

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efg100t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 M-Class Core Configuration

Register 3-1 through Register 3-4 show the default configuration of the M-Class core, which is included on the PIC32MZ EF family of devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	U-0	U-0	U-0	U-0	U-0	U-0	R-0
31:24		—	—	_	—		—	ISP
22:46	R-0	R-0	R-1	R-0	U-0	R-1	R-0	R-0
23:16	DSP	UDI	SB	MDU	—	MM<1:0> E		BM
45.0	R-0	R-0	R-0	R-0	R-0	R-1	R-0	R-0
15:8	BE	AT<	1:0>		AR<2:0>		MT<	2:1>
7.0	R-1	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0
7:0	MT<0>		_	_	_		K0<2:0>	

REGISTER 3-1: CONFIG: CONFIGURATION REGISTER; CP0 REGISTER 16, SELECT 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Reserved: This bit is hardwired to '1' to indicate the presence of the Config1 register. bit 30-25 Unimplemented: Read as '0' bit 24 ISP: Instruction Scratch Pad RAM bit 0 = Instruction Scratch Pad RAM is not implemented bit 23 DSP: Data Scratch Pad RAM is not implemented bit 24 UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM-1:00: Warge Mode bits 10 = Merging is allowed bit 15 BE: Endian Mode bit 0 = Burst order is sequential bit 14-3 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9: VIT-2:0>: MMUU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 2- Ko2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 002 = Cacheable, non-coherent, write-back, write allocate 003 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 mapped to 010.		
bit 24 ISP: Instruction Scratch Pad RAM bit 0 = Instruction Scratch Pad RAM is not implemented bit 23 DSP: Data Scratch Pad RAM is not implemented bit 22 UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merge Mode bits 10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<:0>: Architecture Type bits 001 = MIPS32 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 Ko<2:0>: Kseg0 Coherency Algorithm bits 01 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 011 = Cacheable, non-coherent, write-through, write allocate 010 = Cacheable, non-coherent, write	bit 31	Reserved: This bit is hardwired to '1' to indicate the presence of the Config1 register.
0 = Instruction Scratch Pad RAM is not implemented bit 23 DSP: Data Scratch Pad RAM bit 0 = Data Scratch Pad RAM is not implemented bit 22 UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merging is allowed bit 16 BW: Burst Mode bit 0 = Burst order is sequential bit 16 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 001 = MIPS32 bit 14-13 AT<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 97 MT<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-thorugh, write allocate 012 = Cacheable, non-coherent, write-through, no write allocate 013 = Cacheable, non-coherent, write allocate 014 = Cacheable, non-coherent, write-through, no write allocate 015 = Cacheable, non-coherent, write-through, no write allocate </td <td>bit 30-25</td> <td>Unimplemented: Read as '0'</td>	bit 30-25	Unimplemented: Read as '0'
 0 = Data Scratch Pad RAM is not implemented bit 22 UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit	bit 24	
 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merging is allowed bit 18-17 MM<1:0>: Merge Mode bits 10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 2-0 KO<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, no write allocate 010 = Cachea	bit 23	
1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merge Mode bits 10 = Merging is allowed bit 18 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = MIPS32 Release 2 bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 0102 = Uncached 011 = Cacheable, non-coherent, write-through, write allocate 0102 = Cacheable, non-coherent, write-through, write allocate 0103 = Cacheable, non-coherent, write-through, no write allocate 0104 = Cacheable, non-coherent, write-through, no write allocate 0105 = Cacheable, non-coherent, write-through, no write allocate 0105 = Cacheable, non-coherent, write-through, no write allocate 0106 = Ca	bit 22	
 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merge Mode bits 10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 KO<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-through, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 21	
bit 18-17 MM-1:0>: Merge Mode bits 10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = MIPS32 Release 2 bit 6-3 Unimplemented: Read as '0' bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 001 = Cacheable, non-coherent, write-through, no write allocate 000 = Cacheable, non-coherent, write-through, no write allocate 001 = Cacheable, non-coherent, write-through, no write allocate 001 = Cacheable, non-coherent, write-through, no write allocate 000 = Cacheable, non-coherent, write-through, no write allocate 001 = Cacheable, non-coherent, write-through, no write allocate 000 = Cacheable, non-coherent, write-through, no write allocate <t< td=""><td>bit 20</td><td></td></t<>	bit 20	
10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, no write allocate 000	bit 19	Unimplemented: Read as '0'
 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 18-17	0
 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 16	
 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 15	
 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 14-13	
 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 12-10	
bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111	bit 9-7	
 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 6-3	Unimplemented: Read as '0'
000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111	bit 2-0	011 = Cacheable, non-coherent, write-back, write allocate
		000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111

