

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efh064-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
EBIA0	_	44	B24	30	0	—	External Bus Interface Address Bus
EBIA1	_	43	A28	51	0	_	7
EBIA2		16	B9	21	0		1
EBIA3		12	B7	52	0		1
EBIA4		11	A8	68	0		1
EBIA5		2	B1	2	0		1
EBIA6		6	B3	6	0		1
EBIA7		33	A23	48	0		1
EBIA8		65	A44	91	0		1
EBIA9		64	B36	90	0		1
EBIA10	_	32	B18	47	0	_	1
EBIA11	_	41	A27	29	0	—	1
EBIA12	_	7	A6	11	0	_	1
EBIA13	_	34	B19	28	0	—	1
EBIA14	_	61	A42	87	0	—	1
EBIA15	_	68	B38	97	0	—	1
EBIA16	_	17	A11	19	0	—	1
EBIA17	_	40	B22	53	0		1
EBIA18	-	39	A26	92	0	_	
EBIA19	-	38	B21	93	0	_	
EBIA20	-	_	_	94	0	_	
EBIA21	_	_	_	126	0	_	1
EBIA22	_	_	_	117	0	_	-
EBIA23	_	_	_	103	0	_	1
EBID0	_	91	B52	135	I/O	ST	External Bus Interface Data I/O Bus
EBID1	_	94	A64	138	I/O	ST	
EBID2	_	98	A66	142	I/O	ST	-
EBID3	_	99	B56	143	I/O	ST	-
EBID4	_	100	A67	144	I/O	ST	1
EBID5	_	3	A3	3	I/O	ST	-
EBID6	_	4	B2	4	I/O	ST	1
EBID7	_	5	A4	5	I/O	ST	1
EBID8	_	88	B50	128	I/O	ST	1
EBID9	_	87	A60	127	I/O	ST	1
EBID10	_	86	B49	125	I/O	ST	1
EBID11	_	85	A59	124	I/O	ST	1
EBID12	_	79	B43	112	I/O	ST	1
EBID13	_	80	A54	113	I/O	ST	4
EBID14		77	B42	110	I/O	ST	4
EBID15		78	A53	110	I/O	ST	4
EBIBS0				9	0		External Bus Interface Byte Select
EBIBS1		<u> </u>	<u> </u>	10	0		
EBICS0		59	A41	131	0		External Bus Interface Chip Select
EBICS1				131	0		
EBICS2				132	0		4
EBICS2				133	0		4

TABLE 1-13: **EBI PINOUT I/O DESCRIPTIONS**

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

REGISTER 11-9: USBIENCSR1: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 1 (ENDPOINT 1-7) (CONTINUED)

bit 18 **OVERRUN:** Data Overrun Status bit (*Device mode*)

- 1 = An OUT packet cannot be loaded into the RX FIFO.
- 0 = Written by software to clear this bit

This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always returns zero.

ERROR: No Data Packet Received Status bit (Host mode)

- 1 = Three attempts have been made to receive a packet and no data packet has been received. An interrupt is generated.
- 0 = Written by the software to clear this bit.

This bit is only valid when the RX endpoint is operating in Bulk or Interrupt mode. In ISO mode, it always returns zero.

- bit 17 FIFOFULL: FIFO Full Status bit
 - 1 = No more packets can be loaded into the RX FIFO
 - 0 = The RX FIFO has at least one free space
- bit 16 RXPKTRDY: Data Packet Reception Status bit
 - 1 = A data packet has been received. An interrupt is generated.
 - 0 = Written by software to clear this bit when the packet has been unloaded from the RX FIFO.
- bit 15-11 MULT<4:0>: Multiplier Control bits

For Isochronous/Interrupt endpoints or of packet splitting on Bulk endpoints, multiplies TXMAXP by MULT+1 for the payload size.

For Bulk endpoints, MULT can be up to 32 and defines the number of "USB" packets of the specified payload into which a single data packet placed in the FIFO should be split, prior to transfer. The data packet is required to be an exact multiple of the payload specified by TXMAXP.

