

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	250MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 80°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efh064t-250i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
	_	_	_	_	_	_	GROU	P<1:0>

REGISTER 4-4: SBTxELOG2: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 2 ('x' = 0-13)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-3 Unimplemented: Read as '0'

- bit 1-0 GROUP<1:0>: Requested Permissions Group bits
 - 11 = Group 3
 - 10 = Group 2
 - 01 = Group 1
 - 00 = Group 0

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

REGISTER 4-5: SBTxECON: SYSTEM BUS TARGET 'x' ERROR CONTROL REGISTER ('x' = 0-13)

		(*****)						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
31:24	—	—	—	—	—	—	—	ERRP
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	_	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	-	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	_	_	—	_	—	_

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-25 Unimplemented: Read as '0'

bit 24 ERRP: Error Control bit

1 = Report protection group violation errors

0 = Do not report protection group violation errors

bit 23-0 Unimplemented: Read as '0'

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

Reset Control Registers 6.1

TABLE 6-1: RESETS REGISTER MAP

sse				Bits															
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1240	PCON	31:16	_	-	—	—	BCFGERR	BCFGFAIL	-	_	—	—	—	—	—	—	—	—	0x00
1240	RCON	15:0	—	-	—	—	_	-	CMR	—	EXTR	SWR	DMTO	WDTO	SLEEP	IDLE	BOR	POR	0003
1250	DOWDOT	31:16	—	-	—	—	_	-	_	—	-	—		-	-	_	-	—	0000
1250	ROWROI	15:0	—	—	—	—	—	-	—	_	_	—	-	_	_	_	_	SWRST	0000
1260		31:16	—	-	—	—	_	-	DMTO	WDTO	SWNMI	—		-	GNMI	_	CF	WDTS	0000
1200	RINIVICON	15:0	NMICNT<15:0>							0000									
1270		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1270	FWRCON	15:0		_	_	_	_	_	_	_	_	—	_		_		_	VREGS	0000

