.

TABLE B-7: CRYPTO DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature			
Output Data Format				
On PIC32MZ EC devices, the output of the Crypto Engine is always in big-endian format, usually requiring a software (or DMA) solution to put the data into little-endian format, which the core handles natively.	On PIC32MZ EF devices, the SWAPOEN bit (CECON<7>) has been added to control output byte swapping. This bit, when enabled, will byte-swap the output.			

B.13 Device Configuration and Control

A number of enhancements have been added to the PIC32MZ EF devices that allow greater control and flexibility on the device. Some bit fields have also changed location. Table B-8 lists these changes.

TABLE B-8: DEVICE CONFIGURATION AND CONTROL DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature			
MCLR Pin Configuration				
On PIC32MZ EC devices, the MCLR pin always generate a system reset.	On PIC32MZ EF devices, the MCLR pin can now be configured to generate either a system Reset or an emulated POR Reset. SMCLR (DEVCFG0<15>) 1 = MCLR pin generates a normal system Reset 0 = MCLR pin generates an emulated POR Reset			
I/O Analog Charge Pump				
Low VDD environments cause attenuation of analog inputs.	A new bit enables an I/O charge pump, which improves analog performance when operating at lower VDD.			
	IOANCPEN (CFGCON<7>) 1 = Charge pump is enabled 0 = Charge pump is disabled			
EBI Ready	Pin Control			
EBIRDYINV<3:1> (CFGEBIC<30:28>) EBIRDYEN<3:1> (CFGEBIC<26:24>)	The EBIRDY control bits have been moved. EBIRDYINV<3:1> (CFGEBIC<31:29>) EBIRDYEN<3:1> (CFGEBIC<27:25>)			
Boot Flash Sequence Control				
On PIC32MZ EC devices, the Boot Flash Sequence (specifying which boot memory was mapped to the lower boot alias) was determined with the BFxSEQ0 registers.	On PIC32MZ EF devices, the Boot Flash Sequence has been moved to the BFxSEQ3 register.			