

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                              |
|----------------------------|-------------------------------------------------------------------------------------|
| Core Processor             | MIPS32® M-Class                                                                     |
| Core Size                  | 32-Bit Single-Core                                                                  |
| Speed                      | 250MHz                                                                              |
| Connectivity               | CANbus, Ethernet, I <sup>2</sup> C, PMP, SPI, SQI, UART/USART, USB OTG              |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                        |
| Number of I/O              | 46                                                                                  |
| Program Memory Size        | 2MB (2M x 8)                                                                        |
| Program Memory Type        | FLASH                                                                               |
| EEPROM Size                | -                                                                                   |
| RAM Size                   | 512K x 8                                                                            |
| Voltage - Supply (Vcc/Vdd) | 2.1V ~ 3.6V                                                                         |
| Data Converters            | A/D 24x12b                                                                          |
| Oscillator Type            | Internal                                                                            |
| Operating Temperature      | -40°C ~ 80°C (TA)                                                                   |
| Mounting Type              | Surface Mount                                                                       |
| Package / Case             | 64-TQFP                                                                             |
| Supplier Device Package    | 64-TQFP (10x10)                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efh064-250i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### TABLE 4:PIN NAMES FOR 124-PIN DEVICES

| 124              | -PIN VTLA (BOTTOM VIEW) A1                                                                               | 7      |                  | 213     | A34<br>B29          | A34 |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------|--------|------------------|---------|---------------------|-----|--|--|--|
|                  | PIC32MZ0512EF(E/F/K)124<br>PIC32MZ1024EF(G/H/M)124<br>PIC32MZ1024EF(E/F/K)124<br>PIC32MZ2048EF(G/H/M)124 |        |                  | B1<br>E | B41<br>56           | A51 |  |  |  |
|                  | Polarity                                                                                                 | Indica | A1<br>tor        | A       | 68                  |     |  |  |  |
| Package<br>Pin # | Full Pin Name                                                                                            |        | Package<br>Pin # |         | Full Pin Name       |     |  |  |  |
| A1               | No Connect                                                                                               | _      | A35              | VBUS    |                     |     |  |  |  |
| A2               | AN23/RG15                                                                                                |        | A36              | VUSB3   | /3                  |     |  |  |  |
| Δ3               | EBID5/AN17/RPE5/PMD5/RE5                                                                                 |        | Δ37              | D-      |                     |     |  |  |  |
| A4               | EBID7/AN15/PMD7/RE7                                                                                      |        | A38              | RPF3/   | USBID/RE3           |     |  |  |  |
| A5               |                                                                                                          |        | A39              | FBIRE   | Y2/RPF8/SCI 3/RF8   |     |  |  |  |
| A6               | FBIA12/AN21/RPC2/PMA12/RC2                                                                               |        | A40              | FRXD    | 3/RH9               |     |  |  |  |
| Δ7               |                                                                                                          |        | Δ41              | EBICS   | 0/SCI 2/RA2         |     |  |  |  |
| A8               | EBIA4/AN13/C1INC/RPG7/SDA4/PMA4/RG7                                                                      |        | A42              | FBIA1   | 4/PMCS1/PMA14/RA4   |     |  |  |  |
| A9               | Vss                                                                                                      |        | A43              | Vss     |                     |     |  |  |  |
| A10              | MCLR                                                                                                     |        | A44              | EBIA8   | /RPF5/SCL5/PMA8/RF5 |     |  |  |  |
| A11              | TMS/EBIA16/AN24/RA0                                                                                      |        | A45              | RPA1    | 5/SDA1/RA15         |     |  |  |  |
| A12              | AN26/RPE9/RE9                                                                                            |        | A46              | RPD1    | D/SCK4/RD10         |     |  |  |  |
| A13              | AN4/C1INB/RB4                                                                                            |        | A47              | ECRS    | /RH12               |     |  |  |  |
| A14              | AN3/C2INA/RPB3/RB3                                                                                       |        | A48              | RPD0    | RTCC/INT0/RD0       |     |  |  |  |
| A15              | Vdd                                                                                                      |        | A49              | SOSC    | O/RPC14/T1CK/RC14   |     |  |  |  |
| A16              | AN2/C2INB/RPB2/RB2                                                                                       |        | A50              | Vdd     |                     |     |  |  |  |
| A17              | PGEC1/AN1/RPB1/RB1                                                                                       |        | A51              | Vss     |                     |     |  |  |  |
| A18              | PGED1/AN0/RPB0/RB0                                                                                       |        | A52              | RPD1    | SCK1/RD1            |     |  |  |  |
| A19              | PGED2/AN47/RPB7/RB7                                                                                      |        | A53              | EBID1   | 5/RPD3/PMD15/RD3    |     |  |  |  |
| A20              | VREF+/CVREF+/AN28/RA10                                                                                   |        | A54              | EBID1   | 3/PMD13/RD13        |     |  |  |  |
| A21              | AVss                                                                                                     |        | A55              | EMDIO   | D/RJ1               |     |  |  |  |
| A22              | AN39/ETXD3/RH1                                                                                           |        | A56              | SQICS   | 60/RPD4/RD4         |     |  |  |  |
| A23              | EBIA7/AN49/RPB9/PMA7/RB9                                                                                 |        | A57              | ETXE    | N/RPD6/RD6          |     |  |  |  |
| A24              | AN6/RB11                                                                                                 |        | A58              | Vdd     |                     |     |  |  |  |
| A25              | Vdd                                                                                                      |        | A59              | EBID1   | 1/RPF0/PMD11/RF0    |     |  |  |  |
| A26              | TDI/EBIA18/AN30/RPF13/SCK5/RF13                                                                          |        | A60              | EBID    | /RPG1/PMD9/RG1      |     |  |  |  |
| A27              | EBIA11/AN7/PMA11/RB12                                                                                    |        | A61              | TRCL    | K/SQICLK/RA6        |     |  |  |  |
| A28              | EBIA1/AN9/RPB14/SCK3/PMA1/RB14                                                                           |        | A62              | RJ4     |                     |     |  |  |  |
| A29              | Vss                                                                                                      |        | A63              | Vss     |                     |     |  |  |  |
| A30              | AN40/ERXERR/RH4                                                                                          |        | A64              | EBID1   | /PMD1/RE1           |     |  |  |  |
| A31              | AN42/ERXD2/RH6                                                                                           |        | A65              | TRD1/   | SQID1/RG12          |     |  |  |  |
| A32              | AN33/RPD15/SCK6/RD15                                                                                     |        | A66              | EBID2   | /SQID2/PMD2/RE2     |     |  |  |  |
| A33              | OSC2/CLKO/RC15                                                                                           |        | A67              | EBID4   | /AN18/PMD4/RE4      |     |  |  |  |
| A34              | No Connect                                                                                               |        | A68              | No Co   | nnect               |     |  |  |  |

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RJx) can be used as a change notification pin (CNAx-CNJx). See Section 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