Legend: Note 1:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

		IRQ			Persisten			
Interrupt Source ^(*)	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
Output Compare 4	_OUTPUT_COMPARE_4_VECTOR	22	OFF022<17:1>	IFS0<22>	IEC0<22>	IPC5<20:18>	IPC5<17:16>	No
External Interrupt 4	_EXTERNAL_4_VECTOR	23	OFF023<17:1>	IFS0<23>	IEC0<23>	IPC5<28:26>	IPC5<25:24>	No
Timer5	_TIMER_5_VECTOR	24	OFF024<17:1>	IFS0<24>	IEC0<24>	IPC6<4:2>	IPC6<1:0>	No
Input Capture 5 Error	_INPUT_CAPTURE_5_ERROR_VECTOR	25	OFF025<17:1>	IFS0<25>	IEC0<25>	IPC6<12:10>	IPC6<9:8>	Yes
Input Capture 5	_INPUT_CAPTURE_5_VECTOR	26	OFF026<17:1>	IFS0<26>	IEC0<26>	IPC6<20:18>	IPC6<17:16>	Yes
Output Compare 5	_OUTPUT_COMPARE_5_VECTOR	27	OFF027<17:1>	IFS0<27>	IEC0<27>	IPC6<28:26>	IPC6<25:24>	No
Timer6	_TIMER_6_VECTOR	28	OFF028<17:1>	IFS0<28>	IEC0<28>	IPC7<4:2>	IPC7<1:0>	No
Input Capture 6 Error	_INPUT_CAPTURE_6_ERROR_VECTOR	29	OFF029<17:1>	IFS0<29>	IEC0<29>	IPC7<12:10>	IPC7<9:8>	Yes
Input Capture 6	_INPUT_CAPTURE_6_VECTOR	30	OFF030<17:1>	IFS0<30>	IEC0<30>	IPC7<20:18>	IPC7<17:16>	Yes
Output Compare 6	_OUTPUT_COMPARE_6_VECTOR	31	OFF031<17:1>	IFS0<31>	IEC0<31>	IPC7<28:26>	IPC7<25:24>	No
Timer7	_TIMER_7_VECTOR	32	OFF032<17:1>	IFS1<0>	IEC1<0>	IPC8<4:2>	IPC8<1:0>	No
Input Capture 7 Error	_INPUT_CAPTURE_7_ERROR_VECTOR	33	OFF033<17:1>	IFS1<1>	IEC1<1>	IPC8<12:10>	IPC8<9:8>	Yes
Input Capture 7	_INPUT_CAPTURE_7_VECTOR	34	OFF034<17:1>	IFS1<2>	IEC1<2>	IPC8<20:18>	IPC8<17:16>	Yes
Output Compare 7	_OUTPUT_COMPARE_7_VECTOR	35	OFF035<17:1>	IFS1<3>	IEC1<3>	IPC8<28:26>	IPC8<25:24>	No
Timer8	_TIMER_8_VECTOR	36	OFF036<17:1>	IFS1<4>	IEC1<4>	IPC9<4:2>	IPC9<1:0>	No
Input Capture 8 Error	_INPUT_CAPTURE_8_ERROR_VECTOR	37	OFF037<17:1>	IFS1<5>	IEC1<5>	IPC9<12:10>	IPC9<9:8>	Yes
Input Capture 8	_INPUT_CAPTURE_8_VECTOR	38	OFF038<17:1>	IFS1<6>	IEC1<6>	IPC9<20:18>	IPC9<17:16>	Yes
Output Compare 8	_OUTPUT_COMPARE_8_VECTOR	39	OFF039<17:1>	IFS1<7>	IEC1<7>	IPC9<28:26>	IPC9<25:24>	No
Timer9	_TIMER_9_VECTOR	40	OFF040<17:1>	IFS1<8>	IEC1<8>	IPC10<4:2>	IPC10<1:0>	No
Input Capture 9 Error	_INPUT_CAPTURE_9_ERROR_VECTOR	41	OFF041<17:1>	IFS1<9>	IEC1<9>	IPC10<12:10>	IPC10<9:8>	Yes
Input Capture 9	_INPUT_CAPTURE_9_VECTOR	42	OFF042<17:1>	IFS1<10>	IEC1<10>	IPC10<20:18>	IPC10<17:16>	Yes
Output Compare 9	_OUTPUT_COMPARE_9_VECTOR	43	OFF043<17:1>	IFS1<11>	IEC1<11>	IPC10<28:26>	IPC10<25:24>	No
ADC Global Interrupt	_ADC_VECTOR	44	OFF044<17:1>	IFS1<12>	IEC1<12>	IPC11<4:2>	IPC11<1:0>	Yes
ADC FIFO Data Ready Interrupt	_ADC_FIFO_VECTOR	45	OFF045<17:1>	IFS1<13>	IEC1<13>	IPC11<12:10>	IPC11<9:8>	Yes
ADC Digital Comparator 1	_ADC_DC1_VECTOR	46	OFF046<17:1>	IFS1<14>	IEC1<14>	IPC11<20:18>	IPC11<17:16>	Yes
ADC Digital Comparator 2	_ADC_DC2_VECTOR	47	OFF047<17:1>	IFS1<15>	IEC1<15>	IPC11<28:26>	IPC11<25:24>	Yes
ADC Digital Comparator 3	_ADC_DC3_VECTOR	48	OFF048<17:1>	IFS1<16>	IEC1<16>	IPC12<4:2>	IPC12<1:0>	Yes
ADC Digital Comparator 4	_ADC_DC4_VECTOR	49	OFF049<17:1>	IFS1<17>	IEC1<17>	IPC12<12:10>	IPC12<9:8>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER

bit 10-8 PLLIDIV<2:0>: System PLL Input Clock Divider bits

- 111 =Divide by 8
- 110 = Divide by 7
- 101 =Divide by 6
- 100 = Divide by 5
- 011 = Divide by 4
- 010 = Divide by 3
- 001 = Divide by 2
- 000 = Divide by 1

The default setting is specified by the FPLLIDIV<2:0> Configuration bits in the DEVCFG2 register. If the PLLICLK is set for FRC, this setting is ignored by the PLL and the divider is set for Divide-by-1. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

- bit 7 PLLICLK: System PLL Input Clock Source bit
 - 1 = FRC is selected as the input to the System PLL
 - 0 = Posc is selected as the input to the System PLL
 The POR default is specified by the FPLLICLK Configuration bit in the DEVCFG2 register. Refer to
 Register 34-5 in Section 34.0 "Special Features" for information.
- bit 6-3 Unimplemented: Read as '0'

bit 2-0 PLLRANGE<2:0>: System PLL Frequency Range Selection bits

111 = Reserved 110 = Reserved 101 = 34-64 MHz 100 = 21-42 MHz 011 = 13-26 MHz 010 = 8-16 MHz 001 = 5-10 MHz 000 = Bypass The default setting