is

REGISTER 3-9:	FENR: FLOATING POINT EXCEPTIONS AND MODES ENABLE REGISTER;
	CP1 REGISTER 28

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0												
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0												
31:24	—	—					_	_												
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0												
23:16	—	—	-	—	-	_	_	_												
	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x												
15:8					ENABLES<4:1>															
	_	_	_	_	_	_	_	_	_		_	_	_			_	V	Z	0	U
	R/W-x	U-0	U-0	U-0	U-0	R-x	R/W-x	R/W-x												
7:0	ENABLES<0>					FS	RM<1:0>													
	I		_	_	_	гð														

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11-7 ENABLES<4:0>: FPU Exception Enable bits

These bits control whether or not a trap is taken when an IEEE exception condition occurs for any of the five conditions. The trap occurs when both an enable bit and its corresponding cause bit are set either during an FPU arithmetic operation or by moving a value to the FCSR or one of its alternative representations.

- bit 11 V: Invalid Operation bit
- bit 10 Z: Divide-by-Zero bit
- bit 9 O: Overflow bit
- bit 8 **U:** Underflow bit
- bit 7 I: Inexact bit
- bit 6-3 Unimplemented: Read as '0'
- bit 2 FS: Flush to Zero control bit

1 = Denormal input operands are flushed to zero. Tiny results are flushed to either zero or the applied format's smallest normalized number (MinNorm) depending on the rounding mode settings.

0 = Denormal input operands result in an Unimplemented Operation exception.

- bit 1-0 RM<1:0>: Rounding Mode control bits
 - 11 = Round towards Minus Infinity $(-\infty)$
 - 10 = Round towards Plus Infinity (+ ∞)
 - 01 = Round toward Zero (0)
 - 00 = Round to Nearest

REGISTER 4-9: SBTxRDy: SYSTEM BUS TARGET 'x' REGION 'y' READ PERMISSIONS REGISTER ('x' = 0-13; 'y' = 0-8)

				/ /				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	_	_	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_		—	_		_	_	_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	_	_	_	_	_
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1
7:0					GROUP3	GROUP2	GROUP1	GROUP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

- bit 31-4 Unimplemented: Read as '0'
- bit 3 Group3: Group3 Read Permissions bits
 - 1 = Privilege Group 3 has read permission
 - 0 = Privilege Group 3 does not have read permission
- bit 2 Group2: Group2 Read Permissions bits
 - 1 = Privilege Group 2 has read permission
 - 0 = Privilege Group 2 does not have read permission

bit 1 Group1: Group1 Read Permissions bits

- 1 = Privilege Group 1 has read permission
- 0 = Privilege Group 1 does not have read permission
- bit 0 **Group0:** Group0 Read Permissions bits
 - 1 = Privilege Group 0 has read permission
 - 0 = Privilege Group 0 does not have read permission

Note 1: Refer to Table 4-6 for the list of available targets and their descriptions.

2: For some target regions, certain bits in this register are read-only with preset values. See Table 4-6 for more information.