# TABLE 4-11: SYSTEM BUS TARGET 3 REGISTER MAP

| ess                      |                  |               |            |       |       |          |          |       |       |      | Bits      |       |          |      |        |                         |        |        |               |
|--------------------------|------------------|---------------|------------|-------|-------|----------|----------|-------|-------|------|-----------|-------|----------|------|--------|-------------------------|--------|--------|---------------|
| Virtual Addr<br>(BF8F_#) | Register<br>Name | Bit Range     | 31/15      | 30/14 | 29/13 | 28/12    | 27/11    | 26/10 | 25/9  | 24/8 | 23/7      | 22/6  | 21/5     | 20/4 | 19/3   | 18/2                    | 17/1   | 16/0   | All<br>Resets |
|                          |                  | 31:16         | MULTI      | _     |       | _        |          | CODE  | <3:0> |      | _         | _     | —        | _    | —      | —                       | _      | _      | 0000          |
| 8020                     | SBI3ELOGI        | 15:0          |            |       |       | INI      | ΓID<7:0> |       |       |      |           | REGIO | N<3:0>   |      | —      | CMD<2:0>                |        |        | 0000          |
| 0004                     |                  | 31:16         | _          | _     | _     | _        | —        | —     | _     |      |           |       | _        | _    | —      | —                       | —      |        | 0000          |
| 0024                     | 3B13ELOG2        | 15:0          | -          | -     |       | —        | _        | -     | _     |      |           |       | _        | _    | —      | -                       | GROU   | P<1:0> | 0000          |
| 80.28                    | SBT3ECON         | 31:16         | —          | _     | _     | —        | —        | —     | —     | ERRP | —         | _     | —        | —    | —      | —                       | —      | —      | 0000          |
| 0020                     | OBISECON         | 15:0          | —          | —     |       | _        | _        | _     | _     | _    | _         | _     | _        | —    | _      | _                       | _      | —      | 0000          |
| 8030                     | SBT3ECLRS        | 31:16         | —          | —     | —     | —        | —        | —     | —     | —    | —         | —     | —        | —    | —      | —                       | —      | —      | 0000          |
| 0000                     | OBTOLOLINO       | 15:0          | —          | _     | _     | —        | —        | —     | —     | _    | _         | _     | —        | _    | —      | _                       | _      | CLEAR  | 0000          |
| 8C38                     | SBT3ECLRM        | 31:16         | —          | _     |       | —        | —        | —     | —     | —    | —         | —     | —        | _    | —      | —                       |        | —      | 0000          |
|                          | 00.0101          | 15:0          | —          | —     | —     | —        | —        | —     | —     | —    | —         | —     | —        | _    | —      | —                       |        | CLEAR  | 0000          |
| 8C40                     | SBT3REG0         | 31:16         | BASE<21:6> |       |       |          |          |       |       |      |           |       |          |      |        |                         |        | xxxx   |               |
|                          |                  | 15:0          |            |       | BA    | \SE<5:0> |          |       | PRI   | _    | SIZE<4:0> |       |          |      |        | _                       | _      | _      | xxxx          |
| 8C50                     | SBT3RD0          | 31:16         | —          | _     |       | —        |          | _     | _     | _    | _         |       | _        | _    |        |                         |        |        | xxxx          |
|                          |                  | 15:0          | —          | _     | —     | —        | —        | —     | —     | —    | —         | —     | —        | —    | GROUP3 | GROUP2                  | GROUP1 | GROUP0 | xxxx          |
| 8C58                     | SBT3WR0          | 31:16         | —          | —     | —     | —        | —        | —     | —     | —    | —         | —     | —        | —    | -      | —                       | —      |        | xxxx          |
|                          |                  | 15:0          | —          | —     | —     | —        | —        | —     |       | —    |           | —     |          |      | GROUP3 | CUP3 GROUP2 GROUP1 GROL |        |        |               |
| 8C60                     | SBT3REG1         | 31:16         |            |       |       |          |          |       |       | BA   | SE<21:6>  |       |          |      |        |                         |        |        | XXXX          |
|                          |                  | 15:0          |            |       | BA    | \SE<5:0> |          |       | PRI   |      |           |       | SIZE<4:0 | >    | -      | _                       |        | _      | XXXX          |
| 8C70                     | SBT3RD1          | 31:16         | —          | _     |       | _        |          |       | _     |      |           |       | _        | _    |        | —                       |        | —      | XXXX          |
|                          |                  | 15:0          | _          | _     |       | —        |          |       |       | _    |           |       |          | —    | GROUP3 | GROUP2                  | GROUP1 | GROUP0 | XXXX          |
| 8C78                     | SBT3WR1          | 31:16         | _          | _     |       | —        |          |       |       | _    |           |       |          | —    | -      | -                       | —      | —      | xxxx          |
|                          |                  | 15:0          | —          | —     | _     | _        | _        | _     |       | —    | —         | —     |          |      | GROUP3 | GROUP2                  | GROUP1 | GROUP0 | XXXX          |
| 8C80                     | SBT3REG2         | 31:16         |            |       |       | 05 5 0   |          |       | 551   | BA   | SE<21:6>  |       | 0175 4 0 |      |        |                         |        |        | XXXX          |
|                          |                  | 15:0          |            |       | BA    | ASE<5:0> |          |       | PRI   | _    |           |       | SIZE<4:0 | >    |        | _                       | _      | _      | XXXX          |
| 8C90                     | SBT3RD2          | SBT3RD2 31:16 |            | _     | _     | _        | _        | _     | _     | _    |           |       |          |      | -      | XXXX                    |        |        |               |
|                          |                  | 15:0          | _          | _     |       | _        | _        |       | _     |      | _         |       | _        |      | GROUP3 | GROUP2                  | GROUP1 | GROUPO | XXXX          |
| 8C98                     | SBT3WR2          | 31:16         | _          | _     |       | _        | _        |       | _     |      | _         |       | _        |      |        |                         |        |        | XXXX          |
| 1                        | 15               | 15:0          | —          | —     | _     | -        | _        | _     | —     | —    | —         | _     | -        | _    | GROUP3 | GROUP2                  | GROUP1 | GROUP0 | XXXX          |

DS60001320D-page 80

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

|                  |                  |      |                  |                  |        |                       | Clo    | ck Sou | irce   |                  |        |        |          |                 |                 |
|------------------|------------------|------|------------------|------------------|--------|-----------------------|--------|--------|--------|------------------|--------|--------|----------|-----------------|-----------------|
| Peripheral       | FRC              | LPRC | sosc             | SYSCLK           | USBCLK | PBCLK1 <sup>(1)</sup> | PBCLK2 | PBCLK3 | PBCLK4 | <b>PBCLK5</b>    | PBCLK7 | PBCLK8 | REFCLK01 | <b>REFCLK02</b> | <b>REFCLK03</b> |
| CPU              |                  |      |                  |                  |        |                       |        |        |        |                  | Х      |        |          |                 |                 |
| WDT              |                  | Х    |                  |                  |        | χ(2)                  |        |        |        |                  |        |        |          |                 |                 |
| Deadman Timer    |                  |      |                  |                  |        | X <sup>(2)</sup>      |        |        |        |                  | Х      |        |          |                 |                 |
| Flash            | χ <sup>(2)</sup> |      |                  | X <sup>(2)</sup> |        | X <sup>(2)</sup>      |        |        |        |                  |        |        |          |                 |                 |
| ADC              | Х                |      |                  | Х                |        |                       |        | χ(3)   |        |                  |        |        |          |                 | Х               |
| Comparator       |                  |      |                  |                  |        |                       |        | Х      |        |                  |        |        |          |                 |                 |
| Crypto           |                  |      |                  |                  |        |                       |        |        |        | Х                |        |        |          |                 |                 |
| RNG              |                  |      |                  |                  |        |                       |        |        |        | Х                |        |        |          |                 |                 |
| USB              |                  |      |                  |                  | Х      |                       |        |        |        | X <sup>(3)</sup> |        |        |          |                 |                 |
| CAN              |                  |      |                  |                  |        |                       |        |        |        | Х                |        |        |          |                 |                 |
| Ethernet         |                  |      |                  |                  |        |                       |        |        |        | X <sup>(3)</sup> |        |        |          |                 |                 |
| PMP              |                  |      |                  |                  |        |                       | Х      |        |        |                  |        |        |          |                 |                 |
| I <sup>2</sup> C |                  |      |                  |                  |        |                       | Х      |        |        |                  |        |        |          |                 |                 |
| UART             |                  |      |                  |                  |        |                       | Х      |        |        |                  |        |        |          |                 |                 |
| RTCC             |                  | Х    | Х                |                  |        | χ(2)                  |        |        |        |                  |        |        |          |                 |                 |
| EBI              |                  |      |                  |                  |        |                       |        |        |        |                  |        | Х      |          |                 |                 |
| SQI              |                  |      |                  |                  |        |                       |        |        |        | X <sup>(3)</sup> |        |        |          | Х               |                 |
| SPI              |                  |      |                  |                  |        |                       | Х      |        |        |                  |        |        | Х        |                 |                 |
| Timers           |                  |      | X <sup>(4)</sup> |                  |        |                       |        | Х      |        |                  |        |        |          |                 |                 |
| Output Compare   |                  |      |                  |                  |        |                       |        | Х      |        |                  |        |        |          |                 |                 |
| Input Capture    |                  |      |                  |                  |        |                       |        | Х      |        |                  |        |        |          |                 |                 |
| Ports            |                  |      |                  |                  |        |                       |        |        | Х      |                  |        |        |          |                 |                 |
| DMA              |                  |      |                  | Х                |        |                       |        |        |        |                  |        |        |          |                 |                 |
| Interrupts       |                  |      |                  | Х                |        |                       |        |        |        |                  |        |        |          |                 |                 |
| Prefetch         |                  |      |                  | Х                |        |                       |        |        |        |                  |        |        |          |                 |                 |
| OSC2 Pin         |                  |      |                  |                  |        | X <sup>(5)</sup>      |        |        |        |                  |        |        |          |                 |                 |

#### TABLE 8-1: SYSTEM AND PERIPHERAL CLOCK DISTRIBUTION

Note 1: PBCLK1 is used by system modules and cannot be turned off.