For Isochronous/Interrupts endpoints operating in Hi-Speed mode, MULT may be either 2 or 3 and specifies the maximum number of such transactions that can take place in a single microframe.

bit 10-0 RXMAXP<10:0>: Maximum RX Payload Per Transaction Control bits

This field sets the maximum payload (in bytes) transmitted in a single transaction. The value is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt and Isochronous transfers in Full-Speed and Hi-Speed operations.

RXMAXP must be set to an even number of bytes for proper interrupt generation in DMA Mode 1.

TABLE 12-11: PORTE REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess										В	its								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400	ANSELE	31:16		_			—		_	_		_	—		_	_		_	0000
0400	ANOLLL	15:0	—	_	—		—	_	ANSE9	ANSE8	ANSE7	ANSE6	ANSE5	ANSE4	_	_	—		03F0
0410	TRISE	31:16	—	—	—	—	—	_	—	—	—	—	—	-	—	—	—	—	0000
0110	HUGE	15:0	—	-	—	—	—	-	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
0420	PORTE	31:16	—	—	—	—	—		—	—	—	—	—		—	—	—	—	0000
0.20		15:0	—	—	—	—	—		RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
0430	LATE	31:16	—	—	—	—	—		—	—	—	—	—		—	_	—	—	0000
		15:0	—	_	—	—	—	_	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	XXXX
0440	ODCE	31:16	_	_	—	—	—	—	—	—		—	—		—	—	—	—	0000
		15:0	—	_	—	—	_	—	ODCE9	ODCE8	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
0450	CNPUE	31:16	—	_	—	—	_	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	_	_	—	_	_	_	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000
0460	CNPDE	31:16	_	_	—	_	_	_	—	_	_	—	—	_	—	—	—	—	0000
		15:0	_	_	_	_	_		CNPDE9	CNPDE8	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
0470		31:16	_	_	_	_	-	_		_	_	_	_	_	_	_	_	_	0000
0470	CNCONE	15:0	ON	_	_	_	EDGE DETECT	_	—	—	—	_	—	_	_	_	_	_	0000
0480	CNENE	31:16	—	-	—	—	—	-	—	—	—	_	—		—	_	—	_	0000
0.00	0.12.12	15:0	_	_	—	—	_	_	CNENE9	CNENE8	CNENE7	CNENE6	CNENE5	CNENE4	CNENE3	CNENE2	CNENE1	CNENE0	0000
		31:16	—	—	—	—	—		—	—	—	—	—		—	_	—	—	0000
0490	CNSTATE	15:0	_	-	—	—	—	_	CN STATE9	CN STATE8	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000
04A0	CNNEE	31:16	_		-	_	-		_		-	١	-				_		0000
04A0	CININEL	15:0	_				-		CNNEE9	CNNEE8	CNNEE7	CNNEE6	CNNEE5	CNNEE4	CNNEE3	CNNEE2	CNNEE1	CNNEE0	0000
04B0	CNFE	31:16	_	-	—	_	_	_	—	_	_	-	—	-	_	-	_	-	0000
0400		15:0	_		—	—	_		CNFE9	CNFE8	CNFE7	CNFE6	CNFE5	CNFE4	CNFE3	CNFE2	CNFE1	CNFE0	0000
04C0	SRCON0E	31:16	—	_	—	—	—	_	—	—	—	_	—	—	_	_	—		0000
0400	SILCONUL	15:0	_		—	—	—	_	—	—	-		—	—	SR0E3	SR0E2	SR0E1	SR0E0	0000
04D0	SRCON1E	31:16	—	_	—	—	—	_	—	—	—	_	—	—	—	_	—	—	0000
0400	SILCONTE	15:0	_	-	—	_	_	_	-	—	_	-	_	—	SR1E3	SR1E2	SR1E1	SR1E0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

