

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 [®] M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efh064t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
PMA0	30	44	B24	30	I/O	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)
PMA1	29	43	A28	51	I/O	TTL/ST	Parallel Master Port Address bit 1 Input (Buffered Slave modes) and Output (Master modes)
PMA2	10	16	B9	21	0	—	Parallel Master Port Address (Demultiplexed Master
PMA3	6	12	B7	52	0	—	modes)
PMA4	5	11	A8	68	0	—	
PMA5	4	2	B1	2	0	—	
PMA6	16	6	B3	6	0	—	
PMA7	22	33	A23	48	0	—	
PMA8	42	65	A44	91	0	—	
PMA9	41	64	B36	90	0	—	
PMA10	21	32	B18	47	0		
PMA11	27	41	A27	29	0		
PMA12	24	7	A6	11	0		
PMA13	23	34	B19	28	0		
PMA14	45	61	A42	87	0		
PMA15	43	68	B38	97	0	—	
PMCS1	45	61	A42	87	0	—	Parallel Master Port Chip Select 1 Strobe
PMCS2	43	68	B38	97	0	—	Parallel Master Port Chip Select 2 Strobe
PMD0	58	91	B52	135	I/O	TTL/ST	Parallel Master Port Data (Demultiplexed Master
PMD1	61	94	A64	138	I/O	TTL/ST	mode) or Address/Data (Multiplexed Master modes)
PMD2	62	98	A66	142	I/O	TTL/ST	
PMD3	63	99	B56	143	I/O	TTL/ST	
PMD4	64	100	A67	144	I/O	TTL/ST	
PMD5	1	3	A3	3	I/O	TTL/ST	
PMD6	2	4	B2	4	I/O	TTL/ST	
PMD7	3	5	A4	5	I/O	TTL/ST	
PMD8	_	88	B50	128	I/O	TTL/ST	
PMD9	—	87	A60	127	I/O	TTL/ST	
PMD10	_	86	B49	125	I/O	TTL/ST	
PMD11	—	85	A59	124	I/O	TTL/ST	
PMD12	_	79	B43	112	I/O	TTL/ST	
PMD13	_	80	A54	113	I/O	TTL/ST	
PMD14	_	77	B42	110	I/O	TTL/ST	
PMD15	_	78	A53	111	I/O	TTL/ST	
PMALL	30	44	B24	30	0	—	Parallel Master Port Address Latch Enable Low Byte (Multiplexed Master modes)
PMALH	29	43	A28	51	0	—	Parallel Master Port Address Latch Enable High Byte (Multiplexed Master modes)
PMRD	53	9	A7	13	0	_	Parallel Master Port Read Strobe
PMWR	52	8	B5	12	0	—	Parallel Master Port Write Strobe
Legend:	CMOS = CI	MOS-comp	atible input	or output		Analog =	Analog input P - Power

TABLE 1-12: PMP PINOUT I/O DESCRIPTIONS

egend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

Analog = Analog input O = Output

I = Input

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-6 and Figure 2-7.

FIGURE 2-6: AUDIO PLAYBACK APPLICATION

FIGURE 2-7: LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH PROJECTED CAPACITIVE TOUCH

4.2 System Bus Arbitration

Note:	The	System	Bus	interconnect								
	impler	ments one o	r more ir	stantiations of								
	the So	the SonicsSX [®] interconnect from Sonics,										
	Inc. This document contains materials											
	that are (c) 2003-2015 Sonics, Inc., and											
	that c	onstitute pro	oprietary	information of								
	Sonics	s, Inc. Son	icsSX is	a registered								
	traden	nark of S	onics, I	nc. All such								
	mater	ials and trad	emarks a	are used under								
	licens	e from Sonic	s, Inc.									

As shown in the PIC32MZ EF Family Block Diagram (see Figure 1-1), there are multiple initiator modules (I1 through I14) in the system that can access various target modules (T1 through T13). Table 4-4 illustrates which initiator can access which target. The System Bus supports simultaneous access to targets by initiators, so long as the initiators are accessing different targets. The System Bus will perform arbitration, if multiple initiators attempt to access the same target.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	_	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	_	—	—	_	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC
7.0	—	—	_	—	—	_	—	SWRST ^(1,2)

REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit^(1,2) 1 = Enable software Reset event 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.
 - 2: Once this bit is set, any read of the RSWRST register will cause a reset to occur.

