

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	97
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efg124-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
EBIA0	—	44	B24	30	0	—	External Bus Interface Address Bus
EBIA1	_	43	A28	51	0	—	
EBIA2	—	16	B9	21	0	—	
EBIA3	_	12	B7	52	0	—	
EBIA4	_	11	A8	68	0	—	
EBIA5	_	2	B1	2	0	—	
EBIA6	_	6	B3	6	0	—	
EBIA7	_	33	A23	48	0	—	
EBIA8	—	65	A44	91	0	—	
EBIA9	—	64	B36	90	0	—	
EBIA10	—	32	B18	47	0	—	
EBIA11	—	41	A27	29	0	—	
EBIA12	—	7	A6	11	0	—	
EBIA13	—	34	B19	28	0	—	
EBIA14	—	61	A42	87	0	—	
EBIA15	_	68	B38	97	0	—	
EBIA16	_	17	A11	19	0	—	
EBIA17	_	40	B22	53	0	—	
EBIA18		39	A26	92	0	—	
EBIA19		38	B21	93	0	—	
EBIA20	—	—	—	94	0	—	
EBIA21		_		126	0	_	
EBIA22		_		117	0	_	
EBIA23	_	_	_	103	0	_	
EBID0	—	91	B52	135	I/O	ST	External Bus Interface Data I/O Bus
EBID1		94	A64	138	I/O	ST	
EBID2		98	A66	142	I/O	ST	
EBID3		99	B56	143	I/O	ST	
EBID4	—	100	A67	144	I/O	ST	
EBID5		3	A3	3	I/O	ST	
EBID6		4	B2	4	I/O	ST	
EBID7		5	A4	5	I/O	ST	
EBID8		88	B50	128	I/O	ST	
EBID9		87	A60	127	I/O	ST	-
EBID10		86	B49	125	1/0	ST	-
EBID11		85	A59	124	1/0	ST	-
EBID12		79	B43	112	1/0	ST	-
EBID13	<u> </u>	80	A54	113	1/0	ST	-
EBID14	<u> </u>	77	B42	110	1/0	SI	-
EBID15	<u> </u>	78	A53	111	1/0	ST	
EBIBS0	<u> </u>			9	0		External Bus Interface Byte Select
EBIBS1	<u> </u>	-		10	0		
EBICS0	<u> </u>	59	A41	131	0		External Bus Interface Chip Select
EBICS1	<u> </u>			132	0		4
EBICS2	<u> </u>			133	0		4
EBICS3				134	U		Analan innut
Legend:	CMOS = CI	viUS-compa	atible input	or output		Analog =	Analog input $P = Power$

TABLE 1-13: **EBI PINOUT I/O DESCRIPTIONS**

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

© 2015-2016 Microchip Technology Inc.

O = Output

PPS = Peripheral Pin Select

I = Input

4.2 System Bus Arbitration

Note:	The	System	Bus	interconnect						
	impler	ments one o	r more ir	stantiations of						
	the So	onicsSX [®] int	erconneo	ct from Sonics,						
	Inc. This document contains materi									
	that a	re (c) 2003-	2015 So	nics, Inc., and						
	that constitute proprietary information of									
	Sonics	s, Inc. Son	icsSX is	a registered						
	traden	nark of S	onics, I	nc. All such						
	mater	ials and trad	emarks a	are used under						
	licens	e from Sonic	s, Inc.							

As shown in the PIC32MZ EF Family Block Diagram (see Figure 1-1), there are multiple initiator modules (I1 through I14) in the system that can access various target modules (T1 through T13). Table 4-4 illustrates which initiator can access which target. The System Bus supports simultaneous access to targets by initiators, so long as the initiators are accessing different targets. The System Bus will perform arbitration, if multiple initiators attempt to access the same target.