The default setting is specified by the FPLLRNG<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

- Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.
 - 2: Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0	U-0
	—	—	—	—	PFMDED	PFMSEC		—
00.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—		—
15.9	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	—	—	—		—
7:0	R/W-0, HS	R/W-0, HS	R/W-0, HS					
7.0				PFMSEC	CNT<7:0>			

REGISTER 9-2: PRESTAT: PREFETCH MODULE STATUS REGISTER

Legend:		HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 Unimplemented: Read as '0'

- bit 27 **PFMDED:** Flash Double-bit Error Detected (DED) Status bit
 This bit is set in hardware and can only be cleared (i.e., set to '0') in software.
 1 = A DED error has occurred
 - 0 = A DED error has not occurred
- bit 26 **PFMSEC:** Flash Single-bit Error Corrected (SEC) Status bit 1 = A SEC error occurred when PFMSECCNT<7:0> was equal to zero 0 = A SEC error has not occurred
- bit 25-8 Unimplemented: Read as '0'
- bit 7-0 **PFMSECCNT<7:0>:** Flash SEC Count bits 11111111 - 00000000 = SEC count

REGISTER 11-11: USBIENCSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 1-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
31.24		RXFIFC)SZ<3:0>			TXFIFO	SZ<3:0>		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	-	—	—	—	—	—	—	—	
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.0	RXINTERV<7:0>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	SPEEI	D<1:0>	PROTOCOL<1:0>		TEP<3:0>				

Leaend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 RXFIFOSZ<3:0>: Receive FIFO Size bits

	1111 = Reserved 1110 = Reserved 1101 = 8192 bytes 1102 bytes
	1100 = 4096 bytes
	•
	0011 = 8 bytes 0010 = Reserved 0001 = Reserved 0000 = Reserved or endpoint has not been configured
	This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic FIFO sizing is used.
bit 27-24	TXFIFOSZ<3:0>: Transmit FIFO Size bits 1111 = Reserved 1110 = Reserved 1101 = 8192 bytes 1100 = 4096 bytes •
	•
	0011 = 8 bytes 0010 = Reserved 0001 = Reserved 0000 = Reserved or endpoint has not been configured

This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic FIFO sizing is used.

bit 23-16 Unimplemented: Read as '0'

TABLE 12-17: PORTH REGISTER MAP FOR 124-PIN DEVICES ONLY

ess		0								Bits									
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0700	ANSELH	31:16	—		—	—		—	—	—	_	—	-		—	-	—	—	0000
0100	, alocent	15:0	_	_	—	_	_	—	—	_	_	ANSH6	ANSH5	ANSH4	_	_	ANSH1	ANSH0	0073
0710	TRISH	31:16	_			—		—	—	—	_	—	—	—			—		0000
	-	15:0	_	_	TRISH13	TRISH12	_	TRISH10	TRISH9	TRISH8	—	TRISH6	TRISH5	TRISH4	—	_	TRISH1	TRISH0	3773
0720	PORTH	31:16	_	_	—	—	—	—	—	—	_	—			—	—	—		0000
		15:0	_		RH13	RH12		RH10	RH9	RH8	_	RH6	RH5	RH4	_	_	RH1	RH0	XXXX
0730	LATH	31:16	_		-	—		-	—	-		-	-	-			-	-	0000
		15:0			LATH13	LATH12		LATH10	LATH9	LATH8	—	LATH6	LATH5	LATH4	—		LAIH1	LATHO	XXXX
0740	ODCH	31:16					_				_				_	_			0000
		15:0			ODCHI3	ODCHIZ		ODCHIU	ODCH9				ODCH5				ODCHI	ODCHU	0000
0750	CNPUH	15.0																	0000
		31.16																	0000
0760	CNPDH	15.0																	0000
		31.16			_	—		_	_	_		_	_				_		0000
0770	CNCONH	15:0	ON	_	_	_	EDGE	_	_	_	_	_	_	_	_	_	_		0000
		31:16	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0780	CNENH	15:0	_	_	CNENH13	CNENH12	_	CNENH10	CNENH9	CNENH8	_	CNENH6	CNENH5	CNENH4	_	_	CNENH1	CNENH0	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	0000
0790	CNSTATH	15:0	_	_	CN STATH13	CN STATH12	_	CN STATH10	CN STATH9	CN STATH8	_	CN STATH6	CN STATH5	CN STATH4	_	_	CN STATH1	CN STATH0	0000
0740		31:16	_	_	_	—	_	—	_	_	_	_	_	_	_	_	—	—	0000
07A0	CININEH	15:0	—	_	CNNEH13	CNNEH12	—	CNNEH10	CNNEH9	CNNEH8	—	CNNEH6	CNNEH5	CNNEH4	—	—	CNNEH1	CNNEH0	0000
0780		31:16	_	_	_	_	_	_	_	_	_	_	_			_	_	—	0000
01 00	UNER	15:0	_	_	CNFH13	CNFH12	_	CNFH10	CNFH9	CNFH8	_	CNFH6	CNFH5	CNFH4		_	CNFH1	CNFH0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24		—	—	INIT1SCHECK	INIT1CO	UNT<1:0>	INIT1TY	PE<1:0>		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	INIT1CMD3<7:0> ⁽¹⁾									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	INIT1CMD2<7:0> ⁽¹⁾									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				INIT1CMD1<	7:0> ⁽¹⁾					