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MZ EF devices contain an internal Flash program memory for executing user code, which includes the following features:

- Two Flash banks for live update support
- Dual boot support
- Write protection for program and boot Flash
- ECC support

There are three methods by which the user can program this memory:

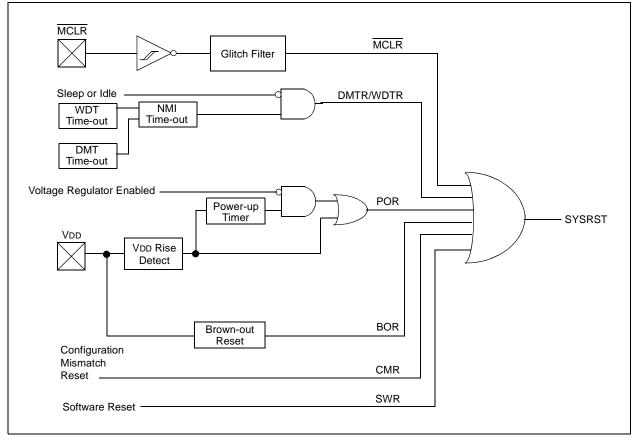
- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 52. "Flash Program Memory with Support for Live Update"** (DS60001193) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which is available for download from the Microchip web site (www.microchip.com).


Note: In PIC32MZ EF devices, the Flash page size is 16 KB (4K IW) and the row size is 2 KB (512 IW).

6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7**. "**Resets**" (DS60001118) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The device Reset sources are as follows:

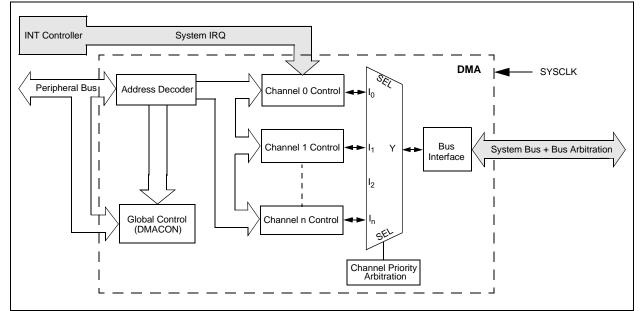
- Power-on Reset (POR)
- Master Clear Reset pin (MCLR)
- Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)
- Deadman Timer Reset (DMTR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The Direct Memory Access (DMA) Controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the device such as SPI, UART, PMP, etc., or memory itself.

The following are key features of the DMA Controller:

- Eight identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination
- Fixed priority channel arbitration

FIGURE 10-1: DMA BLOCK DIAGRAM

- Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Up to 2-byte Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent error address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	—	_	—	—
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	—	_	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

REGISTER 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23	CHSDIE: Channel Source Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 22	CHSHIE: Channel Source Half Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit
	1 = Interrupt is enabled
1.11.40	0 = Interrupt is disabled
bit 19	CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
	 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 18	
DIL TO	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit 1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 17	CHTAIE: Channel Transfer Abort Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 16	CHERIE: Channel Address Error Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 15-8	Unimplemented: Read as '0'
bit 7	CHSDIF: Channel Source Done Interrupt Flag bit
	1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)
	0 = No interrupt is pending
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit
	1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)
	0 = No interrupt is pending

REGISTER 11-3: USBCSR2: USB CONTROL STATUS REGISTER 2 (CONTINUED)

- bit 19 SOFIF: Start of Frame Interrupt bit 1 = A new frame has started 0 = No start of frame detected bit 18 **RESETIF:** Reset/Babble Interrupt bit 1 = In Host mode, indicates babble is detected. In Device mode, indicates reset signaling is detected on the bus. 0 = No reset/babble detected bit 17 **RESUMEIF:** Resume Interrupt bit 1 = Resume signaling is detected on the bus while USB module is in Suspend mode 0 = No Resume signaling detected bit 16 SUSPIF: Suspend Interrupt bit 1 = Suspend signaling is detected on the bus (Device mode) 0 = No suspend signaling detected bit 15-8 Unimplemented: Read as '0' bit 7-1 EP7RXIE:EP1RXIE: Endpoint 'n' Receive Interrupt Enable bit 1 = Receive interrupt is enabled for this endpoint 0 = Receive interrupt is not enabled
- bit 0 Unimplemented: Read as '0'