TABLE 4-10: SYSTEM BUS TARGET 2 REGISTER MAP

ess		-	Bits																
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI	—	—	—		CODE	<3:0>		—	—	—	-	—	_	-	—	0000
8620	SBIZELUGI	15:0				INI	TID<7:0>					REGIO	N<3:0>		_	C	MD<2:0>		0000
8824	SBT2ELOG2	31:16	—	—	_	—	_	_		_	_	_	—			—	_	—	0000
0024	001222002	15:0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	GROU	P<1:0>	0000
8828	SBT2ECON	31:16	—	—	—	—	—	—	—	ERRP	—	—	—		—	_	_	—	0000
0020	00.2200.0	15:0	—	—		—	—			_		_	—						0000
8830	SBT2ECLRS	31:16	—	—	—	—	—			_		_	—						0000
		15:0	_	—	—	_		—	—	_	—	—	_	_	_			CLEAR	0000
8838	SBT2ECLRM	31:16	—	—	—		—				—	—	—		—			—	0000
		15:0	_	-	—			_	—		—	—		—	—			CLEAR	0000
8840	SBT2REG0	31:16			D/				DDI	BA									XXXX
		15:0			BA	ASE<5:0>			PRI		SIZE<4.0>							XXXX	
8850	SBT2RD0	15:0	_																XXXX
		31.16		_												GROUPZ		GROOPU	·
8858	SBT2WR0	15.0													GROUP3	GROUP2	GROUP1	GROUP	
		31.16								BA	SF<21.6>				on of the off of	ONOOL			XXXX
8860	SBT2REG1	15:0			BA	\SE<5:0>			PRI	_			SIZE<4:0	>		_	_	_	XXXX
		31:16	_	_	—	_	_	—	_	_	_	—	_	_	_	_	_	_	xxxx
8870	SBT2RD1	15:0	_		_				_	_		_	_	_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
8878	SBT2WR1	15:0	_	_	_	_	_	_	_	_	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
0000		31:16 BASE<21:6>									xxxx								
8880	SB12REG2	15:0	5:0 BASE<5:0>						PRI	—			SIZE<4:0	>		_	_	—	xxxx
0000	SPT2PD2	31:16		—	—	_	_	—	—	_	—	—	_	_	_	—	—	—	xxxx
9990	SD12KD2	15:0	—	—	—	_	—	—	_	_	_	_	—	_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
8898	SBT2WR2	31:16	_	—	—	—	—	—	_	—	—	_	—	_	-	-	-	—	xxxx
0030		15:0	—	—	—	—	_	—	-	-	—	—	_	-	GROUP3	GROUP2	GROUP1	GROUP0) xxxx

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0					
31:24	NVMKEY<31:24>												
22.46	W-0	W-0	W-0	W-0	W-0 W-0		W-0	W-0					
23:16	NVMKEY<23:16>												
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0					
15:8	NVMKEY<15:8>												
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0					
7:0	NVMKEY<7:0>												

REGISTER 5-3: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 **NVMKEY<31:0>:** Unlock Register bits These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-4: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31.24	NVMADDR<31:24> ⁽¹⁾												
22.46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16	NVMADDR<23:16> ⁽¹⁾												
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	NVMADDR<15:8> ⁽¹⁾												
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	NVMADDR<7:0> ⁽¹⁾												

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMADDR<31:0>: Flash Address bits⁽¹⁾

NVMOP<3:0> Selection	Flash Address Bits (NVMADDR<31:0>)						
Page Erase	ddress identifies the page to erase (NVMADDR<13:0> are ignored).						
Row Program	Address identifies the row to program (NVMADDR<10:0> are ignored).						
Word Program	Address identifies the word to program (NVMADDR<1:0> are ignored).						
Quad Word Program	Address identifies the quad word (128-bit) to program (NVMADDR<3:0> bits are ignored).						
Note 1: For all other NVMOP<3:0> bit settings, the Flash address is ignored. See the NVMCON register (Register 5-1) for additional information on these bits.							