SSS										B	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4444	IC4R	31:16	—	—	-	—	-	—	—	—	—	-	—	—	—	—	-	—	0000
1444	IC4R	15:0		_	—	_		_	_	_	_	—	—	—		IC4R	<3:0>		0000
1448	IC5R	31:16		—	—	—		—	—		—	_	_	_	_	_	_		0000
1440	10.51	15:0		—	—	—		—	—	—	_	_	—	—		IC5R	<3:0>		0000
144C	IC6R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1440	ICOIX	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC6R	<3:0>		0000
1450	IC7R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1430	10/10	15:0	_	_	—	—	_	—	—	_	_	—	_	—		IC7R	<3:0>		0000
1454	IC8R	31:16	-	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1-0-1	10011	15:0	-	—	—	—	—	—	—	—	—	—	—	—		IC8R	<3:0>		0000
1458	IC9R	31:16	-	—	—	—	_	—	—	_	_	—	_	—	—	—	—	—	0000
		15:0	-	—		—	_	_	—	—	_			_		IC9R	<3:0>		0000
1460	OCFAR	31:16	_	—		—	_	—	—	_	—	—	—	—	—	—	—	—	0000
		15:0	_	—		—		—	—		_	—	—	—		OCFA	R<3:0>		0000
1468	U1RXR	31:16	_	—	_	—	_	—	—	—	_	_		_		—	—	—	0000
		15:0	_	—	_	—	_	—	—	—	_	_		_		U1RXI	R<3:0>		0000
146C	U1CTSR	31:16	_			—	_	—	—	—	_			—	—	—	—	—	0000
		15:0	—	—	_	—	_	—	—	—	—	—	—	—		U1CTS			0000
1470	U2RXR	31:16	_	—		_	_	—	—	—	—	—	_	—	—	—	—	—	0000
		15:0	_	—	-	—	—	—	—	_	_	—	—	—		U2RXI			0000
1474	U2CTSR	31:16	_	_			_	_	_		_			_	_	—	_	—	0000
		15:0	_	_	-	_	_	_	_	_	_	_	_	_		U2CTS			0000
1478	U3RXR	31:16	_		-	_	_		_	_	_	—		_	—		—	—	0000
		15:0		_	_	_		_	_	_	_	_		_		U3RXI			0000
147C	U3CTSR	31:16	_	_		_	_	_	_	_	_			_	—		—	—	0000
		15:0		_		_		_	_	_	_	_	_	_		U3CTS	R<3:0>		0000
1480	U4RXR	31:16		—	_	_	_	—	_		_	_	_	_	_			_	0000
		15:0		—	_	_	_	—	—		_	_	_	_		U4RXI			0000
1484	U4CTSR	31:16		—	_	_	_	—	—		_	_	_	_		-	—	_	0000
		15:0		—	—	—	-	—	—	—	—		_	—		U4CTS	R<3:0>		0000

TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on devices without a CAN module.

15.1 Deadman Timer Control Registers

TABLE 15-1: DEADMAN TIMER REGISTER MAP

ess		â		_	_			_	_	_	Bits	_	_						
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0A00	DMTCON	31:16	—	—	—	—	_	—	_		—	—	—	_	—	—	—	—	0000
0400	DMICON	15:0	ON	_	—	_		—		_	_	_	_		—	—	_	_	x000
0410	DMTPRECLR	31:16	_	_	—	_		—	-	_	_	_	_		—	—	_	_	0000
UATU		15:0				STEP	1<7:0>				_	_	_		—	—	_	_	0000
0A20	DMTCLR	31:16	—	—	—	—	_	—	_	_	—	—	—	_	—	—	—	_	0000
0720		15:0	—	_	—	—	_	—	—	_	STEP2<7:0>						0000		
0A30	DMTSTAT	31:16	—	—	—	—	_	—	—	_	—	—	—	_	—	—	—	-	0000
07.00	DIMIGIAI	15:0	—	—	—	—	_	—	—	_	BAD1	BAD2	DMTEVENT	_	—	—	—	WINOPN	0000
0A40	DMTCNT	31:16								COLL	NTER<31:0	0~							0000
0740	DIVITORI	15:0								000		-0							0000
0A60 DMTPSCNT 31:16 PSCNT<31:0>									0000										
0,00	Dimit Scivit	15:0								100									00xx
0A70	DMTPSINTV	31:16								PSI	NTV<31:0>								0000
		15:0								1 31	NT V \ 01.02	-							000x