REGISTER 11-6:	USBIE0CSR2: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 2
	(ENDPOINT 0)

			/								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	_	_	_		NAKLIM<4:0>						
23:16	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	SPEED<1:0>		_	—	—		—	—			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	_	_	_	—	—	_	_	—			
7.0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	_				RXCNT<6:0>						

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 NAKLIM<4:0>: Endpoint 0 NAK Limit bits

The number of frames/microframes (Hi-Speed transfers) after which Endpoint 0 should time-out on receiving a stream of NAK responses.

- bit 23-22 SPEED<1:0>: Operating Speed Control bits
 - 11 = Low-Speed
 - 10 = Full-Speed
 - 01 = Hi-Speed
 - 00 = Reserved
- bit 21-7 Unimplemented: Read as '0'
- bit 6-0 **RXCNT<6:0>:** Receive Count bits

The number of received data bytes in the Endpoint 0 FIFO. The value returned changes as the contents of the FIFO change and is only valid while RXPKTRDY is set.

27.1 RNG Control Registers

TABLE 27-2: RANDOM NUMBER GENERATOR (RNG) REGISTER MAP

ess		6		Bits															
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	RNGVER	31:16								ID<15	:0>								xxxx
0000	KNOVER	15:0				VERS	ION<7:0>							REVISI	ON<7:0>		-		xxxx
6004	RNGCON	31:16	—	—	—	—	—	_	_		—	—	—	—	—	—	—	—	0000
0004	Rivecon	15:0	—	—	—	LOAD	TRNGMODE	CONT	PRNGEN	TRNGEN				PLE	N<7:0>				0064
6008	RNGPOLY1	31:16								POLY<3	1.0~								FFFF
0000	KNOI OEI I	15:0								TOLICO	11.02								0000
600C	RNGPOLY2	31:16								POLY<3	1.0>								FFFF
0000		15:0								TOLICO	11.02								0000
6010	RNGNUMGEN1	31:16								RNG<3	1.0>								FFFF
0010	RIGHUNGEN	15:0								NNO<0	1.02								FFFF
6014	RNGNUMGEN2	31:16								RNG<3	1.0>								FFFF
0014	RINGINOWIGEINZ	15:0								KNG<3	1.0>								FFFF
6018	RNGSEED1	31:16								SEED<3	21.0								0000
0010	RINGSEEDT	15:0								SEED<3	51.0>								0000
601C	RNGSEED2	31:16	6 SEED<31:0>									0000							
0010	NINGSEED2	15:0								SEED<3	01.0>								0000
6020	RNGCNT	31:16	—	—	—	—	—	—	—	—	—	—		—	—	—	—	—	0000
6020	RINGCINI	15:0	_									0000							

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0							
31:24	DIFF31 ⁽¹⁾	SIGN31 ⁽¹⁾	DIFF30 ⁽¹⁾	SIGN30 ⁽¹⁾	DIFF29 ⁽¹⁾	SIGN29 ⁽¹⁾	DIFF28 ⁽¹⁾	SIGN28 ⁽¹⁾
00.40	R/W-0							
23:16	DIFF27 ⁽¹⁾	SIGN27 ⁽¹⁾	DIFF26 ⁽¹⁾	SIGN26 ⁽¹⁾	DIFF25 ⁽¹⁾	SIGN25 ⁽¹⁾	DIFF24 ⁽¹⁾	SIGN24 ⁽¹⁾
45-0	R/W-0							
15:8	DIFF23 ⁽¹⁾	SIGN23 ⁽¹⁾	DIFF22 ⁽¹⁾	SIGN22 ⁽¹⁾	DIFF21 ⁽¹⁾	SIGN21 ⁽¹⁾	DIFF20 ⁽¹⁾	SIGN20 ⁽¹⁾
7.0	R/W-0							
7:0	DIFF19 ⁽¹⁾	SIGN19 ⁽¹⁾	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16