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress ()	N -	Ð								Bi	its								Ś
Virtual Add (BF81_#	Registe Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0650	055407(7)	31:16	_	_	—	—	—	—	_	—	_	_	—	_	_	_	VOFF<	17:16>	0000
06EC	OFF107	15:0								VOFF<15:1>									0000
06F4		31:16	_	_	—	—	—	—	—	—	_	_	—	—	—	_	VOFF<	17:16>	0000
001 4	011103	15:0								VOFF<15:1>								—	0000
06F8	OFF110	31:16	_	—	—	—	—	—	—	—	—	_	—	—	_	—	VOFF<	17:16>	0000
		15:0 VOFF<15:1>											_	0000					
06FC	OFF111	31:16	_	—	—	—	_	—	—	_	_	_	_			—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>									0000
0700	OFF112	31:16	—	—	—	—	—	—	—		—	—	—	_	—	—	VOFF<	17:16>	0000
		15:0			1	1	r	r	i	VOFF<15:1>		i	r		r		VOFF	_	0000
0704	OFF113	31:16	_	_	—	—	_	_	_		_	_	—	—	_	_	VOFF<	17:16>	0000
		15:0								VUFF<15:1>									0000
0708	OFF114	15.0		_	_			_	_	VOFE<15:1>							VOITS		0000
		31.16	_	_	_	_	_	_			_		_		_	_	VOFE	17.16>	0000
070C	OFF115	15:0								VOFF<15:1>							10113	_	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_		_	_	VOFF<	17:16>	0000
0710	OFF116	15:0								VOFF<15:1>								_	0000
	0	31:16	_	_	_	_	_	_	_	_	_	_	—	_	—	_	VOFF<	17:16>	0000
0714	OFF117	15:0								VOFF<15:1>								_	0000
0710	00000(2)	31:16	_	_	_	_	—	—	_	-	—	_	_	_	—	_	VOFF<	17:16>	0000
0718		15:0								VOFF<15:1>								_	0000
0710		31:16	_	-	—	—	—	—	—	—	1	—	—	_	—	_	VOFF<	17:16>	0000
0/10	011113	15:0								VOFF<15:1>								_	0000
0720	OFF120	31:16	—	—	—	—		—	—	_	_		—	—		—	VOFF<	17:16>	0000
0720	011120	15:0								VOFF<15:1>								—	0000
0724	OFF121	31:16	_	—	-	—	—	—	—	-	—	—	—	_	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>								—	0000
0728	OFF122	31:16	—	—	—	—	—	—	—		—	—	—	—	—	—	VOFF<	17:16>	0000
	-	15:0								VOFF<15:1>	•							—	0000

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress ()		e								В	its								s
Virtual Add (BF81_#	Registe Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
004.0	055400	31:16	_	—	—	—	-	_	-	—	—	—	—	—	—	_	VOFF<1	7:16>	000
0810	OFF183	15:0				•	•		•	VOFF<15:1>				•		•		_	000
0000	055494	31:16	_	_	-	_	_	_	_	_	_	_	_	_	—	_	VOFF<1	7:16>	000
0620	OFF 164	15:0								VOFF<15:1>	•							_	000
0824	OFE185(2)	31:16	_	_	—	—	—	_	—	—	_	—	—	—	—	—	VOFF<1	7:16>	000
0024	OFF 165 7	15:0								VOFF<15:1>	•							_	000
0828	OFE186(2)	31:16		—	—	—	—	—	-	—	_	—	—	—	—	—	VOFF<1	7:16>	000
0020	011100**	15:0								VOFF<15:1>								_	0000
0820	OFF187(2)	31:16	_	—	_	—	—	—	-	—	_	_	—	—	—	—	VOFF<1	7:16>	000
0020	011107**	15:0								VOFF<15:1>	-							—	000
0830		31:16		—	—	—	—	—	—	—	_	—	—	—	—	—	VOFF<1	7:16>	000
0030	011100	15:0								VOFF<15:1>	•							—	000
0834	OFE180	31:16	-	—	—	—	—	_	—	_	—	—	—	—	—	—	VOFF<1	7:16>	000
0034	011103	15:0					-			VOFF<15:1>				-		-			000
0838	OFE100	31:16	_	—	—	—	—	_	—	_	_	_	—	—	—	—	VOFF<1	7:16>	0000
0030	011130	15:0								VOFF<15:1>	•							—	000
0840	OFE102	31:16		—	-	—	—	—		—	—			—		—	VOFF<1	7:16>	000
0040	011132	15:0					-			VOFF<15:1>						-			000
0844	OFE103	31:16	_	—	—	—	—	_	—	_	—	_	—	—	—	—	VOFF<1	7:16>	000
0044	011135	15:0					-			VOFF<15:1>						-			000
0848	OFF194	31:16		—	-	—	—	—	-	—	—	-	—	—	—	—	VOFF<1	7:16>	000
0040	011134	15:0								VOFF<15:1>	•							—	000
0850	OFE106	31:16		—	-	—	—	—		—	—			—		—	VOFF<1	7:16>	000
0850	OFF 190	15:0		•		-	-	•	-	VOFF<15:1>	•		-	-		-	-	—	000
0858	OFE108	31:16	-	—	—	—	—	—	—	_	—	—	—	—	—	—	VOFF<1	7:16>	000
0000	066190	15:0								VOFF<15:1>	•							—	000
0950	OFE100	31:16	_	_	—	—	—	_	_	—	—	—	_	—	—	—	VOFF<1	7:16>	000
0650	017133	15:0								VOFF<15:1>								_	000
0960	055200	31:16			_	_	_	_	_	_	_	_	_	—	_	—	VOFF<1	7:16>	000
0000	067200	15:0								VOFF<15:1>								_	000