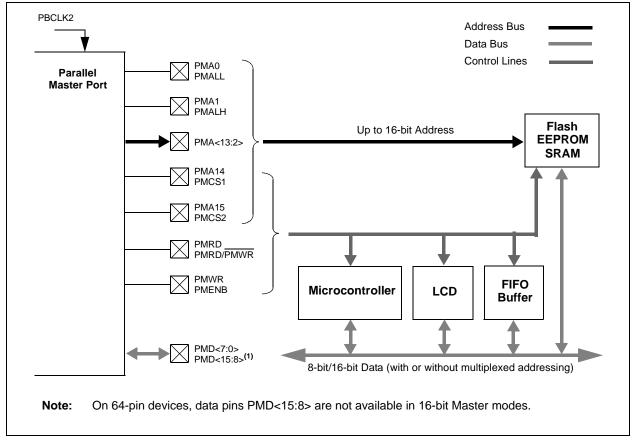
Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

The timer source for each Input Capture module depends on the setting of the ICACLK bit in the CFGCON register. The available configurations are shown in Table 17-1.

TABLE 17-1:	TIMER SOURCE
	CONFIGURATIONS

Input Capture Module	Timerx	Timery
ICACLK (CFGCC	N<17>) = 0	
IC1	Timer2	Timer3
•	•	•
•	٠	•
•	•	•
IC9	Timer2	Timer3
ICACLK (CFGCC	N<17>) = 1	
IC1	Timer4	Timer5
IC2	Timer4	Timer5
IC3	Timer4	Timer5
IC4	Timer2	Timer3
IC5	Timer2	Timer3
IC6	Timer2	Timer3
IC7	Timer6	Timer7
IC8	Timer6	Timer7
IC9	Timer6	Timer7

23.0 PARALLEL MASTER PORT (PMP)


Note:	This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive refer- ence source. To complement the informa- tion in this data sheet, refer to Section 13 .
	"Parallel Master Port (PMP)"
	(DS60001128) in the "PIC32 Family Ref-
	erence Manual", which is available from
	the Microchip web site (www.micro- chip.com/PIC32).

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. The following are key features of the PMP module:

- 8-bit,16-bit interface
- Up to 16 programmable address lines
- Up to two Chip Select lines
- Programmable strobe options:
 - Individual read and write strobes, or
 - Read/write strobe with enable strobe
- Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- Parallel Slave Port support:
 - Legacy addressable
 - Address support
 - 4-byte deep auto-incrementing buffer
- Programmable Wait states
- Operate during Sleep and Idle modes
- Separate configurable read/write registers or dual buffers for Master mode
- Fast bit manipulation using CLR, SET, and INV registers

Note: On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	_	_	—
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_			_	_		—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF			OB3E	OB2E	OB1E	OB0E

REGISTER 23-7: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HS = Hardware Set	SC = Software Cleared	Ł
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **IBF:** Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer is occurred (must be cleared in software)
 - 0 = No overflow is occurred

bit 13-12 Unimplemented: Read as '0'

- bit 11-8 **IBxF:** Input Buffer x Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data

bit 7 **OBE:** Output Buffer Empty Status bit

- 1 = All readable output buffer registers are empty
- 0 = Some or all of the readable output buffer registers are full

bit 6 **OBUF:** Output Buffer Underflow Status bit

- 1 = A read occurred from an empty output byte buffer (must be cleared in software)
- 0 = No underflow is occurred
- bit 5-4 Unimplemented: Read as '0'

bit 3-0 **OBxE:** Output Buffer x Status Empty bits

- 1 = Output buffer is empty (writing data to the buffer will clear this bit)
- 0 = Output buffer contains data that has not been transmitted

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—		—	-	—		—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	_
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC		AMASK	<3:0> ⁽²⁾	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0 ARPT<7:0> ⁽²⁾								

REGISTER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER

Legend:

Logona.					
R = Readable bit	W = Writable bit	/ritable bit U = Unimplemented bit, read as 'C			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled
- bit 14 CHIME: Chime Enable bit⁽²⁾
 - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
 - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is more than 32 real-time clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved
- 1011 = Reserved
- 11xx = Reserved
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

© 2015-2016 Microchip Technology Inc.