REGISTER 28-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31	DIFF31: AN31 Mode bit ⁽¹⁾
	1 = AN31 is using Differential mode
	0 = AN31 is using Single-ended mode
bit 30	SIGN31: AN31 Signed Data Mode bit ⁽¹⁾
	1 = AN31 is using Signed Data mode
	0 = AN31 is using Unsigned Data mode
bit 29	DIFF30: AN30 Mode bit ⁽¹⁾
	1 = AN30 is using Differential mode
	0 = AN30 is using Single-ended mode
bit 28	SIGN30: AN30 Signed Data Mode bit ⁽¹⁾
	1 = AN30 is using Signed Data mode
	0 = AN30 is using Unsigned Data mode
bit 27	DIFF29: AN29 Mode bit ⁽¹⁾
	1 = AN29 is using Differential mode
	0 = AN29 is using Single-ended mode
	(4)
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode
bit 26	0
bit 26 bit 25	1 = AN29 is using Signed Data mode
	1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode
	1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾
	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode
bit 25	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode
bit 25	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit⁽¹⁾
bit 25	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit⁽¹⁾ 1 = AN28 is using Signed Data mode
bit 25 bit 24	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode
bit 25 bit 24	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit⁽¹⁾
bit 25 bit 24	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode 0 = AN28 is using Unsigned Data mode 0 = AN28 is using Unsigned Data mode 0 = AN27 Mode bit⁽¹⁾ 1 = AN27 is using Differential mode
bit 25 bit 24 bit 23	 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode 0 = AN28 is using Unsigned Data mode 0 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode
bit 25 bit 24 bit 23	1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode SIGN27: AN27 Signed Data Mode bit ⁽¹⁾

Note 1: This bit is not available on 64-pin devices.

REGISTER 28-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2 (CONTINUED)

REGISTER	20-0. ADCINICONZ. ADC INFUT IN
bit 21	DIFF26: AN26 Mode bit ⁽¹⁾
	1 = AN26 is using Differential mode
	0 = AN26 is using Single-ended mode
bit 20	SIGN26: AN26 Signed Data Mode bit ⁽¹⁾
	1 = AN26 is using Signed Data mode
	0 = AN26 is using Unsigned Data mode
bit 19	DIFF25: AN25 Mode bit ⁽¹⁾
	1 = AN25 is using Differential mode
	0 = AN25 is using Single-ended mode
bit 18	SIGN25: AN25 Signed Data Mode bit ⁽¹⁾
	1 = AN25 is using Signed Data mode
	0 = AN25 is using Unsigned Data mode
bit 17	DIFF24: AN24 Mode bit ⁽¹⁾
	1 = AN24 is using Differential mode
	0 = AN24 is using Single-ended mode
bit 16	SIGN24: AN24 Signed Data Mode bit ⁽¹⁾
	1 = AN24 is using Signed Data mode
	0 = AN24 is using Unsigned Data mode
bit 15	DIFF23: AN23 Mode bit ⁽¹⁾
	1 = AN23 is using Differential mode
	0 = AN23 is using Single-ended mode
bit 14	SIGN23: AN23 Signed Data Mode bit ⁽¹⁾
	1 = AN23 is using Signed Data mode
	0 = AN23 is using Unsigned Data mode
bit 13	DIFF22: AN22 Mode bit ⁽¹⁾
	1 = AN22 is using Differential mode
	0 = AN22 is using Single-ended mode
bit 12	SIGN22: AN22 Signed Data Mode bit ⁽¹⁾
	1 = AN22 is using Signed Data mode
	0 = AN22 is using Unsigned Data mode
bit 11	DIFF21: AN21 Mode bit ⁽¹⁾
	1 = AN21 is using Differential mode
	0 = AN21 is using Single-ended mode
bit 10	SIGN21: AN21 Signed Data Mode bit ⁽¹⁾
	1 = AN21 is using Signed Data mode
	0 = AN21 is using Unsigned Data mode
bit 9	DIFF20: AN20 Mode bit ⁽¹⁾
	1 = AN20 is using Differential mode
	0 = AN20 is using Single-ended mode
bit 8	SIGN20: AN20 Signed Data Mode bit ⁽¹⁾
	1 = AN20 is using Signed Data mode
	0 = AN20 is using Unsigned Data mode
bit 7	DIFF19: AN19 Mode bit ⁽¹⁾
	1 = AN19 is using Differential mode
	0 = AN19 is using Single-ended mode