2: SYSCLK/PBCLK1 is used to fetch data from/to the Flash Controller, while the FRC clock is used for programming.

- **3:** Special Function Register (SFR) access only.
- 4: Timer1 only.
- 5: PBCLK1 divided by 2 is available on the OSC2 pin in certain clock modes.

# 8.1 Fail-Safe Clock Monitor (FSCM)

The PIC32MZ EF oscillator system includes a Fail-safe Clock Monitor (FSCM). The FSCM monitors the SYSCLK for continuous operation. If it detects that the SYSCLK has failed, it switches the SYSCLK over to the BFRC oscillator and triggers a NMI. The BFRC is an untuned 8 MHz oscillator that will drive the SYSCLK during FSCM event. When the NMI is executed, software can attempt to restart the main oscillator or shut down the system.

In Sleep mode both the SYSCLK and the FSCM halt, which prevents FSCM detection.

| Bit<br>Range | Bit<br>31/23/15/7   | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0      |  |  |  |  |  |  |  |  |
|--------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-----------------------|--|--|--|--|--|--|--|--|
| 04.04        | R/W-0 R/W-0         |                   | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0                 |  |  |  |  |  |  |  |  |
| 31:24        |                     | CHPIGN<7:0>       |                   |                   |                   |                   |                  |                       |  |  |  |  |  |  |  |  |
| 00.46        | U-0                 | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0                   |  |  |  |  |  |  |  |  |
| 23:16        | —                   | —                 | —                 | —                 | —                 |                   |                  | —                     |  |  |  |  |  |  |  |  |
| 45.0         | R/W-0               | U-0               | R/W-0             | U-0               | R/W-0             | U-0               | U-0              | R/W-0                 |  |  |  |  |  |  |  |  |
| 15:8         | CHBUSY              | —                 | CHIPGNEN          | —                 | CHPATLEN          | _                 | _                | CHCHNS <sup>(1)</sup> |  |  |  |  |  |  |  |  |
| 7.0          | R/W-0               | R/W-0             | R/W-0             | R/W-0             | U-0               | R-0               | R/W-0            | R/W-0                 |  |  |  |  |  |  |  |  |
| 7:0          | CHEN <sup>(2)</sup> | CHAED             | CHCHN             | CHAEN             | _                 | CHEDET            | CHPF             | RI<1:0>               |  |  |  |  |  |  |  |  |

#### REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER

| Legend:           |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

# bit 31-24 CHPIGN<7:0>: Channel Register Data bits

Pattern Terminate mode:

Any byte matching these bits during a pattern match may be ignored during the pattern match determination when the CHPIGNEN bit is set. If a byte is read that is identical to this data byte, the pattern match logic will treat it as a "don't care" when the pattern matching logic is enabled and the CHPIGEN bit is set.

#### bit 23-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
  - 1 = Channel is active or has been enabled
  - 0 = Channel is inactive or has been disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **CHPIGNEN:** Enable Pattern Ignore Byte bit

1 = Treat any byte that matches the CHPIGN<7:0> bits as a "don't care" when pattern matching is enabled 0 = Disable this feature

- bit 12 Unimplemented: Read as '0'
- bit 11 CHPATLEN: Pattern Length bit
  - 1 = 2 byte length
  - 0 = 1 byte length

#### bit 10-9 **Unimplemented:** Read as '0'

- bit 8 **CHCHNS:** Chain Channel Selection bit<sup>(1)</sup>
  - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
  - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)
  - CHEN: Channel Enable bit<sup>(2)</sup>
- 1 = Channel is enabled

bit 7

- 0 = Channel is disabled
- bit 6 CHAED: Channel Allow Events If Disabled bit
  - 1 = Channel start/abort events will be registered, even if the channel is disabled
  - 0 = Channel start/abort events will be ignored if the channel is disabled
- bit 5 CHCHN: Channel Chain Enable bit
  - 1 = Allow channel to be chained
  - 0 = Do not allow channel to be chained
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
  - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

#### TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP

| SSS                       |                  | Bits      |       |       |       |       |       |       |      |      |      |      |      |      |      |       |        |      |            |
|---------------------------|------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|-------|--------|------|------------|
| Virtual Addre<br>(BF80_#) | Register<br>Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2  | 17/1   | 16/0 | All Resets |
| 1404                      |                  | 31:16     | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | _    | —    | —     | _      | —    | 0000       |
| 1404                      | INTIK            | 15:0      | _     | —     | —     | —     | —     | —     | —    | _    | —    | _    | —    | -    |      | INT1F | 2<3:0> |      | 0000       |
| 1409                      |                  | 31:16     | —     | —     | —     | —     | _     | —     | —    | —    | _    | —    | _    |      | —    | _     |        | -    | 0000       |
| 1406                      | INTZR            | 15:0      | —     | —     | —     | —     | _     | —     | —    | —    | _    | —    | _    |      |      | INT2F | 2<3:0> |      | 0000       |
| 1400                      |                  | 31:16     | _     | —     | _     | _     | _     | _     | _    | —    | _    | _    | —    |      | —    | _     |        | _    | 0000       |
| 1400                      | INTOR            | 15:0      | _     | —     | —     | —     | —     | —     | —    | _    | —    | _    | —    | -    |      | INT3F | 2<3:0> |      | 0000       |
| 1410                      |                  | 31:16     | _     | —     | —     | —     | —     | —     | —    | _    | —    | _    | —    | -    | —    | _     | _      | -    | 0000       |
| 1410                      | IN 14K           | 15:0      | _     | —     | —     | —     | —     | —     | —    | _    | —    | _    | —    | -    |      | INT4F | 2<3:0> |      | 0000       |
| 1440                      | TOCKD            | 31:16     | _     | —     | —     | —     | —     | —     | —    | _    | —    | _    | —    | -    | —    | _     | _      | -    | 0000       |
| 1418                      | IZUKR            | 15:0      | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | _    |      | T2CKI | R<3:0> |      | 0000       |
| 4.440                     |                  | 31:16     | —     | _     | _     | _     | —     | —     | _    | —    | —    | —    | _    | _    | —    | —     | —      | —    | 0000       |
| 1410                      | IJCKR            | 15:0      | _     | _     | _     | _     | —     | _     | _    | _    | —    | —    | _    | _    |      | T3CKI | R<3:0> |      | 0000       |
| 4.400                     | TIOKD            | 31:16     | _     | —     | —     | —     | —     | —     | —    |      | —    | —    | _    |      | —    | —     | —      | —    | 0000       |
| 1420                      | 14CKR            | 15:0      | _     | —     | —     | —     | —     | —     | —    |      | —    | —    | _    |      |      | T4CKI | R<3:0> | •    | 0000       |
|                           | TEOKO            | 31:16     | _     | —     | —     | —     | —     | —     | —    |      | —    | —    | _    |      | —    | —     | —      | —    | 0000       |
| 1424                      | 15CKR            | 15:0      | _     | —     | —     | —     | —     | —     | —    |      | —    | —    | _    |      |      | T5CKI | R<3:0> | •    | 0000       |
| 4.400                     | TOOLD            | 31:16     | _     | —     | —     | —     | —     | —     | —    |      | —    | —    | _    |      | —    | —     | —      | —    | 0000       |
| 1428                      | TECKR            | 15:0      | _     | —     | —     | —     | —     | —     | —    |      | —    | —    | _    |      |      | T6CKI | R<3:0> | •    | 0000       |
|                           | 770/0            | 31:16     | —     | _     | _     | _     | _     | _     | _    | —    | _    | —    | _    |      | _    | _     | —      | _    | 0000       |
| 142C                      | 17CKR            | 15:0      | —     | _     | _     | _     | _     | _     | _    | —    | _    | —    | _    |      |      | T7CKI | R<3:0> |      | 0000       |
|                           | <b>T</b> 20//D   | 31:16     | —     | _     | _     | _     | _     | _     | _    | —    | _    | —    | _    |      | _    | —     | —      | _    | 0000       |
| 1430                      | TSCKR            | 15:0      | —     | _     | _     | _     | _     | _     | _    | —    | _    | —    | _    |      |      | T8CKI | R<3:0> |      | 0000       |
|                           | TROUD            | 31:16     | _     | _     | —     | —     | —     | —     | —    |      | —    | _    | _    | _    | —    | —     | _      | _    | 0000       |
| 1434                      | TYCKR            | 15:0      | _     | —     | —     | —     | —     | —     | —    |      | —    | —    | _    |      |      | T9CKI | R<3:0> | •    | 0000       |
|                           | 1015             | 31:16     | —     | _     | _     | _     | _     | _     | _    | —    | _    | —    | _    |      | _    | —     | —      | _    | 0000       |
| 1438                      | IC1R             | 15:0      | —     | _     | _     | _     | _     | _     | _    | —    | _    | —    | _    |      |      | IC1R  | <3:0>  |      | 0000       |
|                           | 1000             | 31:16     | —     | _     | _     | _     | _     | —     | _    | —    | _    | —    | _    |      | _    | —     | —      | _    | 0000       |
| 143C                      | IC2R             | 15:0      | _     | _     | _     | _     | _     | _     | _    | _    | _    | _    | _    | _    |      | IC2R  | <3:0>  |      | 0000       |
|                           | 1000             | 31:16     | _     | _     | _     | _     | _     | _     | _    | —    | _    | _    | _    | —    | —    | —     | —      | —    | 0000       |
| 1440                      | IC3R             | 15:0      | _     | _     | _     | _     | _     | _     | _    | —    | _    | _    | _    | —    |      | IC3R  | <3:0>  |      | 0000       |
|                           |                  |           |       |       |       |       |       |       |      |      |      |      |      |      |      |       |        |      |            |