© 2015-2016 Microchip Technology Inc.

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	—	—		—		RCDIV<2:0>	
22.10	R/W-0	U-0	R/W-y	U-0	U-0	U-0	U-0	U-0
23.10	DRMEN	—	SLP2SPD ⁽¹⁾	_	—	_	—	—
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
15:8	—		COSC<2:0>		—			
7.0	R/W-0	U-0	U-0	R/W-0	R/W-0, HS	U-0	R/W-y	R/W-y
7:0	CLKLOCK	_	_	SLPEN	CF		SOSCEN	OSWEN ⁽¹⁾

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:	y = Value set from Config	uration bits on POR	HS = Hardware Set		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-27 Unimplemented: Read as '0'

- bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits
 - 111 = FRC divided by 256 110 = FRC divided by 64
 - 101 = FRC divided by 32
 - 100 = FRC divided by 16
 - 011 = FRC divided by 8
 - 010 = FRC divided by 4
 - 001 = FRC divided by 2
 - 000 = FRC divided by 1 (default setting)
- bit 23 **DRMEN:** Dream Mode Enable bit
 - 1 = Dream mode is enabled
 - 0 = Dream mode is disabled
- bit 22 Unimplemented: Read as '0'
- bit 21 SLP2SPD: Sleep 2-speed Startup Control bit⁽¹⁾
 - 1 = Use FRC as SYSCLK until selected clock is ready
 - 0 = Use the selected clock directly
- bit 20-15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
 - 110 = Back-up Fast RC (BFRC) Oscillator
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Reserved
 - 010 = Primary Oscillator (Posc) (HS or EC)
 - 001 = System PLL (SPLL)
 - 000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
- bit 11 Unimplemented: Read as '0'
- **Note 1:** The reset value for this bit depends on the setting of the IESO bit (DEVCFG1<7>). When IESO = 1, the reset value is '1'. When IESO = 0, the reset value is '0'.
- Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

12.2 Registers for Slew Rate Control

Some I/O pins can be configured for various types of slew rate control on its associated port. This is controlled by the Slew Rate Control bits in the SRCON1x and SRCON0x registers that are associated with each I/O port. The slew rate control is configured using the corresponding bit in each register, as shown in Table 12-1.

As an example, writing 0x0001, 0x0000 to SRCON1A and SRCON0A, respectively, will enable slew rate control on the RA0 pin and sets the slew rate to the slow edge rate.

SRCON1x	SRCON0x	Description
1	1	Slew rate control is enabled and is set to the slowest edge rate.
1	0	Slew rate control is enabled and is set to the slow edge rate.
0	1	Slew rate control is enabled and is set to the medium edge rate.
0	0	Slew rate control is disabled and is set to the fastest edge rate.