Note 1: This bit is not available on 64-pin devices.

REGISTE	R 29-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER 'n' ('n' = 0-31) (CONTINUED)
bit 6	TXABAT: Message Aborted bit ⁽²⁾
	1 = Message was aborted
	0 = Message completed successfully
bit 5	TXLARB: Message Lost Arbitration bit ⁽³⁾
	1 = Message lost arbitration while being sent
	0 = Message did not lose arbitration while being sent
bit 4	TXERR: Error Detected During Transmission bit ⁽³⁾
	1 = A bus error occurred while the message was being sent
	0 = A bus error did not occur while the message was being sent
bit 3	TXREQ: Message Send Request
	<u>TXEN = 1:</u> (FIFO configured as a Transmit FIFO)
	Setting this bit to '1' requests sending a message.
	The bit will automatically clear when all the messages queued in the FIFO are successfully sent. Clearing the bit to '0' while set ('1') will request a message abort.
	<u>TXEN = 0:</u> (FIFO configured as a Receive FIFO) This bit has no effect.
bit 2	RTREN: Auto RTR Enable bit
	1 = When a remote transmit is received, TXREQ will be set
	0 = When a remote transmit is received, TXREQ will be unaffected
bit 1-0	TXPR<1:0>: Message Transmit Priority bits
	11 = Highest Message Priority
	10 = High Intermediate Message Priority
	01 = Low Intermediate Message Priority 00 = Lowest Message Priority
	UU - LOWEST MESSAGE I HUITY
Note 1:	These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits
	(CiCON<23:21>) = 100).

- 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
- **3:** This bit is reset on any read of this register or when the FIFO is reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	_	_	—	_	_	_				
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	—	_	_	—	_	_	_				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	FRMRXOKCNT<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	FRMRXOKCNT<7:0>											

REGISTER 30-20: ETHFRMRXOK: ETHERNET CONTROLLER FRAMES RECEIVED OK STATISTICS REGISTER

Legend:

zogonan				
R = Readable bit W = Writable bit		U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FRMRXOKCNT<15:0>: Frames Received OK Count bits

Increment count for frames received successfully by the RX Filter. This count will not be incremented if there is a Frame Check Sequence (FCS) or Alignment error.

Note 1: This register is only used for RX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
 - **3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

37.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MZ EF electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MZ EF devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Specifications for Extended Temperature devices (-40°C to +125°C) that are different from the specifications in this section are provided in **38.0** "Extended Temperature Electrical Characteristics".