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is not available on 64-pin devices. Note 1:

2: This register is not available on devices without a CAN module.

| REGISTER 24-3: | EBISMTX: EXTERNAL BUS INTERFACE STATIC MEMORY TIMING REGISTER |
|----------------|---------------------------------------------------------------|
|                | ('x' = 0-2)                                                   |

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6  | Bit<br>29/21/13/5       | Bit<br>28/20/12/4        | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0    |  |  |  |  |
|--------------|-------------------|--------------------|-------------------------|--------------------------|-------------------|-------------------|------------------|---------------------|--|--|--|--|
| 24.24        | U-0               | U-0                | U-0                     | U-0                      | U-0               | R/W-1             | R/W-0            | R/W-0               |  |  |  |  |
| 31.24        | —                 | —                  | —                       | —                        | -                 | RDYMODE           | PAGESI           | ZE<1:0>             |  |  |  |  |
| 22.16        | R/W-0             | R/W-0              | R/W-0                   | R/W-1                    | R/W-1             | R/W-1             | R/W-0            | R/W-0               |  |  |  |  |
| 23.10        | PAGEMODE          |                    | TPRC<                   | TBTA<2:0> <sup>(1)</sup> |                   |                   |                  |                     |  |  |  |  |
| 15.0         | R/W-0             | R/W-0              | R/W-1                   | R/W-0                    | R/W-1             | R/W-1             | R/W-0            | R/W-1               |  |  |  |  |
| 15:8         |                   |                    | TWP<5                   | 5:0> <sup>(1)</sup>      |                   |                   | TWR<             | 1:0> <sup>(1)</sup> |  |  |  |  |
| 7.0          | R/W-0             | R/W-1              | R/W-0                   | R/W-0                    | R/W-1             | R/W-0             | R/W-1            | R/W-1               |  |  |  |  |
| 7:0          | TAS<1             | :0> <sup>(1)</sup> | TRC<5:0> <sup>(1)</sup> |                          |                   |                   |                  |                     |  |  |  |  |

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

# bit 31-27 Unimplemented: Read as '0'

| bit 26    | RDYMODE: Data Ready Device Select bit                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------|
|           | The device associated with register set 'x' is a data-ready device, and will use the EBIRDYx pin.     |
|           | 1 = EBIRDYx input is used                                                                             |
|           | 0 = EBIRDYx input is not used                                                                         |
| bit 25-24 | PAGESIZE<1:0>: Page Size for Page Mode Device bits                                                    |
|           | 11 = 32-word page                                                                                     |
|           | 10 = 16-word page                                                                                     |
|           | 01 = 8-word page                                                                                      |
|           | 00 = 4-word page                                                                                      |
| bit 23    | PAGEMODE: Memory Device Page Mode Support bit                                                         |
|           | 1 = Device supports Page mode                                                                         |
|           | 0 = Device does not support Page mode                                                                 |
| bit 22-19 | TPRC<3:0>: Page Mode Read Cycle Time bits <sup>(1)</sup>                                              |
|           | Read cycle time is TPRC + 1 clock cycle.                                                              |
| bit 18-16 | TBTA<2:0>: Data Bus Turnaround Time bits <sup>(1)</sup>                                               |
|           | Clock cycles (0-7) for static memory between read-to-write, write-to-read, and read-to-read when Chip |
|           | Select changes.                                                                                       |
| bit 15-10 | TWP<5:0>: Write Pulse Width bits <sup>(1)</sup>                                                       |
|           | Write pulse width is TWP + 1 clock cycle.                                                             |
| bit 9-8   | TWR<1:0>: Write Address/Data Hold Time bits <sup>(1)</sup>                                            |
|           |                                                                                                       |

- Number of clock cycles to hold address or data on the bus.bit 7-6TAS<1:0>: Write Address Setup Time bits<sup>(1)</sup>
- TAS<1:0>: Write Address Setup Time bits<sup>(1)</sup>
   Clock cycles for address setup time. A value of '0' is only valid in the case of SSRAM.
- bit 5-0 **TRC<5:0>:** Read Cycle Time bits<sup>(1)</sup> Read cycle time is TRC + 1 clock cycle.
- Note 1: Refer to the Section 47. "External Bus Interface (EBI)" in the "PIC32 Family Reference Manual" for the EBI timing diagrams and additional information.

# TABLE 28-1: ADC REGISTER MAP (CONTINUED)

| ess                      |                          |           |       |                  |       |       |       |       |      | Bit   | s      |      |      |      |      |      |      |      |           |
|--------------------------|--------------------------|-----------|-------|------------------|-------|-------|-------|-------|------|-------|--------|------|------|------|------|------|------|------|-----------|
| Virtual Addr<br>(BF84_#) | Register<br>Name         | Bit Range | 31/15 | 30/14            | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8  | 23/7   | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Reset |
| B234                     | ADCDATA13                | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 0000      |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B238                     | ADCDATA14                | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       | DATA<15:0> 0000  |       |       |       |       |      |       |        |      |      |      |      |      |      |      |           |
| B23C                     | ADCDATA15                | 31:16     |       | DATA<31:16> 000  |       |       |       |       |      |       |        |      |      |      |      |      |      | 000  |           |
|                          |                          | 15:0      |       | DATA<15:0> 00    |       |       |       |       |      |       |        |      |      |      |      |      |      | 000  |           |
| B240                     | ADCDATA16                | 31:16     |       | DATA<31:16> 0/   |       |       |       |       |      |       |        |      |      |      |      |      |      | 000  |           |
|                          |                          | 15:0      |       | DATA<15:0> 000   |       |       |       |       |      |       |        |      |      |      |      |      |      | 000  |           |
| B244                     | ADCDATA17                | 31:16     |       | DATA<31:16> 00   |       |       |       |       |      |       |        |      |      |      |      |      |      | 000  |           |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B248                     | ADCDATA18                | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B24C                     | ADCDATA19 <sup>(1)</sup> | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B250                     | ADCDATA20 <sup>(1)</sup> | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B254                     | ADCDATA21 <sup>(1)</sup> | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B258                     | ADCDATA22 <sup>(1)</sup> | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B25C                     | ADCDATA23 <sup>(1)</sup> | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B260                     | ADCDATA24 <sup>(1)</sup> | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B264                     | ADCDATA25 <sup>(1)</sup> | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B268                     | ADCDATA26 <sup>(1)</sup> | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B26C                     | ADCDATA27 <sup>(1)</sup> | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B270                     | ADCDATA28 <sup>(1)</sup> | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B274                     | ADCDATA29 <sup>(1)</sup> | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       | DATA<15:0> 000   |       |       |       |       |      |       |        |      |      |      |      |      |      |      |           |
| B278                     | ADCDATA30 <sup>(1)</sup> | 31:16     |       | DATA<31:16> 0000 |       |       |       |       |      |       |        |      |      |      |      |      |      |      |           |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |
| B27C                     | ADCDATA31 <sup>(1)</sup> | 31:16     |       |                  |       |       |       |       |      | DATA< | 31:16> |      |      |      |      |      |      |      | 000       |
|                          |                          | 15:0      |       |                  |       |       |       |       |      | DATA< | 15:0>  |      |      |      |      |      |      |      | 000       |