TABLE 12-1: SLEW RATE CONTROL BIT SETTINGS

Note: By default, all of the Port pins are set to the fastest edge rate.

12.3 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

12.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option. PPS configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

12.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

12.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digitalonly peripherals. These include general serial communications (UART, SPI, and CAN), general purpose timer clock inputs, timer-related peripherals (input capture and output compare), interrupt-on-change inputs, and reference clocks (input and output).

In comparison, some digital-only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

REGISTER 20-1: SQI1XCON1: SQI XIP CONTROL REGISTER 1 (CONTINUED)

bit 5-4 TYPEMODE<1:0>: SQI Type Mode Enable bits

- The boot controller will send the mode in Single Lane, Dual Lane, or Quad Lane.
 - 11 = Reserved
 - 10 = Quad Lane mode is enabled
 - 01 = Dual Lane mode is enabled
 - 00 = Single Lane mode is enabled
- bit 3-2 **TYPEADDR<1:0>:** SQI Type Address Enable bits

The boot controller will send the address in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 = Quad Lane mode address is enabled
- 01 = Dual Lane mode address is enabled
- 00 = Single Lane mode address is enabled

bit 1-0 TYPECMD<1:0>: SQI Type Command Enable bits

The boot controller will send the command in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 =Quad Lane mode command is enabled
- 01 = Dual Lane mode command is enabled
- 00 = Single Lane mode command is enabled

TABLE 21-1: I2C1 THROUGH I2C5 REGISTER MAP (CONTINUED)

sse										В	ts								
Virtual Addr (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0420	IDCOMER	31:16	_		_	_			_			_	—	_		_			0000
0430	IZCONOR	15:0	—	_	_	_							Address Ma	ask Registe	r				0000
0440	12C3BRG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0.10	.2005.10	15:0							Bau	d Rate Ger	erator Reg	ister							0000
0450	I2C3TRN	31:16	_	—		—	_	_	_	_	—	—	—	-	-	—	—	—	0000
-		15:0	—	_		_	—	_	_	_		1		Iransmit	Register				0000
0460	I2C3RCV	31:16	_	_		_	_		_	_	_		—	- Dessive	—	_	_	_	0000
		15:0		_		_	_		_			DOIE		Receive	Register	CRODE			0000
0600	I2C4CON	15.0					STRICT			SMENI					SDARI PCEN	DEN		SEN	1000
		31.16											ACKD1	ACKEN					0000
0610	I2C4STAT	15:0	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0620	I2C4ADD	15:0	Address Register							0000									
0620		31:16	_	_	_	_	_	-	_	_	_	_	—	_	_	—	_	—	0000
0630	12041VISK	15:0	_	_	—	_							Address Ma	ask Registe	r				0000
0640		31:16	—	_	_	—	-		_	-		-	_	_		_	-	_	0000
0040	1204010	15:0			-				Bau	d Rate Ger	erator Reg	ister						-	0000
0650	I2C4TRN	31:16	_	_		_	_	_	_		_	—			_	—	_	—	0000
		15:0	—	—	_	—	—	—	—	—		-		Transmit	Register				0000
0660	I2C4RCV	31:16	_	_		_	_	_		_	_	—	—	_		_	—	—	0000
		15:0	_	_		_	_	_	_					Receive	Register				0000
0800	I2C5CON	31:16	-	_	-	-	-	—	-	-	-	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
		15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0810	I2C5STAT	15.0		TPSTAT				- BCI	- CCSTAT				— D/A		-		DRE	TRE	0000
		31.16						BOL		ADD10		12001							0000
0820	I2C5ADD	15:0		_	_	_	_	_					Address	Register					0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0830	I2C5MSK	15:0	_		_	_	_	_					Address Ma	ask Registe	r				0000
0040	1005000	31:16	_	_	_	_	_	_	_	—	_	_	—	_	_	—	—	—	0000
0840	12C5BRG	15:0							Bau	d Rate Ger	erator Reg	ister							0000
0850		31:16			—	_	—		—	_	_		_	_	_		—		0000
0000	12001 KIN	15:0	_	_	—	_	_		_	_				Transmit	Register				0000
0860	I2C5RCV	31:16	_	_		—	_	—	-	_	—	—	—	—	—	—	—	—	0000
0000	00.00	15:0	_	—	—	—	—	—	—	—				Receive	Register				0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