REGISTER 28-20: ADCCMPCON1: ADC DIGITAL COMPARATOR 1 CONTROL REGISTER

- bit 3 IEHIHI: High/High Digital Comparator 0 Event bit
 - 1 = Generate a Digital Comparator 0 Event when DCMPHI<15:0> ≤ DATA<31:0>
 - 0 = Do not generate an event
- bit 2 IEHILO: High/Low Digital Comparator 0 Event bit
 - 1 = Generate a Digital Comparator 0 Event when DATA<31:0> < DCMPHI<15:0>
 - 0 = Do not generate an event
- bit 1 IELOHI: Low/High Digital Comparator 0 Event bit
 - 1 = Generate a Digital Comparator 0 Event when DCMPLO<15:0> \leq DATA<31:0>
 - 0 = Do not generate an event
- bit 0 IELOLO: Low/Low Digital Comparator 0 Event bit
 - 1 = Generate a Digital Comparator 0 Event when DATA<31:0> < DCMPLO<15:0>
 - 0 = Do not generate an event

30.1 **Ethernet Control Registers**

TABLE 30-5: ETHERNET CONTROLLER REGISTER SUMMARY

ess										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	ETHCON1	31:16										0000							
2000	LINCONT	15:0	ON	—	SIDL	_	_	_	TXRTS	RXEN	AUTOFC	_	_	MANFC	—	—	—	BUFCDEC	0000
2010	ETHCON2	31:16	_		_		_	—	_	_	—	—	—	—	_				0000
		15:0	_	_		_	_				XBUFSZ<6:0	>				-	_	_	0000
2020	ETHTXST	31:16 15:0							TYOTAD	TXSTADE DR<15:2>)R<31:16>								0000
		31:16							TXSTADI		DR<31:16>						_	—	0000
2030	ETHRXST	15:0							RXSTAD	DR<15:2>	01(<01.10>						_	_	0000
		31:16							10101712										0000
2040	ETHHT0	15:0								HT<	31:0>								0000
2050		31:16	0.0									0000							
2050	ETHHT1	15:0										0000							
2060	ETHPMM0	31:16	PMM<31:0>									0000							
2000		15:0	FIVIIVI<31:U> 00									0000							
2070	ETHPMM1	31:16	PMM<63:32>									0000							
		15:0												1		1	1	1	0000
2080	ETHPMCS	31:16 15:0	_	_		_	—	_		PMCS	— <15:0>	—	—	—	—	—	_	—	0000
		31:16	_	_	_	_	_	_	_	- FINICO		_	_	_	_	_	_	_	0000
2090	ETHPMO	15:0								PMO.									0000
		31:16	_	_	_	_	_	_	_	_		_	_	_		_	_	_	0000
20A0	ETHRXFC	15:0	HTEN	MPEN	_	NOTPM		PMMO	DE<3:0>		CRC ERREN	CRC OKEN	RUNT ERREN	RUNTEN	UCEN	NOT MEEN	MCEN	BCEN	0000
2080	ETHRXWM	31:16	_	_	_	_	_	_	_					RXFW	M<7:0>				0000
2080		15:0	_	-	—	_	-	-	—	—				RXEW	M<7:0>				0000
		31:16	—	—	—	_	_	_	—	—	—	—	—	_	—	—	—	—	0000
20C0	ETHIEN	15:0	—	TX BUSEIE	RX BUSEIE	—	—	—	EW MARKIE	FW MARKIE	RX DONEIE	PK TPENDIE	RX ACTIE	_	TX DONEIE	TX ABORTIE	RX BUFNAIE	RX OVFLWIE	0000
20D0	ETHIRQ	31:16	—	—	—	_	_	_	—	—	—	—	—	_	—	—	-	—	0000
		15:0	_	TXBUSE	RXBUSE		_	_	EWMARK	FWMARK	RXDONE	PKTPEND	RXACT	—	TXDONE	TXABORT	RXBUFNA	RXOVFLW	0000
20E0	ETHSTAT	31:16	—	_	_	_	_	_	_	_				BUFCI	NT<7:0>				0000
<u> </u>		15:0	_	—	_	_	—	—		_	BUSY	TXBUSY	RXBUSY	-	-	_	_		0000
2100	ETH RXOVFLOW	31:16	_	-	—	_	-	—	_		— —	—	—	-	_	-	-	_	0000
	NAUVELOW	15:0	ualua an Da						overle einerel	RXOVFLW	CNT<15:0>								0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