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to VSS when $VDD \ge 2.1V$ (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.1V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	200 mA
Maximum current into VDD pin(s) (Note 2)	200 mA
Maximum current sunk/sourced by any 4x I/O pin (Note 4)	15 mA
Maximum current sunk/sourced by any 8x I/O pin (Note 4)	25 mA
Maximum current sunk/sourced by any 12x I/O pin (Note 4)	33 mA
Maximum current sunk by all ports	
Maximum current sourced by all ports (Note 2)	150 mA

- **Note 1:** Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 37-2).
 - 3: See the pin name tables (Table 2 through Table 4) for the 5V tolerant pins.
 - 4: Characterized, but not tested. Refer to parameters DO10, DO20, and DO20a for the 4x, 8x, and 12x I/O pin lists.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param. No.	Sym.	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
D130a	Eр	Cell Endurance	10,000	_	_	E/W	Without ECC
D130b			20,000			E/W	With ECC
D131	Vpr	VDD for Read	VDDMIN	_	VDDMAX	V	—
D132	VPEW	VDD for Erase or Write	VDDMIN		VDDMAX	V	—
D134a	TRETD	Characteristic Retention	10	_	—	Year	Without ECC
D134b			20	—	—	Year	With ECC
D135	IDDP	Supply Current during Programming	—	—	30	mA	—
D136	Trw	Row Write Cycle Time (Notes 2, 4)		66813		FRC Cycles	—
D137	Tqww	Quad Word Write Cycle Time (Note 4)	—	773	_	FRC Cycles	_
D138	Tww	Word Write Cycle Time (Note 4)		383	—	FRC Cycles	—
D139	TCE	Chip Erase Cycle Time (Note 4)		515373	_	FRC Cycles	—
D140	TPFE	All Program Flash (Upper and Lower regions) Erase Cycle Time (Note 4)	_	256909	_	FRC Cycles	_
D141	Трве	Program Flash (Upper or Lower regions) Erase Cycle Time (Note 4)	—	128453	_	FRC Cycles	_
D142	TPGE	Page Erase Cycle Time (Note 4)		128453		FRC Cycles	—

TABLE 37-12: DC CHARACTERISTICS: PROGRAM MEMORY⁽³⁾

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: The minimum PBCLK5 for row programming is 4 MHz.

3: Refer to the *"PIC32 Flash Programming Specification"* (DS60001145) for operating conditions during programming and erase cycles.

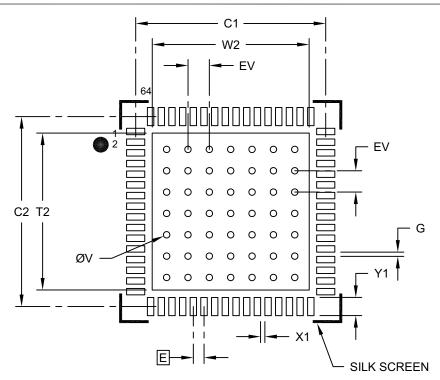
4: This parameter depends on FRC accuracy (see Table 37-20) and FRC tuning values (see the OSCTUN register: Register 8-2).

TABLE 37-13: DC CHARACTERISTICS: PROGRAM FLASH MEMORY WAIT STATES

DC CHARACTERISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
Required Flash Wait States ⁽¹⁾	SYSCLK	Units	Conditions	
With ECC:				
0 Wait states	$0 < SYSCLK \le 60$	MHz	_	
1 Wait state	$60 < SYSCLK \le 120$			
2 Wait states	$120 < SYSCLK \le 200$			
Without ECC:				
0 Wait states	$0 < SYSCLK \le 74$	MHz		
1 Wait state	74 < SYSCLK ≤ 140	101112		
2 Wait states	$140 < SYSCLK \le 200$			