2: This register is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	—			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	CS2 ⁽¹⁾	CS1 ⁽³⁾									
	ADDR15 ⁽²⁾	ADDR14 ⁽⁴⁾		ADDK<13:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	ADDR<7:0>										

REGISTER 23-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

bit 15

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
 - ADDR<15>: Target Address bit 15⁽²⁾
- bit 14 CS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active 0 = Chip Select 1 is inactive
- bit 14 ADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 ADDR<13:0>: Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - 3: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: If the DUALBUF bit (PMCON<17>) = 0, the bits in this register control both read and write target addressing. If the DUALBUF bit = 1, the bits in this register are not used. In this instance, use the PMRADDR register for Read operations and the PMWADDR register for Write operations.

NOTES:

REGISTE	R 29-15:	CIFLTCON5: CAN FILTER CONTROL REGISTER 5 (CONTINUED)						
bit 15	FLTEN21	: Filter 21 Enable bit						
	1 = Filter	is enabled						
	0 = Filter	is disabled						
bit 14-13	MSEL21<1:0>: Filter 21 Mask Select bits							
	11 = Acce	eptance Mask 3 selected						
	10 = Acce	eptance Mask 2 selected						
	01 = Acce	eptance Mask T selected						
hit 12-8	FSEI 21~	A:D-: FIFO Selection hits						
511 12 0	11111 = 1	Message matching filter is stored in EIEO buffer 31						
	11110 = 1	Message matching filter is stored in FIFO buffer 30						
	•							
	•							
	•							
	00001 = I	Message matching filter is stored in FIFO buffer 1						
	00000 = I	Message matching filter is stored in FIFO buffer 0						
bit 7	FLTEN20	: Filter 20 Enable bit						
	1 = Filter	is enabled						
	0 = Filter	is disabled						
bit 6-5	MSEL20<	:1:0>: Filter 20 Mask Select bits						
	11 = Acce	eptance Mask 3 selected						
	10 = Acce	eptance Mask 2 selected						
	01 = Acce	eptance Mask 1 selected						
hit 1 0								
DIL 4-0	TJEL204	4:0>: FIFO Selection bits						
	11111 = 1	Message matching filter is stored in FIFO buffer 31						
		Message matching inter is stored in FIFO build 50						
	•							
	00001 – 1	Message matching filter is stored in EIEO buffer 1						
	00001 - 1	Message matching filter is stored in FIFO buffer 0						
Note:	The bits in	this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.						

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24				HT<3	1:24>					
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	HT<23:16>									
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.0		HT<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		HT<7:0>								

REGISTER 30-5: ETHHT0: ETHERNET CONTROLLER HASH TABLE 0 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 HT<31:0>: Hash Table Bytes 0-3 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

REGISTER 30-6: ETHHT1: ETHERNET CONTROLLER HASH TABLE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24				HT<6	3:56>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	HT<55:48>								
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
10.0	HT<47:40>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		HT<39:32>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 HT<63:32>: Hash Table Bytes 4-7 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	—	—		—	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	RXFWM<7:0>								
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
10.0	—	—	—	—	—	—		—	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	RXEWM<7:0>								

REGISTER 30-12: ETHRXWM: ETHERNET CONTROLLER RECEIVE WATERMARKS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-24 Unimplemented: Read as '0'
- bit 23-16 **RXFWM<7:0>:** Receive Full Watermark bits

The software controlled RX Buffer Full Watermark Pointer is compared against the RX BUFCNT to determine the full watermark condition for the FWMARK interrupt and for enabling Flow Control when automatic Flow Control is enabled. The Full Watermark Pointer should always be greater than the Empty Watermark Pointer.