		IRQ			Interru	pt Bit Locatior	ı	Persisten
Interrupt Source ^(*)	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
Output Compare 4	_OUTPUT_COMPARE_4_VECTOR	22	OFF022<17:1>	IFS0<22>	IEC0<22>	IPC5<20:18>	IPC5<17:16>	No
External Interrupt 4	_EXTERNAL_4_VECTOR	23	OFF023<17:1>	IFS0<23>	IEC0<23>	IPC5<28:26>	IPC5<25:24>	No
Timer5	_TIMER_5_VECTOR	24	OFF024<17:1>	IFS0<24>	IEC0<24>	IPC6<4:2>	IPC6<1:0>	No
Input Capture 5 Error	_INPUT_CAPTURE_5_ERROR_VECTOR	25	OFF025<17:1>	IFS0<25>	IEC0<25>	IPC6<12:10>	IPC6<9:8>	Yes
Input Capture 5	_INPUT_CAPTURE_5_VECTOR	26	OFF026<17:1>	IFS0<26>	IEC0<26>	IPC6<20:18>	IPC6<17:16>	Yes
Output Compare 5	_OUTPUT_COMPARE_5_VECTOR	27	OFF027<17:1>	IFS0<27>	IEC0<27>	IPC6<28:26>	IPC6<25:24>	No
Timer6	_TIMER_6_VECTOR	28	OFF028<17:1>	IFS0<28>	IEC0<28>	IPC7<4:2>	IPC7<1:0>	No
Input Capture 6 Error	_INPUT_CAPTURE_6_ERROR_VECTOR	29	OFF029<17:1>	IFS0<29>	IEC0<29>	IPC7<12:10>	IPC7<9:8>	Yes
Input Capture 6	_INPUT_CAPTURE_6_VECTOR	30	OFF030<17:1>	IFS0<30>	IEC0<30>	IPC7<20:18>	IPC7<17:16>	Yes
Output Compare 6	_OUTPUT_COMPARE_6_VECTOR	31	OFF031<17:1>	IFS0<31>	IEC0<31>	IPC7<28:26>	IPC7<25:24>	No
Timer7	_TIMER_7_VECTOR	32	OFF032<17:1>	IFS1<0>	IEC1<0>	IPC8<4:2>	IPC8<1:0>	No
Input Capture 7 Error	_INPUT_CAPTURE_7_ERROR_VECTOR	33	OFF033<17:1>	IFS1<1>	IEC1<1>	IPC8<12:10>	IPC8<9:8>	Yes
Input Capture 7	_INPUT_CAPTURE_7_VECTOR	34	OFF034<17:1>	IFS1<2>	IEC1<2>	IPC8<20:18>	IPC8<17:16>	Yes
Output Compare 7	_OUTPUT_COMPARE_7_VECTOR	35	OFF035<17:1>	IFS1<3>	IEC1<3>	IPC8<28:26>	IPC8<25:24>	No
Timer8	_TIMER_8_VECTOR	36	OFF036<17:1>	IFS1<4>	IEC1<4>	IPC9<4:2>	IPC9<1:0>	No
Input Capture 8 Error	_INPUT_CAPTURE_8_ERROR_VECTOR	37	OFF037<17:1>	IFS1<5>	IEC1<5>	IPC9<12:10>	IPC9<9:8>	Yes
Input Capture 8	_INPUT_CAPTURE_8_VECTOR	38	OFF038<17:1>	IFS1<6>	IEC1<6>	IPC9<20:18>	IPC9<17:16>	Yes
Output Compare 8	_OUTPUT_COMPARE_8_VECTOR	39	OFF039<17:1>	IFS1<7>	IEC1<7>	IPC9<28:26>	IPC9<25:24>	No
Timer9	_TIMER_9_VECTOR	40	OFF040<17:1>	IFS1<8>	IEC1<8>	IPC10<4:2>	IPC10<1:0>	No
Input Capture 9 Error	_INPUT_CAPTURE_9_ERROR_VECTOR	41	OFF041<17:1>	IFS1<9>	IEC1<9>	IPC10<12:10>	IPC10<9:8>	Yes
Input Capture 9	_INPUT_CAPTURE_9_VECTOR	42	OFF042<17:1>	IFS1<10>	IEC1<10>	IPC10<20:18>	IPC10<17:16>	Yes
Output Compare 9	_OUTPUT_COMPARE_9_VECTOR	43	OFF043<17:1>	IFS1<11>	IEC1<11>	IPC10<28:26>	IPC10<25:24>	No
ADC Global Interrupt	_ADC_VECTOR	44	OFF044<17:1>	IFS1<12>	IEC1<12>	IPC11<4:2>	IPC11<1:0>	Yes
ADC FIFO Data Ready Interrupt	_ADC_FIFO_VECTOR	45	OFF045<17:1>	IFS1<13>	IEC1<13>	IPC11<12:10>	IPC11<9:8>	Yes
ADC Digital Comparator 1	_ADC_DC1_VECTOR	46	OFF046<17:1>	IFS1<14>	IEC1<14>	IPC11<20:18>	IPC11<17:16>	Yes
ADC Digital Comparator 2	_ADC_DC2_VECTOR	47	OFF047<17:1>	IFS1<15>	IEC1<15>	IPC11<28:26>	IPC11<25:24>	Yes
ADC Digital Comparator 3	_ADC_DC3_VECTOR	48	OFF048<17:1>	IFS1<16>	IEC1<16>	IPC12<4:2>	IPC12<1:0>	Yes