Reset values default to the factory programmed value. 2:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24					-	—		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	—	—	_	_
15:8	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15.6	_	TXBUSE	RXBUSE	_	—	—	EWMARK	FWMARK
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONE	PKTPEND	RXACT		TXDONE	TXABORT	RXBUFNA	RXOVFLW

REGISTER 30-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-15 Unimplemented: Read as '0'	
Dil 31-15 Unimplemented: Read as 0	

- bit 14 **TXBUSE:** Transmit BVCI Bus Error Interrupt bit⁽²⁾
 - 1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred

This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

- bit 13 **RXBUSE:** Receive BVCI Bus Error Interrupt bit⁽²⁾
 - 1 = BVCI Bus Error has occurred
 - 0 = BVCI Bus Error has not occurred

This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

bit 12-10 Unimplemented: Read as '0'

- bit 9 EWMARK: Empty Watermark Interrupt bit⁽²⁾
 - 1 = Empty Watermark pointer reached

0 = No interrupt pending

This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a '0' or a '1' has no effect.

bit 8 FWMARK: Full Watermark Interrupt bit⁽²⁾

1 = Full Watermark pointer reached

0 = No interrupt pending

This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.

- Note 1: This bit is only used for TX operations.
 - 2: This bit is are only used for RX operations.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	—	—	—	—	_		—	—
23:16	U-0	U-0						
23.10	—	—	—	—	_		—	_
15:8	U-0	U-0						
15.0	—	—	—	—	_		—	_
7:0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7.0			_	_	_	TESTBP	TESTPAUSE ⁽¹⁾	SHRTQNTA ⁽¹⁾

REGISTER 30-30: EMAC1TEST: ETHERNET CONTROLLER MAC TEST REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

- bit 2 TESTBP: Test Backpressure bit
 - 1 = The MAC will assert backpressure on the link. Backpressure causes preamble to be transmitted, raising carrier sense. A transmit packet from the system will be sent during backpressure.
 0 = Normal operation

bit 1 **TESTPAUSE:** Test PAUSE bit⁽¹⁾

1 = The MAC Control sub-layer will inhibit transmissions, just as if a PAUSE Receive Control frame with a non-zero pause time parameter was received

0 = Normal operation

bit 0 SHRTQNTA: Shortcut PAUSE Quanta bit⁽¹⁾

1 = The MAC reduces the effective PAUSE Quanta from 64 byte-times to 1 byte-time

0 = Normal operation

Note 1: This bit is only used for testing purposes.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

		LOISTEN						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—		—	—	—	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—		—	—	—	—	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0		—		—	—	—	—	_
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7.0	_	—	_	—	—	—	SCAN	READ

REGISTER 30-32: EMAC1MCMD: ETHERNET CONTROLLER MAC MII MANAGEMENT COMMAND REGISTER

Legend:

- 3					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-2 Unimplemented: Read as '0'

- bit 1 SCAN: MII Management Scan Mode bit
 - 1 = The MII Management module will perform read cycles continuously (for example, useful for monitoring the Link Fail)
 - 0 = Normal Operation

bit 0 READ: MII Management Read Command bit

- 1 = The MII Management module will perform a single read cycle. The read data is returned in the EMAC1MRDD register
- 0 = The MII Management module will perform a write cycle. The write data is taken from the EMAC1MWTD register

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

		LOIGIEN						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	—	—	—	-		-
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	—	—	—	-		-
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		—	—	—	—	-		-
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	—	—	—	LINKFAIL	NOTVALID	SCAN	MIIMBUSY

REGISTER 30-36: EMAC1MIND: ETHERNET CONTROLLER MAC MII MANAGEMENT INDICATORS REGISTER

Legend:

R = Readable bit	W = Writable bit	it U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-4 Unimplemented: Read as '0'

bit 3 LINKFAIL: Link Fail bit

When '1' is returned - indicates link fail has occurred. This bit reflects the value last read from the PHY status register.

bit 2 NOTVALID: MII Management Read Data Not Valid bit When '1' is returned - indicates an MII management read cycle has not completed and the Read Data is not yet valid.

bit 1 SCAN: MII Management Scanning bit When '1' is returned - indicates a scan operation (continuous MII Management Read cycles) is in progress.