- bit 15-8 Unimplemented: Read as '0'
- bit 7-0 **RXEWM<7:0>:** Receive Empty Watermark bits

The software controlled RX Buffer Empty Watermark Pointer is compared against the RX BUFCNT to determine the empty watermark condition for the EWMARK interrupt and for disabling Flow Control when automatic Flow Control is enabled. The Empty Watermark Pointer should always be less than the Full Watermark Pointer.

Note: This register is only used for RX operations.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—		—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	_	—	—
15:8	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	ON	—	—	—	—	-	—	—
7:0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	CVROE	CVRR	CVRSS	CVR<3:0>			

REGISTER 32-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15	ON: Comparator Voltage Reference On bit						
	1 = Module is enabled						
	Setting this bit does not affect other bits in the register.						
	0 = Module is disabled and does not consume current.						
	Clearing this bit does not affect the other bits in the register.						
bit 14-7	Unimplemented: Read as '0'						
bit 6	CVROE: CVREFOUT Enable bit						
	1 = Voltage level is output on CVREFOUT pin						
	0 = Voltage level is disconnected from CVREFOUT pin						
bit 5	CVRR: CVREF Range Selection bit						
	1 = 0 to 0.67 CVRSRC, with CVRSRC/24 step size						
	0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size						
bit 4	CVRSS: CVREF Source Selection bit						
	1 = Comparator voltage reference source, CVRSRC = (VREF+) - (VREF-)						
	0 = Comparator voltage reference source, CVRSRC = AVDD – AVSS						
bit 3-0	CVR<3:0>: CVREF Value Selection $0 \le$ CVR<3:0> \le 15 bits						
	When CVRR = 1:						
	$CVREF = (CVR < 3:0 > /24) \bullet (CVRSRC)$						
	When CVRR = 0:						
	$CVREF = 1/4 \bullet (CVRSRC) + (CVR<3:0>/32) \bullet (CVRSRC)$						

REGISTER 34-9:		CFGEBIC: EXTERNAL BUS INTERFACE CONTROL PIN CONFIGURATION REGISTER (CONTINUED)
bit 12	EBIOEEN:	EBIOE Pin Enable bit
	1 = EBIOE $0 = EBIOE$	pin is enabled for use by the EBI module pin is available for general use
bit 11-10	Unimplem	ented: Read as '0'
bit 9	EBIBSEN1	EBIBS1 Pin Enable bit
	$1 = \frac{\text{EBIBS}}{\text{EBIBS}}$ $0 = \text{EBIBS}$	1 pin is enabled for use by the EBI module 1 pin is available for general use
bit 8	EBIBSEN1	I: EBIBS0 Pin Enable bit
	$1 = \overline{\text{EBIBS}}$ $0 = \overline{\text{EBIBS}}$	$\overline{0}$ pin is enabled for use by the EBI module $\overline{0}$ pin is available for general use
bit 7	EBICSEN	3: EBICS3 Pin Enable bit
	$1 = \frac{\text{EBICS}}{0 = \text{EBICS}}$	$\overline{3}$ pin is enabled for use by the EBI module $\overline{3}$ pin is available for general use
bit 6	EBICSEN	2: EBICS2 Pin Enable bit
	$1 = \frac{\text{EBICS}}{0 = \text{EBICS}}$	$\overline{2}$ pin is enabled for use by the EBI module $\overline{2}$ pin is available for general use
bit 5	EBICSEN1	I: EBICS1 Pin Enable bit
	$1 = \frac{\text{EBICS}}{\text{EBICS}}$ $0 = \text{EBICS}$	1 pin is enabled for use by the EBI module 1 pin is available for general use
bit 4	EBICSEN	0: EBICS0 Pin Enable bit
	$1 = \frac{\text{EBICS}}{\text{EBICS}}$ $0 = \text{EBICS}$	0 pin is enabled for use by the EBI module 0 pin is available for general use
bit 3-2	Unimplem	ented: Read as '0'
bit 1	EBIDEN1:	EBI Data Upper Byte Pin Enable bit
	1 = EBID<	15:8> pins are enabled for use by the EBI module
	0 = EBID <	15:8> pins have reverted to general use
bit 0	EBIDEN0:	EBI Data Lower Byte Pin Enable bit
	1 = EBID< 0 = EBID<	7:0> pins are enabled for use by the EBI module 7:0> pins have reverted to general use
Note:	When EBI	MD = 1, the bits in this register are ignored and the pins are available for general use.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP10	TSCL	SCKx Output Low Time (Note 3)	Tsck/2	—		ns	—	
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	—		ns	_	
SP15	TscK	SPI Clock Speed	—	—	25	MHz	SPI1, SPI4 through SPI6	
		(Note 5)	—	—	50	MHz	SPI2 on RPB3, RPB5	
			—		25	MHz	SPI2 on other I/O	
			—		50	MHz	SPI3 on RPB10, RPB9, RPF0	
			_		25	MHZ	SPI3 on other I/O	
SP20	TSCF	SCKx Output Fall Time (Note 4)		_		ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	_	_		ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	_		ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_			ns	See parameter DO31	
SP35	TSCH2DOV, TSCL2DOV	SDOx Data Output Valid after		—	7	ns	VDD > 2.7V	
		SCKx Edge		_	10	ns	Vdd < 2.7V	
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	5	—	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	5	—	_	ns	_	