1: 2: 3: Note

This bit or register is not available on 64-pin devices. This bit or register is not available on 64-pin and 100-pin devices. Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory-programmed DEVADCx Flash registers into the corresponding ADCxCFG registers.

| ess                      |                                 |           |         |        |         |       |       |            |          | Bit       | s               |        |         |       |          |            |          |                |            |
|--------------------------|---------------------------------|-----------|---------|--------|---------|-------|-------|------------|----------|-----------|-----------------|--------|---------|-------|----------|------------|----------|----------------|------------|
| Virtual Addr<br>(BF88_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15   | 30/14  | 29/13   | 28/12 | 27/11 | 26/10      | 25/9     | 24/8      | 23/7            | 22/6   | 21/5    | 20/4  | 19/3     | 18/2       | 17/1     | 16/0           | All Resets |
| 44.00                    |                                 | 31:16     | FLTEN19 | MSEL1  | 9<1:0>  |       |       | FSEL19<4:0 | >        |           | FLTEN18         | MSEL1  | 8<1:0>  |       | F        | -SEL18<4:0 | >        | •              | 0000       |
| 1100                     | C2FLICON4                       | 15:0      | FLTEN17 | MSEL1  | 7<1:0>  |       |       | FSEL17<4:0 | >        |           | FLTEN16         | MSEL1  | 6<1:0>  |       |          | FSEL16<4:0 | :        |                | 0000       |
|                          |                                 | 31:16     | FLTEN23 | MSEL2  | 23<1:0> |       |       | FSEL23<4:0 | >        |           | FLTEN22         | MSEL2  | 22<1:0> |       | F        | SEL22<4:0  | >        |                | 0000       |
| 1110                     | C2FLICON5                       | 15:0      | FLTEN21 | MSEL2  | 21<1:0> |       |       | FSEL21<4:0 | >        |           | FLTEN20         | MSEL2  | 20<1:0> |       | F        | SEL20<4:0  | >        |                | 0000       |
| 44.00                    |                                 | 31:16     | FLTEN27 | MSEL2  | 27<1:0> |       |       | FSEL27<4:0 | >        |           | FLTEN26         | MSEL2  | 26<1:0> |       | F        | SEL26<4:0  | >        |                | 0000       |
| 1120                     | C2FLICON6                       | 15:0      | FLTEN25 | MSEL2  | 25<1:0> |       |       | FSEL25<4:0 | >        |           | FLTEN24         | MSEL2  | 24<1:0> |       | F        | SEL24<4:0  | >        |                | 0000       |
| 44.00                    |                                 | 31:16     | FLTEN31 | MSEL3  | 31<1:0> |       |       | FSEL31<4:0 | >        |           | FLTEN30         | MSEL3  | 80<1:0> |       | F        | SEL30<4:0  | >        |                | 0000       |
| 1130                     | C2FLICON/                       | 15:0      | FLTEN29 | MSEL2  | 29<1:0> |       |       | FSEL29<4:0 | >        |           | FLTEN28         | MSEL2  | 28<1:0> |       | F        | SEL28<4:0  | >        |                | 0000       |
| 1140-                    | C2RXFn                          | 31:16     |         |        |         |       |       | SID<10:0>  |          |           |                 |        |         |       | EXID     | _          | EID<     | 17:16>         | XXXX       |
| 1330                     | (n = 0-31)                      | 15:0      |         |        |         |       |       |            |          | EID<1     | 5:0>            |        |         |       |          |            |          |                | XXXX       |
| 1340                     |                                 | 31:16     |         |        |         |       |       |            |          | C2EIEOB   | ۵ <u>~</u> 31·0 |        |         |       |          |            |          |                | 0000       |
| 1040                     |                                 | 15:0      |         |        |         | -     |       |            | -        | 02111 00  | 4401.02         |        |         | -     |          |            |          |                | 0000       |
| 1350                     | C2FIFOCONn                      | 31:16     | —       | _      | —       | —     |       | _          | —        |           | —               | —      | —       |       |          | FSIZE<4:0> |          |                | 0000       |
| 1000                     | (n = 0)                         | 15:0      | —       | FRESET | UINC    | DONLY | _     | _          | —        | —         | TXEN            | TXABAT | TXLARB  | TXERR | TXREQ    | RTREN      | TXPR     | l<1:0>         | 0000       |
| 1360                     | C2FIFOINTn                      | 31:16     | —       | _      | —       | _     | —     | TXNFULLIE  | TXHALFIE | TXEMPTYIE | —               | —      | _       | _     | RXOVFLIE | RXFULLIE   | RXHALFIE | RXN<br>EMPTYIE | 0000       |
| 1000                     | (n = 0)                         | 15:0      | —       | _      | —       | —     | —     | TXNFULLIF  | TXHALFIF | TXEMPTYIF | —               | —      | —       | —     | RXOVFLIF | RXFULLIF   | RXHALFIF | RXN<br>EMPTYIF | 0000       |
| 1370                     | C2FIFOUAn                       | 31:16     |         |        |         |       |       |            |          | C2FIFOU   | A<31.0>         |        |         |       |          |            |          |                | 0000       |
| 10/0                     | (n = 0)                         | 15:0      |         |        |         |       |       |            |          | 02111 00  | ////            |        |         |       |          |            |          |                | 0000       |
| 1380                     | C2FIFOCIn                       | 31:16     | —       | -      | —       | —     | —     | —          | —        | —         | —               | —      | —       | —     | —        | —          | —        | —              | 0000       |
|                          | (n = 0)                         | 15:0      | —       | -      | —       | —     | —     | -          | —        | —         | —               | —      | —       |       | С        | 2FIFOCI<4: | 0>       |                | 0000       |
|                          |                                 | 31:16     | —       | -      | —       | —     | —     | -          | —        | -         | —               | —      | —       |       |          | FSIZE<4:0> |          |                | 0000       |
|                          |                                 | 15:0      | —       | FRESET | UINC    | DONLY | —     | -          | —        | -         | TXEN            | TXABAT | TXLARB  | TXERR | TXREQ    | RTREN      | TXPR     | l<1:0>         | 0000       |
|                          | C2FIFOCONn                      | 31:16     | —       | —      | —       | _     | _     | TXNFULLIE  | TXHALFIE | TXEMPTYIE | —               | —      | —       | _     | RXOVFLIE | RXFULLIE   | RXHALFIE | RXN<br>EMPTYIE | 0000       |
| 1390-<br>1B40            | C2FIFOINTn<br>C2FIFOUAn         | 15:0      | —       | —      | —       | —     | —     | TXNFULLIF  | TXHALFIF | TXEMPTYIF | —               | —      | —       | —     | RXOVFLIF | RXFULLIF   | RXHALFIF | RXN<br>EMPTYIF | 0000       |
|                          | (n = 1-31)                      | 31:16     |         |        |         |       |       |            |          | C2EIEOU   | A<31.0>         |        |         |       |          |            |          |                | 0000       |
|                          | ,                               | 15:0      |         |        |         |       |       |            |          | 02111 00  |                 |        |         |       |          |            |          |                | 0000       |
|                          |                                 | 31:16     | —       | _      | —       | —     | —     | -          | —        | -         | —               | —      | —       | —     | -        | —          | —        | -              | 0000       |
|                          |                                 | 15:0      | _       | _      | _       |       | _     | _          | _        |           |                 | _      | _       |       | С        | 2FIFOCI<4: | 0>       |                | 0000       |