Note 1: To use Wait states, the Prefetch module must be enabled (PREFEN<1:0> ≠ 00) and the PFMWS<2:0> bits must be written with the desired Wait state value.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
USB313	VUSB3V3	USB Voltage	3.0	_	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation
Low-Spe	ed and Fu	ull-Speed Modes					
USB315	VILUSB	Input Low Voltage for USB Buffer	_	_	0.8	V	—
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	_	_	V	—
USB318	VDIFS	Differential Input Sensitivity	0.2		_	V	The difference between D+ and D- must exceed this value while VCM is met
USB319	VCM	Differential Common Mode Range	0.8	—	2.5	V	—
USB321	Vol	Voltage Output Low	0.0	—	0.3	V	1.425 kΩ load connected to VUSB3V3
USB322	Vон	Voltage Output High	2.8	—	3.6	V	14.25 k Ω load connected to ground
Hi-Speed	d Mode						·
USB323	VHSDI	Differential input signal level	150			mV	—
USB324	VHSSQ	SQ detection threshold	100	_	150	mV	—
USB325	VHSCM	Common mode voltage range	-50	—	500	mV	—
USB326	VHSOH	Data signaling high	360	—	440	mV	—
USB327	VHSOL	Data signaling low	-10	—	10	mV	—
USB328	VCHIRPJ	Chirp J level	700	—	1100	mV	—
USB329	VCHIRPK	Chirp K level	-900	—	-500	mV	—
USB330	ZHSDRV	Driver output resistance	_	45	—	Ω	—

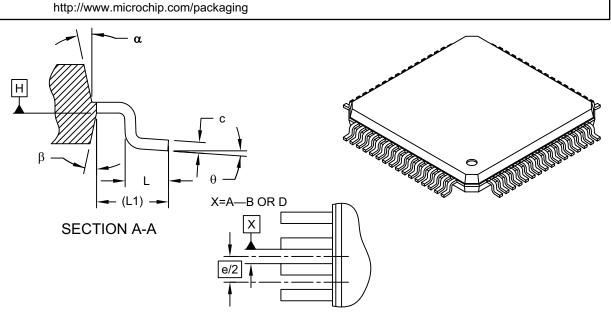

TABLE 37-45: USB OTG ELECTRICAL SPECIFICATIONS

Note 1: These parameters are characterized, but not tested in manufacturing.

41.2 Package Details

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 7.70x7.70mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC		
Optional Center Pad Width	W2			7.50	
Optional Center Pad Length	T2			7.50	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X20)	X1			0.30	
Contact Pad Length (X20)	Y1			0.90	
Contact Pad to Center Pad (X20)	G	0.20			
Thermal Via Diameter	V		0.30		
Thermal Via Pitch	EV		1.00		

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
- BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2213B

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

For the most current package drawings, please see the Microchip Packaging Specification located at

DETAIL 1

	Units	Ν	MILLIMETER	S
Dimensi	on Limits	MIN	NOM	MAX
Number of Leads	Ν		64	
Lead Pitch	е		0.50 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	¢	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	_
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

A.10 Package Differences

In general, PIC32MZ EF devices are mostly pin compatible with PIC32MX5XX/6XX/7XX devices; however, some pins are not. In particular, the VDD and Vss pins have been added and moved to different pins. In addition, I/O functions that were on fixed pins now will largely be on remappable pins.

TABLE A-11: PACKAGE DIFFERENCES

Pin On PIC32MZ EF devices, this requirement has been removed. No VCAP pin. /ss Pins There are more VDD pins on PIC32MZ EF devices, and many are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60 VDD on 100-pin packages: 14, 37, 46, 62, 74, 83, 93
No VCAP pin. /ss Pins There are more VDD pins on PIC32MZ EF devices, and many are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60
/ss Pins There are more VDD pins on PIC32MZ EF devices, and many are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60
There are more VDD pins on PIC32MZ EF devices, and many are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60
are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60
There are more Vss pins on PIC32MZ EF devices, and many are located on different pins.
Vss on 64-pin packages: 7, 25, 35, 40, 55, 59 Vss on 100-pin packages: 13, 36, 45, 53, 63, 75, 84, 92
) Pins
Peripheral functions on PIC32MZ EF devices are now routed through a PPS module, which routes the signals to the desired pins. When migrating software, it is necessary to initialize the PPS I/O functions in order to get the signal to and from the correct pin.
 PPS functionality for the following peripherals: CAN UART SPI (except SCK) Input Capture Output Compare External Interrupt (except INT0) Timer Clocks (except Timer1)