TABLE 37-30: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 20 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 30 pF load on all SPIx pins.

5: To achieve maximum data rate, VDD must be \geq 3.3V, the SMP bit (SPIxCON<9>) must be equal to '1', and the operating temperature must be within the range of -40°C to +105°C.

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

AC CHARACTERISTICS ⁽²⁾			Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param. No.	Varam. No. Symbol Characteristics		Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
Clock P	arameter	S							
AD50	TAD	ADC Clock Period	20	_	6250	ns	_		
Throug	hput Rate	!							
AD51	Fтр	Sample Rate for ADC0-ADC4 (Class 1 Inputs)	 		3.125 3.57 4.16 5	Msps Msps Msps Msps	$\begin{array}{l} \mbox{12-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{10-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{8-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{6-bit resolution Source Impedance} \leq 200\Omega \\ \end{array}$		
		Sample Rate for ADC7 (Class 2 and Class 3 Inputs)			2.94 3.33 3.84 4.55	Msps Msps Msps Msps	$\begin{array}{l} \mbox{12-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{10-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{8-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{6-bit resolution Source Impedance} \leq 200\Omega \end{array}$		
Timing	Paramete	rs							
AD60	TSAMP	Sample Time for ADC0-ADC4 (Class 1 Inputs)	3 4 5 13	_	—	Tad	Source Impedance $\leq 200\Omega$, Max ADC clock Source Impedance $\leq 500\Omega$, Max ADC clock Source Impedance $\leq 1 \ K\Omega$, Max ADC clock Source Impedance $\leq 5 \ K\Omega$, Max ADC clock		
		Sample Time for ADC7 (Class 2 and 3 Inputs)	4 5 6 14		_	Tad	Source Impedance $\leq 200\Omega$, Max ADC clock Source Impedance $\leq 500\Omega$, Max ADC clock Source Impedance $\leq 1 \text{ K}\Omega$, Max ADC clock Source Impedance $\leq 5 \text{ K}\Omega$, Max ADC clock		
		Sample Time for ADC7 (Class 2 and 3 Inputs)	See Table 37-40	_		Tad	CVDEN (ADCCON1<11>) = 1		
AD62	Τςονν	Conversion Time (after sample time is complete)			13 11 9 7	Tad	12-bit resolution 10-bit resolution 8-bit resolution 6-bit resolution		
AD65	TWAKE	Wake-up time	_	500	_	TAD	(500 T 00		
		Power Mode	_	20	—	μs	Lesser of 500 TAD or 20 µS.		

TABLE 37-39: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

144-Lead Plastic Low Profile Quad Flatpack (PL) – 20x20x1.40 mm Body, with 2.00 mm Footprint [LQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-044B Sheet 1 of 2