Legend: Note 1:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

REGISTER 29-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED) bit 15 FLTEN9: Filter 9 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL9<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL8<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

| Bit Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|
| 21.24     | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 51.24     |                   |                   |                   | PMM<              | 31:24>            |                   |                  |                  |  |  |  |
| 22.16     | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 23.10     | PMM<23:16>        |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| 15.9      | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 15.6      | PMM<15:8>         |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| 7:0       | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 7.0       | PMM<7:0>          |                   |                   |                   |                   |                   |                  |                  |  |  |  |

#### REGISTER 30-7: ETHPMM0: ETHERNET CONTROLLER PATTERN MATCH MASK 0 REGISTER

# Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, r | ead as '0'         |
|-------------------|------------------|--------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

| bit 31-24 | PMM<31:24>: Pattern Match Mask 3 bits  |
|-----------|----------------------------------------|
| hit 22 16 | DMM -22:16 - Dattorn Match Mack 2 hits |

- bit 23-16 PMM<23:16>: Pattern Match Mask 2 bits
- bit 15-8 **PMM<15:8>:** Pattern Match Mask 1 bits
- bit 7-0 PMM<7:0>: Pattern Match Mask 0 bits
- Note 1: This register is only used for RX operations.
  2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

#### REGISTER 30-8: ETHPMM1: ETHERNET CONTROLLER PATTERN MATCH MASK 1 REGISTER

| Bit Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |
|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|
| 21.24     | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |
| 31.24     |                   |                   |                   | PMM<              | 63:56>            |                   |                  |                  |  |  |
| 22.16     | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |
| 23.10     | PMM<55:48>        |                   |                   |                   |                   |                   |                  |                  |  |  |
| 15.9      | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |
| 15.0      | PMM<47:40>        |                   |                   |                   |                   |                   |                  |                  |  |  |
| 7:0       | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |
| 7.0       |                   |                   |                   | PMM<              | 39:32>            |                   |                  |                  |  |  |

| Legend:           |                  |                      |                    |  |
|-------------------|------------------|----------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented b  | it, read as '0'    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |  |
|                   |                  |                      |                    |  |

| 24 <b>PM</b> | M<63:56>:                    | Pattern                                                                                                                | Match                                                                                                                                                  | Mask                                                                                                                                                                           | 7 bits                                                                                                                                                                                             |
|--------------|------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16 <b>PM</b> | M<55:48>:                    | Pattern                                                                                                                | Match                                                                                                                                                  | Mask                                                                                                                                                                           | 6 bits                                                                                                                                                                                             |
| 3 <b>PM</b>  | M<47:40>:                    | Pattern                                                                                                                | Match                                                                                                                                                  | Mask                                                                                                                                                                           | 5 bits                                                                                                                                                                                             |
| PM           | M<39:32>:                    | Pattern                                                                                                                | Match                                                                                                                                                  | Mask                                                                                                                                                                           | 4 bits                                                                                                                                                                                             |
|              | 24 PM<br>16 PM<br>3 PM<br>PM | <ul> <li>PMM&lt;63:56&gt;:</li> <li>PMM&lt;55:48&gt;:</li> <li>PMM&lt;47:40&gt;:</li> <li>PMM&lt;39:32&gt;:</li> </ul> | <ul> <li>PMM&lt;63:56&gt;: Pattern</li> <li>PMM&lt;55:48&gt;: Pattern</li> <li>PMM&lt;47:40&gt;: Pattern</li> <li>PMM&lt;39:32&gt;: Pattern</li> </ul> | <ul> <li>PMM&lt;63:56&gt;: Pattern Match</li> <li>PMM&lt;55:48&gt;: Pattern Match</li> <li>PMM&lt;47:40&gt;: Pattern Match</li> <li>PMM&lt;39:32&gt;: Pattern Match</li> </ul> | <ul> <li>PMM&lt;63:56&gt;: Pattern Match Mask</li> <li>PMM&lt;55:48&gt;: Pattern Match Mask</li> <li>PMM&lt;47:40&gt;: Pattern Match Mask</li> <li>PMM&lt;39:32&gt;: Pattern Match Mask</li> </ul> |

# Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

| Bit Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 21.24     | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31.24     | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 22.16     | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23.10     | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 15.0      | U-0               | R/W-0             | R/W-0             | U-0               | U-0               | U-0               | R/W-0            | R/W-0            |
| 10.0      | —                 | TXBUSE            | RXBUSE            | —                 | —                 | —                 | EWMARK           | FWMARK           |
| 7.0       | R/W-0             | R/W-0             | R/W-0             | U-0               | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7.0       | RXDONE            | PKTPEND           | RXACT             |                   | TXDONE            | TXABORT           | RXBUFNA          | RXOVFLW          |

#### **REGISTER 30-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER**

#### Legend:

| 3                 |                  |                          |                    |
|-------------------|------------------|--------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, r | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

- bit 14 **TXBUSE:** Transmit BVCI Bus Error Interrupt bit<sup>(2)</sup>
  - 1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred

This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

- bit 13 **RXBUSE:** Receive BVCI Bus Error Interrupt bit<sup>(2)</sup>
  - 1 = BVCI Bus Error has occurred
  - 0 = BVCI Bus Error has not occurred

This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

#### bit 12-10 Unimplemented: Read as '0'

- bit 9 EWMARK: Empty Watermark Interrupt bit<sup>(2)</sup>
  - 1 = Empty Watermark pointer reached

0 = No interrupt pending

This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a '0' or a '1' has no effect.

#### bit 8 FWMARK: Full Watermark Interrupt bit<sup>(2)</sup>

- 1 = Full Watermark pointer reached
  - 0 = No interrupt pending

This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.

- Note 1: This bit is only used for TX operations.
  - 2: This bit is are only used for RX operations.

**Note:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5   | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 21.24        | U-0               | U-0               | U-0                 | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31.24        | —                 | _                 | _                   | —                 | —                 |                   | _                | —                |
| 22.16        | U-0               | U-0               | U-0                 | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23.10        | —                 | —                 | —                   | —                 | —                 |                   | —                | —                |
| 45.0         | R/W-0             | R/W-0             | R/W-0               | U-0               | U-0               | U-0               | U-0              | R-0              |
| 10.0         | ON                | COE               | CPOL <sup>(1)</sup> | —                 | —                 |                   | —                | COUT             |
| 7.0          | R/W-1             | R/W-1             | U-0                 | R/W-0             | U-0               | U-0               | R/W-1            | R/W-1            |
| 7:0          | EVPOL             | _<1:0>            | _                   | CREF              |                   |                   | CCH              | <1:0>            |

#### REGISTER 31-1: CMxCON: COMPARATOR CONTROL REGISTER

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

#### bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: Comparator ON bit
  - 1 = Module is enabled. Setting this bit does not affect the other bits in this register
  - 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
- bit 14 **COE:** Comparator Output Enable bit
  - 1 = Comparator output is driven on the output CxOUT pin
  - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit<sup>(1)</sup>
  - 1 = Output is inverted
  - 0 = Output is not inverted
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **COUT:** Comparator Output bit
  - 1 =Output of the Comparator is a '1'
  - 0 = Output of the Comparator is a '0'
- bit 7-6 EVPOL<1:0>: Interrupt Event Polarity Select bits
  - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
  - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
  - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
  - 00 = Comparator interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'

#### bit 4 CREF: Comparator Positive Input Configure bit

- 1 = Comparator non-inverting input is connected to the internal CVREF
- 0 = Comparator non-inverting input is connected to the CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator
  - 11 = Comparator inverting input is connected to the IVREF
    - 10 = Comparator inverting input is connected to the CxIND pin
    - 01 = Comparator inverting input is connected to the CxINC pin
    - 00 =Comparator inverting input is connected to the CxINB pin
- **Note 1:** Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 04.04        | r-0               | r-1               | r-1               | r-1               | r-1               | r-1               | r-1              | r-1              |
| 31.24        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 22.16        | r-1               | r-1               | r-1               | r-1               | r-1               | r-1               | r-1              | r-1              |
| 23.10        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 45.0         | r-1               | r-1               | r-1               | r-1               | r-1               | r-1               | r-1              | r-1              |
| 15:8         | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 7.0          | r-1               | r-1               | r-1               | r-1               | r-1               | r-1               | r-1              | r-1              |
| 7:0          | _                 | _                 | _                 | _                 | _                 | _                 | _                | _                |

#### REGISTER 34-1: DEVSIGN0/ADEVSIGN0: DEVICE SIGNATURE WORD 0 REGISTER

| Legend:           | r = Reserved bit |                          |                    |
|-------------------|------------------|--------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, r | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

bit 31 Reserved: Write as '0'

bit 30-0 Reserved: Write as '1'

**Note:** The DEVSIGN1 through DEVSIGN3 and ADEVSIGN1 through ADEVSIGN3 registers are used for Quad Word programming operation when programming the DEVSIGN0/ADESIGN0 registers, and do not contain any valid information.