REGISTER 20-25: SQI1XCON3: SQI XIP CONTROL REGISTER 3

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28 INIT1SCHECK: Flash Initialization 1 Command Status Check bit
 - 1 = Check the status after executing the INIT1 command
 - 0 = Do not check the status

bit 27-26 INIT1COUNT<1:0>: Flash Initialization 1 Command Count bits

- 11 = INIT1CMD1, INIT1CMD2, and INIT1CMD3 are sent
- 10 = INIT1CMD1 and INIT1CMD2 are sent, but INIT1CMD3 is still pending
- 01 = INIT1CMD1 is sent, but INIT1CMD2 and INIT1CMD3 are still pending
- 00 = No commands are sent

bit 25-24 INIT1TYPE<1:0>: Flash Initialization 1 Command Type bits

- 11 = Reserved
- 10 = INIT1 commands are sent in Quad Lane mode
- 01 = INIT1 commands are sent in Dual Lane mode
- 00 = INIT1 commands are sent in Single Lane mode
- bit 24-16 **INIT1CMD3<7:0>:** Flash Initialization Command 3 bits⁽¹⁾ Third command of the Flash initialization.
- bit 15-8 **INIT1CMD2<7:0>:** Flash Initialization Command 2 bits⁽¹⁾ Second command of the Flash initialization.
- bit 7-0 **INIT1CMD1<7:0>:** Flash Initialization Command 1 bits⁽¹⁾ First command of the Flash initialization.
- **Note 1:** INIT1CMD1 can be WEN and INIT1CMD2 can be SECTOR UNPROTECT.

Note: Some Flash devices require Write Enable and Sector Unprotect commands before read/write operations and this register is useful in working with those Flash types (XIP mode only)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	—	—	—	INIT2SCHECK	INIT2CO	UNT<1:0>	INIT2TY	PE<1:0>		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	INIT2CMD3<7:0> ⁽¹⁾									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	INIT2CMD2<7:0> ⁽¹⁾									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				INIT2CMD1<	7:0> ⁽¹⁾					

REGISTER 20-26: SQI1XCON4: SQI XIP CONTROL REGISTER 4

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28 INIT2SCHECK: Flash Initialization 2 Command Status Check bit 1 = Check the status after executing the INIT2 command 0 = Do not check the status
- bit 27-26 INIT2COUNT<1:0>: Flash Initialization 2 Command Count bits
 - 11 = INIT2CMD1, INIT2CMD2, and INIT2CMD3 are sent
 - 10 = INIT2CMD1 and INIT2CMD2 are sent, but INIT2CMD3 is still pending
 - 01 = INIT2CMD1 is sent, but INIT2CMD2 and INIT2CMD3 are still pending
 - 00 = No commands are sent
- bit 25-24 INIT2TYPE<1:0>: Flash Initialization 2 Command Type bits
 - 11 = Reserved
 - 10 = INIT2 commands are sent in Quad Lane mode
 - 01 = INIT2 commands are sent in Dual Lane mode
 - 00 = INIT2 commands are sent in Single Lane mode
- bit 24-16 **INIT2CMD3<7:0>:** Flash Initialization Command 3 bits⁽¹⁾ Third command of the Flash initialization.
- bit 15-8 **INIT2CMD2<7:0>:** Flash Initialization Command 2 bits⁽¹⁾ Second command of the Flash initialization.
- bit 7-0 **INIT2CMD1<7:0>:** Flash Initialization Command 1 bits⁽¹⁾ First command of the Flash initialization.
- **Note 1:** INIT2CMD1 can be WEN and INIT2CMD2 can be SECTOR UNPROTECT.