bit 0 MIIMBUSY: MII Management Busy bit

When '1' is returned - indicates MII Management module is currently performing an MII Management Read or Write cycle.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Peripheral	PMDx bit Name	Register Name and Bit Location
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
UART6	U6MD	PMD5<5>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
SPI3	SPI3MD	PMD5<10>
SPI4	SPI4MD	PMD5<11>
SPI5	SPI5MD	PMD5<12>
SPI6	SPI6MD	PMD5<13>
I2C1	I2C1MD	PMD5<16>
I2C2	I2C2MD	PMD5<17>
12C3	I2C3MD	PMD5<18>
I2C4	I2C4MD	PMD5<19>
12C5	I2C5MD	PMD5<20>
USB ⁽²⁾	USBMD	PMD5<24>
CAN1	CAN1MD	PMD5<28>
CAN2	CAN2MD	PMD5<29>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output 1	REFO1MD	PMD6<8>
Reference Clock Output 2	REFO2MD	PMD6<9>
Reference Clock Output 3	REFO3MD	PMD6<10>
Reference Clock Output 4	REFO4MD	PMD6<11>
PMP	PMPMD	PMD6<16>
EBI	EBIMD	PMD6<17>
SQI1	SQI1MD	PMD6<23>
Ethernet	ETHMD	PMD6<28>
DMA	DMAMD	PMD7<4>
Random Number Generator	RNGMD	PMD7<20>
Crypto	CRYPTMD	PMD7<22>

TABLE 33-1: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS⁽¹⁾ (CONTINUED)

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the lists of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

TABLE 37-20: INTERNAL FRC ACCURACY

AC CHARACTERISTICS		(unless	d Operat otherwis g temper	se stated) -40°C	2.1V to 3.6V C \leq TA \leq +85°C for Industrial C \leq TA \leq +125°C for Extended
Param. No.	Characteristics		Тур.	Max.	Units	Conditions
Internal	FRC Accuracy @ 8.00 MH	z ⁽¹⁾				
F20	FRC	-5	_	+5	%	$0^{\circ}C \le TA \le +85^{\circ}C$
		-8	_	+8	%	$-40^{\circ}C \le TA \le +85^{\circ}C$
		-10	_	+10	%	$-40^{\circ}C \le TA \le +125^{\circ}C$

Note 1: Frequency calibrated at +25°C and 3.3V. The TUN bits (OSCTUN<5:0>) can be used to compensate for temperature drift.

TABLE 37-21: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Characteristics	Min.	Тур.	Max.	Units	Conditions	
Internal LPRC @ 32.768 kHz ⁽¹⁾							
F21	LPRC	-8	_	+8	%	$0^{\circ}C \le TA \le +85^{\circ}C$	
		-25		+25	%	$-40^{\circ}C \le TA \le +125^{\circ}C$	

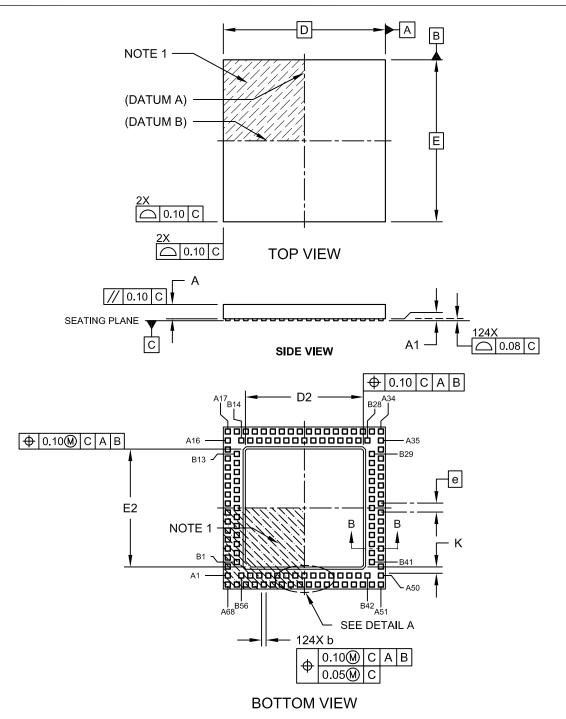

Note 1: Change of LPRC frequency as VDD changes.