#### REGISTER 34-2: DEVCP0/ADEVCP0: DEVICE CODE-PROTECT 0 REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 04.04        | r-1               | r-1               | r-1               | R/P               | r-1               | r-1               | r-1              | r-1              |
| 31:24        | —                 | —                 | —                 | СР                | —                 | —                 | —                | —                |
| 00.40        | r-1               | r-1               | r-1               | r-1               | r-1               | r-1               | r-1              | r-1              |
| 23:16        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 45.0         | r-1               | r-1               | r-1               | r-1               | r-1               | r-1               | r-1              | r-1              |
| 15:8         | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 7.0          | r-1               | r-1               | r-1               | r-1               | r-1               | r-1               | r-1              | r-1              |
| 7:0          |                   |                   |                   |                   | _                 |                   | _                | _                |

| Legend:           | r = Reserved bit | P = Programmable bit     |                    |
|-------------------|------------------|--------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, r | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

bit 31-29 Reserved: Write as '1'

bit 28 **CP:** Code-Protect bit

Prevents boot and program Flash memory from being read or modified by an external programming device. 1 = Protection is disabled

0 = Protection is enabled

bit 27-0 Reserved: Write as '1'

Note: The DEVCP1 through DEVCP3 and ADEVCP1 through ADEVCP3 registers are used for Quad Word programming operation when programming the DEVCP0/ADEVCP0 registers, and do not contain any valid information.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5   | Bit<br>28/20/12/4 | Bit<br>27/19/11/3    | Bit<br>26/18/10/2 | Bit<br>25/17/9/1      | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|---------------------|-------------------|----------------------|-------------------|-----------------------|------------------|
| 04-04        | R                 | R                 | R                   | R                 | R                    | R                 | R                     | R                |
| 31:24        |                   | VER<3             | 3:0> <sup>(1)</sup> |                   |                      | DEVID<2           | 27:24> <sup>(1)</sup> |                  |
| 00.40        | R                 | R                 | R                   | R                 | R                    | R                 | R                     | R                |
| 23:16        |                   |                   |                     | DEVID<2           | 3:16> <sup>(1)</sup> |                   |                       |                  |
| 45.0         | R                 | R                 | R                   | R                 | R                    | R                 | R                     | R                |
| 15:8         |                   |                   |                     | DEVID<1           | 5:8> <sup>(1)</sup>  |                   |                       |                  |
| 7.0          | R                 | R                 | R                   | R                 | R                    | R                 | R                     | R                |
| 7:0          |                   |                   |                     | DEVID<            | 7:0> <sup>(1)</sup>  |                   |                       |                  |

#### REGISTER 34-11: DEVID: DEVICE AND REVISION ID REGISTER

# Legend:

| Legenu.           |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-28 VER<3:0>: Revision Identifier bits<sup>(1)</sup>

bit 27-0 DEVID<27:0>: Device ID<sup>(1)</sup>

Note 1: Refer to "PIC32 Embedded Connectivity with Floating Point Unit (EF) Family Silicon Errata and Data Sheet Clarification" (DS80000663) for a list of Revision and Device ID values.

# **REGISTER 34-12:** DEVSNx: DEVICE SERIAL NUMBER REGISTER 'x' ('x' = 0, 1)

| Bit Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 21.24     | R                 | R                 | R                 | R                 | R                 | R                 | R                | R                |
| 31.24     |                   |                   |                   | SN<3              | 81:24>            |                   |                  |                  |
| 22.16     | R                 | R                 | R                 | R                 | R                 | R                 | R                | R                |
| 23.10     |                   |                   |                   | SN<2              | 23:16>            |                   |                  |                  |
| 15.0      | R                 | R                 | R                 | R                 | R                 | R                 | R                | R                |
| 15.0      |                   |                   |                   | SN<               | 15:8>             |                   |                  |                  |
| 7:0       | R                 | R                 | R                 | R                 | R                 | R                 | R                | R                |
| 7.0       |                   |                   |                   | SN<               | :7:0>             |                   |                  |                  |

| Legend:           |                  |                          |                    |
|-------------------|------------------|--------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, r | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

bit 31-0 SN<31:0>: Device Unique Serial Number bits

| DC CHA        | ARACTI | ERISTICS                                                              | Standa<br>(unless<br>Operati | rd Oper<br>s otherw<br>ing temp | ating Co<br>vise state<br>erature | nditions: 2.1<br>d)<br>-40°C ≤ TA ≤<br>-40°C ≤ TA ≤ | V to 3.6V<br>+85°C for Industrial<br>+125°C for Extended |
|---------------|--------|-----------------------------------------------------------------------|------------------------------|---------------------------------|-----------------------------------|-----------------------------------------------------|----------------------------------------------------------|
| Param.<br>No. | Sym.   | Characteristics                                                       | Min.                         | Тур. <sup>(1)</sup>             | Max.                              | Units                                               | Conditions                                               |
| D130a         | Еρ     | Cell Endurance                                                        | 10,000                       | —                               | —                                 | E/W                                                 | Without ECC                                              |
| D130b         |        |                                                                       | 20,000                       | —                               | _                                 | E/W                                                 | With ECC                                                 |
| D131          | Vpr    | VDD for Read                                                          | Vddmin                       | —                               | VDDMAX                            | V                                                   | —                                                        |
| D132          | Vpew   | VDD for Erase or Write                                                | Vddmin                       | _                               | VDDMAX                            | V                                                   | —                                                        |
| D134a         | TRETD  | Characteristic Retention                                              | 10                           | —                               | _                                 | Year                                                | Without ECC                                              |
| D134b         |        |                                                                       | 20                           |                                 | _                                 | Year                                                | With ECC                                                 |
| D135          | Iddp   | Supply Current during<br>Programming                                  | —                            | —                               | 30                                | mA                                                  | _                                                        |
| D136          | Trw    | Row Write Cycle Time (Notes 2, 4)                                     | —                            | 66813                           | —                                 | FRC Cycles                                          | —                                                        |
| D137          | Tqww   | Quad Word Write Cycle Time (Note 4)                                   | —                            | 773                             | _                                 | FRC Cycles                                          | —                                                        |
| D138          | Tww    | Word Write Cycle Time (Note 4)                                        | —                            | 383                             | _                                 | FRC Cycles                                          | —                                                        |
| D139          | TCE    | Chip Erase Cycle Time (Note 4)                                        | —                            | 515373                          | —                                 | FRC Cycles                                          | —                                                        |
| D140          | TPFE   | All Program Flash (Upper and Lower regions) Erase Cycle Time (Note 4) | _                            | 256909                          | _                                 | FRC Cycles                                          | _                                                        |
| D141          | Трве   | Program Flash (Upper or Lower regions) Erase Cycle Time (Note 4)      | —                            | 128453                          | _                                 | FRC Cycles                                          | —                                                        |
| D142          | TPGE   | Page Erase Cycle Time (Note 4)                                        |                              | 128453                          | —                                 | FRC Cycles                                          | —                                                        |

# TABLE 37-12: DC CHARACTERISTICS: PROGRAM MEMORY<sup>(3)</sup>

**Note 1:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: The minimum PBCLK5 for row programming is 4 MHz.

**3:** Refer to the *"PIC32 Flash Programming Specification"* (DS60001145) for operating conditions during programming and erase cycles.

4: This parameter depends on FRC accuracy (see Table 37-20) and FRC tuning values (see the OSCTUN register: Register 8-2).