Note: Some Flash devices require Write Enable and Sector Unprotect commands before read/write operations and this register is useful in working with those Flash types (XIP mode only)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24		—	—	—	—	—	—	—		
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10		—	—	—	—	—	-	-		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	RDATAIN<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				RDATAIN<	:7:0>					

REGISTER 23-10: PMRDIN: PARALLEL PORT READ INPUT DATA REGISTER

Legend:

9			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RDATAIN<15:0>: Port Read Input Data bits

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1' and exclusively for reads. If the DUALBUF bit is '0', the PMDIN register (Register 23-5) is used for reads instead of PMRDIN.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31-24	DESC_EN	—	CF	CRY_MODE<2:0>			—	_		
23-16	_	SA_ FETCH_EN	_	—	LAST_BD	LIFM	PKT_ INT_EN	CBD_ INT_EN		
15-8				BD_BUFLI	EN<15:8>					
7-0				BD_BUFL	EN<7:0>					
bit 31 bit 30	DESC_EN: I 1 = The desc 0 = The desc Unimpleme	DESC_EN : Descriptor Enable 1 = The descriptor is owned by hardware. After processing the BD, hardware resets this bit to '0'. 0 = The descriptor is owned by software Unimplemented: Must be written as '0'								
hit 29-27			Mode							
	111 = Reserved 101 = Reserved 100 = Reserved 101 = CEK operation 010 = KEK operation 001 = Preboot authentication 000 = Normal operation									
bit 22	SA_FETCH_ 1 = Fetch SA 0 = Use curr	_ EN: Fetch Se A from the SA rent fetched SA	curity Associa pointer. This to or the intern	ation From Ex pit needs to b al SA	tternal Memore e set to '1' for	ry r every new pa	acket.			
bit 21-20	Unimpleme	nted: Must be	written as '0'							
bit 19	LAST_BD: L 1 = Last Buff 0 = More Bu After the last	LAST_BD: Last Buffer Descriptors 1 = Last Buffer Descriptor in the chain 0 = More Buffer Descriptors in the chain After the last BD, the CEBDADDR goes to the base address in CEBDPADDR.								
bit 18	LIFM: Last In Frame In case of Receive Packets (from H/W-> Host), this field is filled by the Hardware to indicate whether the packet goes across multiple buffer descriptors. In case of transmit packets (from Host -> H/W), this field indicates whether this BD is the last in the frame.									
bit 17	PKT_INT_E Generate an	PKT_INT_EN: Packet Interrupt Enable Generate an interrupt after processing the current buffer descriptor, if it is the end of the packet.								
bit 16	CBD_INT_E Generate an	CBD_INT_EN: CBD Interrupt Enable Generate an interrupt after processing the current buffer descriptor.								
bit 15-0	BD_BUFLE	N<15:0>: Buffe	er Descriptor th of the buffe	Length er and is upda	ated with the a	actual length f	filled by the re	eceiver.		

FIGURE 26-2: FORMAT OF BD_CTRL

FIGURE 26-3: FORMAT OF BD_SADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31-24				BD_SAADD)R<31:24>				
23-16	BD_SAADDR<23:16>								
15-8		BD_SAADDR<15:8>							
7-0				BD_SAAD	DR<7:0>				

bit 31-0 **BD_SAADDR<31:0>:** Security Association IP Session Address The sessions' SA pointer has the keys and IV values.

REGISTER 28-15: ADCCMPx: ADC DIGITAL COMPARATOR 'x' LIMIT VALUE REGISTER ('x' = 1 THROUGH 6)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	DCMPHI<15:8> ^(1,2,3)										
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	DCMPHI<7:0> ^(1,2,3)										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	DCMPLO<15:8> ^(1,2,3)										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				DCMPLO<	<7:0> ^(1,2,3)						

Logond

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

DCMPHI<15:0>: Digital Comparator 'x' High Limit Value bits^(1,2,3) bit 31-16 These bits store the high limit value, which is used by digital comparator for comparisons with ADC converted data.