TABLE 37-22: INTERNAL BACKUP FRC (BFRC) ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param. No.	Characteristics	Min.	Тур.	Max.	Units	Conditions		
Internal BFRC Accuracy @ 8 MHz								
F22	BFRC	_	±30	—	%	—		

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-193A Sheet 1 of 2

A.2 Analog-to-Digital Converter (ADC)

The PIC32MZ EF family of devices has a new 12-bit High-Speed Successive Approximation Register (SAR) ADC module that replaces the 10-bit ADC module in PIC32MX5XX/6XX/7XX devices; therefore, the use of **Bold** type to show differences is *not* used in the following table. Note that not all register differences are described in this section; however, the key feature differences are listed in Table A-3.

TABLE A-3:ADC DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature					
Clock Selection and Operating Frequency (TAD)						
On PIC32MX devices, the ADC clock was derived from either the FRC or from the PBCLK.	On PIC32MZ EF devices, the three possible sources of the ADC clock are FRC, REFCLKO3, and SYSCLK.					
ADRC (AD1CON3<15>) 1 = FRC clock 0 = Clock derived from Peripheral Bus Clock (PBCLK)	ADCSEL<1:0> (ADCCON3<31:30>) 11 = FRC 10 = REFCLKO3 01 = SYSCLK 00 = Reserved					
On PIC32MX devices, if the ADC clock was derived from the PBCLK, that frequency was divided further down, with a maximum divisor of 512, and a minimum divisor of two.	On PIC32MZ EF devices, any ADC clock source can be divided down separately for each dedicated ADC and the shared ADC, with a maximum divisor of 254. The input clock can also be fed directly to the ADC.					
ADCS<7:0> (AD1CON3<7:0>) 11111111 = 512 * TPB = TAD • • 00000001 = 4 * TPB = TAD 00000000 = 2 * TPB = TAD	ADCDIV<6:0> (ADCTIMEx<22:16>) ADCDIV<6:0> (ADCCON2<6:0>) 1111111 = 254 * TQ = TAD • • • 0000011 = 6 * TQ = TAD 0000010 = 4 * TQ = TAD 0000001 = 2 * TQ = TAD 0000000 = TQ = TAD					

Revision C (March 2016)

In this revision, the Preliminary status was removed from the document footer.

The revision also includes the following major changes, which are referenced by their respective chapter in Table C-2. In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE C-2: MAJOR SECTION UPDATES

Section Name	Update Description					
2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	2.9.1.3 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" and Figure 2-5 were updated.					
4.0 "Memory Organization"	The names of the Boot Flash Words were updated from BFxSEQ0 to BFxSEQ3 (see 4.1.1 "Boot Flash Sequence and Configuration Spaces").					
	The ABFxSEQx registers were removed from the Boot Flash Sequence and Configuration tables (see Table 4-2 and Table 4-3).					
7.0 "CPU Exceptions and Interrupt Controller"	The Cache Error exception type was removed from the MIPS32 M-Class Microprocessor Core Exception Types (see Table 7-1).					
8.0 "Oscillator Configuration"	The PLLODIV<2:0> bit value settings were updated in the SPLLCON register (see Register 8-3).					
12.0 "I/O Ports"	The SIDL bit was removed from the CNCONx registers (see Table 12-4 through Table 12-21 and Register 12-3).					
20.0 "Serial Quad Interface (SQI)"	The following bits were removed from the SQI1XCON1 register (see Table 20-1 and Register 20-1): DDRDATA, DDRDUMMY, DDRMODE, DDRADDR, and DDRCMD.					
	The DDRMODE bit was removed from the SQI1CON register (see Table 20-1 and Register 20-4).					
28.0 "12-bit High-Speed Successive Approximation	A note was added to the SELRES<1:0> bits in the ADCCON1 and ADCxTIME registers (see Register 28-1 and Register 28-27).					
Register (SAR) Analog-to-Digital Converter (ADC)"	The ADCID<2:0 bit values were updated in the ADCFSTAT register (see Register 28-22).					
34.0 "Special Features"	The bit value definitions for the POSCGAIN<1:0> and SOSCGAIN<1:0> bits were updated (see Register 34-3).					
	The Device ADC Calibration Word (DEVADCx) register was added (see Table 34-5 and Register 34-13).					