# TABLE 37-13: DC CHARACTERISTICS: PROGRAM FLASH MEMORY WAIT STATES

| DC CHARACTERISTICS                        | Standard Operating Condit<br>(unless otherwise stated)<br>Operating temperature -40<br>-40 | tions: 2.1V<br>$P^{\circ}C \le TA \le +8$<br>$P^{\circ}C \le TA \le +1$ | <b>to 3.6V</b><br>35°C for Industrial<br>25°C for Extended |
|-------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|
| Required Flash Wait States <sup>(1)</sup> | SYSCLK                                                                                     | Units                                                                   | Conditions                                                 |
| With ECC:                                 |                                                                                            |                                                                         |                                                            |
| 0 Wait states                             | $0 < SYSCLK \le 60$                                                                        | MHz                                                                     |                                                            |
| 1 Wait state                              | $60 < SYSCLK \le 120$                                                                      |                                                                         |                                                            |
| 2 Wait states                             | $120 < SYSCLK \le 200$                                                                     |                                                                         |                                                            |
| Without ECC:                              |                                                                                            |                                                                         |                                                            |
| 0 Wait states                             | $0 < SYSCLK \le 74$                                                                        | MHz                                                                     | _                                                          |
| 1 Wait state                              | 74 < SYSCLK ≤ 140                                                                          | 101112                                                                  |                                                            |
| 2 Wait states                             | $140 < SYSCLK \le 200$                                                                     |                                                                         |                                                            |

**Note 1:** To use Wait states, the Prefetch module must be enabled (PREFEN<1:0> ≠ 00) and the PFMWS<2:0> bits must be written with the desired Wait state value.









|--|

| AC CHARACTERISTICS |         |                 |                        | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |      |       |                                               |
|--------------------|---------|-----------------|------------------------|-------------------------------------------------------|------|-------|-----------------------------------------------|
| Param.<br>No.      | Symbol  | Characteristics |                        | Min.                                                  | Max. | Units | Conditions                                    |
| IS10               | TLO:SCL | Clock Low Time  | 100 kHz mode           | 4.7                                                   | -    | μs    | PBCLK must operate at a minimum of 800 kHz    |
|                    |         |                 | 400 kHz mode           | 1.3                                                   | _    | μs    | PBCLK must operate at a minimum of 3.2 MHz    |
|                    |         |                 | 1 MHz mode<br>(Note 1) | 0.5                                                   | _    | μs    | _                                             |
| IS11               | THI:SCL | Clock High Time | 100 kHz mode           | 4.0                                                   | —    | μs    | PBCLK must operate at a<br>minimum of 800 kHz |
|                    |         |                 | 400 kHz mode           | 0.6                                                   | —    | μs    | PBCLK must operate at a<br>minimum of 3.2 MHz |
|                    |         |                 | 1 MHz mode<br>(Note 1) | 0.5                                                   | —    | μs    | —                                             |





#### FIGURE 37-20: **CANX MODULE I/O TIMING CHARACTERISTICS**

# TABLE 37-37: CANX MODULE I/O TIMING REQUIREMENTS

| AC CHARACTERISTICS |        |                                              | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |                    |     |       |                    |
|--------------------|--------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------|--------------------|
| Param<br>No.       | Symbol | Characteristic <sup>(1)</sup>                | Min                                                                                                                                                                                                                                                                                 | Тур <sup>(2)</sup> | Max | Units | Conditions         |
| CA10               | TioF   | Port Output Fall Time                        |                                                                                                                                                                                                                                                                                     | —                  | _   | ns    | See parameter DO32 |
| CA11               | TioR   | Port Output Rise Time                        | _                                                                                                                                                                                                                                                                                   | —                  |     | ns    | See parameter DO31 |
| CA20               | Tcwf   | Pulse Width to Trigger<br>CAN Wake-up Filter | 700                                                                                                                                                                                                                                                                                 |                    |     | ns    | _                  |

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

# 124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                                      | MILLIMETERS |          |      |      |  |
|--------------------------------------|-------------|----------|------|------|--|
| Dimension                            | MIN         | NOM      | MAX  |      |  |
| Number of Pins                       | N           | 124      |      |      |  |
| Pitch                                | eT          | 0.50 BSC |      |      |  |
| Pitch (Inner to outer terminal ring) | eR          | 0.50 BSC |      |      |  |
| Overall Height                       | A           | 0.80     | 0.85 | 0.90 |  |
| Standoff                             | A1          | 0.00     | -    | 0.05 |  |
| Overall Width                        | E           | 9.00 BSC |      |      |  |
| Exposed Pad Width                    | E2          | 6.40     | 6.55 | 6.70 |  |
| Overall Length                       | D           | 9.00 BSC |      |      |  |
| Exposed Pad Length                   | D2          | 6.40     | 6.55 | 6.70 |  |
| Contact Width                        | b           | 0.20     | 0.25 | 0.30 |  |
| Contact Length                       | L           | 0.20     | 0.25 | 0.30 |  |
| Contact-to-Exposed Pad               | K           | 0.20     | -    | -    |  |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-193A Sheet 2 of 2

# B.12 Crypto Engine

Table B-7 lists the changes available for the Crypto Engine.

#### TABLE B-7: CRYPTO DIFFERENCES

| PIC32MZ EC Feature                                                                                                                                                                                                         | PIC32MZ EF Feature                                                                                                                                   |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Output Da                                                                                                                                                                                                                  | ata Format                                                                                                                                           |  |  |
| On PIC32MZ EC devices, the output of the Crypto Engine is<br>always in big-endian format, usually requiring a software (or<br>DMA) solution to put the data into little-endian format, which the<br>core handles natively. | On PIC32MZ EF devices, the SWAPOEN bit (CECON<7>) has been added to control output byte swapping. This bit, when enabled, will byte-swap the output. |  |  |

# **B.13 Device Configuration and Control**

A number of enhancements have been added to the PIC32MZ EF devices that allow greater control and flexibility on the device. Some bit fields have also changed location. Table B-8 lists these changes.

#### TABLE B-8: DEVICE CONFIGURATION AND CONTROL DIFFERENCES

| PIC32MZ EC Feature                                                                                                                                          | PIC32MZ EF Feature                                                                                                    |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| MCLR Pin Configuration                                                                                                                                      |                                                                                                                       |  |  |  |  |
| On PIC32MZ EC devices, the MCLR pin always generate a system reset.                                                                                         | On PIC32MZ EF devices, the MCLR pin can now be configured to generate either a system Reset or an emulated POR Reset. |  |  |  |  |
|                                                                                                                                                             | SMCLR (DEVCFG0<15>)                                                                                                   |  |  |  |  |
|                                                                                                                                                             | 1 = MCLR pin generates a normal system Reset<br>0 = MCLR pin generates an emulated POR Reset                          |  |  |  |  |
| I/O Analog Charge Pump                                                                                                                                      |                                                                                                                       |  |  |  |  |
| Low VDD environments cause attenuation of analog inputs.                                                                                                    | A new bit enables an I/O charge pump, which improves analog performance when operating at lower VDD.                  |  |  |  |  |
|                                                                                                                                                             | IOANCPEN (CFGCON<7>)<br>1 = Charge pump is enabled<br>0 = Charge pump is disabled                                     |  |  |  |  |
| EBI Ready Pin Control                                                                                                                                       |                                                                                                                       |  |  |  |  |
|                                                                                                                                                             | The EBIRDY control bits have been moved.                                                                              |  |  |  |  |
| EBIRDYINV<3:1> (CFGEBIC<30:28>)<br>EBIRDYEN<3:1> (CFGEBIC<26:24>)                                                                                           | EBIRDYINV<3:1> (CFGEBIC<31:29>)<br>EBIRDYEN<3:1> (CFGEBIC<27:25>)                                                     |  |  |  |  |
| Boot Flash Se                                                                                                                                               | quence Control                                                                                                        |  |  |  |  |
| On PIC32MZ EC devices, the Boot Flash Sequence (specifying which boot memory was mapped to the lower boot alias) was determined with the BFxSEQ0 registers. | On PIC32MZ EF devices, the Boot Flash Sequence has been moved to the BFxSEQ3 register.                                |  |  |  |  |

# THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

# CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

# **CUSTOMER SUPPORT**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support