- DCMPLO<15:0>: Digital Comparator 'x' Low Limit Value bits^(1,2,3) bit 15-0 These bits store the low limit value, which is used by digital comparator for comparisons with ADC converted data.
- Changing theses bits while the Digital Comparator is enabled (ENDCMP = 1) can result in unpredictable Note 1: behavior.
 - 2: The format of the limit values should match the format of the ADC converted value in terms of sign and fractional settings.
 - 3: For Digital Comparator 0 used in CVD mode, the DCMPHI<15:0> and DCMPLO<15:0> bits must always be specified in signed format, as the CVD output data is differential and is always signed.

REGISTER	<u>28-27:</u> Al	DCxTIME: D	EDICATED	ADCx TIMI	NG REGIS	<u>FER 'x' ('x'</u>	= 0 THROU	GH 4)	
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	
51.24	—	—	—	/	ADCEIS<2:0	>	SELRE	S<1:0>	
23:16	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	11.0		/	ADCDIV<6:0:	>	DAMO	DAMO	
15:8	0-0	0-0	0-0	0-0	0-0	0-0	R/W-0	R/W-U	
	 R/W-0	 	 R/W-0	 R/W-0	 R/W-0	 R/W-0	R/W-0	R/W-0	
7:0	10000	10/00	10000	SAMC	<7:0>	1000 0	1000 0	1000 0	
					-				
Legend:									
R = Readat	ole bit	W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is un	known		
bit 31-29 bit 28-26	Unimplemented: Read as '0' ADCEIS<2:0>: ADCx Early Interrupt Select bits 111 = The data ready interrupt is generated 8 ADC clocks prior to the end of conversion 110 = The data ready interrupt is generated 7 ADC clocks prior to the end of conversion 001 = The data ready interrupt is generated 2 ADC clocks prior to the end of conversion 000 = The data ready interrupt is generated 1 ADC clocks prior to the end of conversion								
bit 25-24	 (ADCxTIME<25:24>), is 12-bit or 10-bit. For a selected resolution of 8-bit, options from '000' to '101' are valid. For a selected resolution of 6-bit, options from '000' to '011' are valid. SELRES<1:0>: ADCx Resolution Select bits 11 = 12 bits 10 = 10 bits 01 = 8 bits 00 = 6 bits 								
	Note: Changing the resolution of the ADC does not shift the result in the corresponding ADCDATA register. The result will still occupy 12 bits, with the corresponding lower unused bits set to '0 For example, a resolution of 6 bits will result in ADCDATAx<5:0> being set to '0', an ADCDATAx<11:6> holding the result.						g ADCDATAx bits set to '0'. et to '0', and		
bit 23	Unimpleme	ented: Read a	s '0'						
bit 22-16	ADCDIV<6:	0>: ADCx Clo	ock Divisor bit	S					
	These bits divide the ADC control clock with period TQ to generate the clock for ADCx (TADx). 1111111 = 254 * TQ = TADx 0000011 = 6 * TQ = TADx 0000010 = 4 * TQ = TADx 0000001 = 2 * TQ = TADx 0000001 = 2 * TQ = TADx								
bit 15-10	Unimpleme	ented: Read a	s '0'						
bit 9-0	SAMC<9:0>: ADCx Sample Time bits Where TADx = period of the ADC conversion clock for the dedicated ADC controlled by the ADCDIV<6:0> bits. 1111111111 = 1025 TADx								
	000000001 = 3 TADx								

0000000000 = 2 TADx

REGIST	R 29-3: CIINT: CAN INTERRUPT REGISTER (CONTINUED)	
bit 14	NAKIF: CAN Bus Activity Wake-up Interrupt Flag bit L = A bus wake-up activity interrupt has occurred	
) = A bus wake-up activity interrupt has not occurred	
bit 13	CERRIF: CAN Bus Error Interrupt Flag bit	
	L = A CAN bus error has occurred	
) = A CAN bus error has not occurred	
bit 12	SERRIF: System Error Interrupt Flag bit	
	 A system error occurred (typically an illegal address was presented to the System Bus) A system error has not occurred 	
bit 11	RBOVIF: Receive Buffer Overflow Interrupt Flag bit	
	L = A receive buffer overflow has occurred	
	D = A receive buffer overflow has not occurred	
bit 10-4	Jnimplemented: Read as '0'	
bit 3	MODIF: CAN Mode Change Interrupt Flag bit	
	 A CAN module mode change has occurred (OPMOD<2:0> has changed to reflect REQ A CAN module mode change has not occurred 	lOP)
bit 2	CTMRIF: CAN Timer Overflow Interrupt Flag bit	
	L = A CAN timer (CANTMR) overflow has occurred	
	D = A CAN timer (CANTMR) overflow has not occurred	
bit 1	RBIF: Receive Buffer Interrupt Flag bit	
	L = A receive buffer interrupt is pending	
) = A receive buffer interrupt is not pending	
bit 0	TBIF: Transmit Buffer Interrupt Flag bit	
	L = A transmit buffer interrupt is pending	
) = A transmit buffer interrupt is not pending	

Note 1: This bit can only be cleared by turning the CAN module off and on by clearing or setting the ON bit (CiCON<15>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	FLTEN11	MSEL1	1<1:0>	FSEL11<4:0>					
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	FLTEN10	MSEL10<1:0>		FSEL10<4:0>					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	FLTEN9	MSEL9<1:0>		FSEL9<4:0>					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	FLTEN8	MSEL8<1:0>		FSEL8<4:0>					

REGISTER 29-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN11: Filter 11 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL11<1:0>: Filter 11 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
hit 20 21	
DIL 20-24	FSELTICA.US. FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	•
	•
	00001 – Message matching filter is stored in EIEO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN10: Filter 10 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL10<1:0>: Filter 10 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
hit 20.16	
DIL 20-10	11111 - Massage matching filter is stored in EIEO buffer 21
	11111 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

34.2 Registers

Virtual Address (BFC0_#) Bits Bit Range All Resets Register Name 16/0 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 IOL1WAY PMDL1WAY PGL1WAY FETHIO FMIIEN FUSBIDIO 31:16 _ xxxx _ FFC0 DEVCFG3 15:0 USERID<15:0> xxxx UPLLFSEL FPLLODIV<2:0> 31:16 _ — _ _ _ _ _ _ _ _ _ xxxx FFC4 DEVCFG2 15:0 FPLLIDIV<2:0> FPLLMULT<6:0> FPLLICLK FPLLRNG<2:0> _ _ xxxx 31:16 FDMTEN DMTCNT<4:0> FWDTWINSZ<1:0> FWDTEN WINDIS WDTSPGM WDTPS<4:0> xxxx FFC8 DEVCFG1 FCKSM<1:0> POSCMOD<1:0> 15:0 _ OSCIOFNC IESO FSOSCEN DMTINTV<2:0> FNOSC<2:0> xxxx _ _ 31:16 _ EJTAGBEN _ _ _ _ POSCBOOST POSCGAIN<1:0> SOSCBOOST SOSCGAIN<1:0> _ _ _ _ xxxx FFCC DEVCFG0 15:0 SMCLR DBGPER<2:0> _ FSLEEP FECCCON<1:0> _ BOOTISA TRCEN ICESEL<1:0> JTAGEN DEBUG<1:0> xxxx _ _ xxxx 31:16 _ _ _ _ _ _ _ _ _ _ _ _ FFD0 DEVCP3 15:0 _ _ _ _ _ xxxx _ _ _ ____ _ _ _ _ _ _ _ 31:16 _ _ _ _ xxxx _ _ _ _ _ _ _ _ _ _ _ _ FFD4 DEVCP2 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx 31:16 xxxx _ _ _ _ _ _ _ _ _ _ _ _ _ ____ _ ____ FFD8 DEVCP 15:0 _ _ _ _ ____ _ _ _ _ _ _ _ _ _ xxxx _ _ CP 31:16 _ _ — _ _ _ _ _ _ _ _ _ _ _ _ xxxx FFDC DEVCP0 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx 31:16 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx FFE0 DEVSIGN 15:0 _ _ _ _ ____ _ _ _ _ _ _ _ _ _ _ _ xxxx _ _ _ _ _ _ xxxx 31:16 _ _ _ _ _ — _ _ _ ____ FFE4 DEVSIGN2 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx _ _ _ _ _ _ _ _ _ _ _ 31:16 _ _ _ _ _ xxxx FFE8 DEVSIGN1 15:0 _ _ _ _ _ xxxx _ _ _ _ _ _ _ _ _ _ _ _ xxxx 31:16 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ FFEC DEVSIGNO 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx

TABLE 34-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

Legend: x = unknown value on Reset; - = Reserved, read as '1'. Reset values are shown in hexadecimal

NOTES:

		Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)					
			Operating terr	-40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended			
Param. No.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O Pins with PMP	Vss	—	0.15 * Vdd	V	
		I/O Pins	Vss	—	0.2 * Vdd	V	
DI18		SDAx, SCLx	Vss	—	0.3 * Vdd	V	SMBus disabled (Note 4)
DI19		SDAx, SCLx	Vss	—	0.8	V	SMBus enabled (Note 4)
	Vih	Input High Voltage					
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.80 * Vdd	—	Vdd	V	(Note 4,6)
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.80 * Vdd	—	5.5	V	(Note 4,6)
		I/O Pins 5V-tolerant ⁽⁵⁾	0.80 * Vdd	_	5.5	V	
DI28a		SDAx, SCLx on non-5V tolerant pins ⁽⁵⁾	0.80 * Vdd	—	Vdd	V	SMBus disabled (Note 4,6)
DI29a		SDAx, SCLx on non-5V tolerant pins ⁽⁵⁾	2.1	_	Vdd	V	SMBus enabled, 2.1V ≤ VPIN ≤ 5.5 (Note 4,6)
DI28b		SDAx, SCLx on 5V tolerant pins ⁽⁵⁾	0.80 * Vdd	—	5.5	V	SMBus disabled (Note 4,6)
DI29b		SDAx, SCLx on 5V tolerant pins ⁽⁵⁾	2.1	_	5.5	V	SMBus enabled, 2.1V ≤ VPIN ≤ 5.5 (Note 4,6)
DI30	ICNPU	Change Notification Pull-up Current	—	—	-40	μA	VDD = 3.3V, VPIN = VSS (Note 3,6)
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	40	—	—	μA	VDD = 3.3V, VPIN = VDD
	lı∟	Input Leakage Current (Note 3)					
DI50		I/O Ports	—	—	<u>+</u> 1	μA	VSS \leq VPIN \leq VDD, Pin at high-impedance
DI51		Analog Input Pins	—	—	<u>+</u> 1	μA	VSS \leq VPIN \leq VDD, Pin at high-impedance
DI55		MCLR ⁽²⁾	_	_	<u>+</u> 1	μA	$VSS \le VPIN \le VDD$
DI56		OSC1	—	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &H{\sf S} \mbox{ mode} \end{split}$

TABLE 37-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the pin name tables (Table 2 through Table 4) for the 5V-tolerant pins.

6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature				
Flash Programming					
	The op codes for programming the Flash memory have been changed to accommodate the new quad-word programming and dual-panel features. The row size has changed to 2 KB (512 IW) from 128 IW. The page size has changed to 16 KB (4K IW) from 4 KB (1K IW). Note that the NVMOP register is now protected, and requires the WREN bit be set to enable modification.				
NVMOP<3:0> (NVMCON<3:0>)	NVMOP<3:0> (NVMCON<3:0>)				
1111 = Reserved	1111 = Reserved				
•	•				
0111 = Reserved	1000 = Reserved				
0110 = No operation	0111 = Program erase operation				
0101 = Program Flash (PFM) erase operation	0110 = Upper program Flash memory erase operation				
0100 = Page erase operation	0101 = Lower program Flash memory erase operation				
0011 = Row program operation	0100 = Page erase operation				
0010 = No operation	0011 = Row program operation				
0001 = Word program operation	0010 = Quad Word (128-bit) program operation				
0000 = No operation	0001 = Word program operation				
	0000 = No operation				
PIC32MX devices feature a single NVMDATA register for word	On PIC32MZ EF devices, to support quad word programming,				
programming.	the NVMDATA register has been expanded to four words.				
NVMDATA	NVMDATA x , where 'x' = 0 through 3				
Flash Endurance and Retention					
PIC32MX devices support Flash endurance and retention of up to 20K E/W cycles and 20 years.	On PIC32MZ EF devices, ECC must be enabled to support the same endurance and retention as PIC32MX devices.				
Configuration Words					
On PIC32MX devices, Configuration Words can be programmed with Word or Row program operation.	On PIC32MZ EF devices, all Configuration Words must be programmed with Quad Word or Row Program operations.				
Configuration Words Reserved Bit					
On PIC32MX devices, the DEVCFG0<15> bit is Reserved and must be programmed to '0'.	On PIC32MZ EF devices, this bit is DEVSIGN0<31> .				

TABLE A-9: FLASH PROGRAMMING DIFFERENCES (CONTINUED)

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0765-2