ADC Digital Comparator 4	_ADC_DC4_VECTOR	49	OFF049<17:1>	IFS1<17>	IEC1<17>	IPC12<12:10>	IPC12<9:8>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress !)		ø								Bi	ts								s
Virtual Add (BF81 #	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
05.40	055000	31:16	—	—	—	_	_	_	-	—	_	-	_	—	—	_	VOFF<	17:16>	0000
0548	OFF002	15:0								VOFF<15:1>								—	0000
0540	055002	31:16	_	_	_	—	_	_	_	—	—	—	—	_	-	—	VOFF<	17:16>	0000
0540	OFF003	15:0								VOFF<15:1>								—	0000
0550	055004	31:16		—	—	—	_	_	_	—	_	—	—	—	_	-	VOFF<	17:16>	0000
0550	OFF004	15:0	VOFF<15:1>													—	0000		
0554	OFF005	31:16		—	—	—	—	_	-	—		—	—	—	—		VOFF<	17:16>	0000
0554	0FF005	15:0								VOFF<15:1>								—	0000
0558	OFFOOG	31:16	_	—	—	—	—	—	—	—	-	—	—	—	—	—	VOFF<	17:16>	0000
0330	011000	15:0								VOFF<15:1>									0000
0550	OFF007	31:16		—	-	—	—	—	-	—	_	—	—	—	-	—	VOFF<	17:16>	0000
0550	011007	15:0								VOFF<15:1>									0000
0560		31:16	-	—	-	—	_	—	—	—	-	—	—	—	—	-	VOFF<	17:16>	0000
0500	011000	15:0								VOFF<15:1>									0000
0564		31:16		—	-	—	—	—	-	—	_	—	—	—	-	—	VOFF<	17:16>	0000
0004	011005	15:0								VOFF<15:1>								—	0000
0568	OFF010	31:16	_	-		—		—	—	—	—	—	—			—	VOFF<	17:16>	0000
0500		15:0								VOFF<15:1>									0000
0560	OFF011	31:16	_	_	_	—	_	—	—	—	—	—	—	—	_	—	VOFF<	17:16>	0000
0000		15:0				-				VOFF<15:1>		•	-						0000
0570	OFF012	31:16	_	_	_	—	_	—	—	—	—	—	—	—	_	—	VOFF<	17:16>	0000
00.0	00.2	15:0				-				VOFF<15:1>		-	-						0000
0574	OFF013	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0074	011010	15:0				-				VOFF<15:1>		-	-						0000
0578	OFF014	31:16	-	—	—	—	—	—	—	-	—	—	—	—	-	—	VOFF<	17:16>	0000
00.0		15:0				-				VOFF<15:1>		-	-						0000
0570	OFF015	31:16	—	—	—	—	—		—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>									0000
0580	OFF016	31:16	—	-	-	—	-	—	-	—	—	—	—	—	-	—	VOFF<	7:16>	0000
		15:0								VOFF<15:1>									0000
Lege	nd: x =	x = unknown value on Reset: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																	

© 2015-2016 Microchip Technology Inc.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

- Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:
- Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

^{2:}

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress ()		е								Bi	ts								s
Virtual Add (BF81_#	Registel Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0674		31:16	_	—	—	—	_	—	—	_	—	_	—	—	—	_	VOFF<	17:16>	0000
0674	OFFUTI	15:0		-					-	VOFF<15:1>			-		_			_	0000
0678	OFF078(2)	31:16	_	—	—	—	_	—	—	—	_	—	—	—	_	_	VOFF<	17:16>	0000
0010	011070	15:0								VOFF<15:1>					-			—	0000
067C	OFF079 ⁽²⁾	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
		15:0	15:0 VOFF<15:1>												_	0000			
0680	OFF080 ⁽²⁾	31:16	_	—	-	—	_	—	—	—	-	—	—	—	-	-	VOFF<	17:16>	0000
		15:0								VOFF<15:1>									0000
0684	OFF081 ⁽²⁾	31:16	—	—	—	—	_	—	—		—	—	—	—	_	—	VOFF<	17:16>	0000
		15:0				İ	İ	İ		VOFF<15:1>	•	İ		İ				-	0000
0688	OFF082 ⁽²⁾	15:0	_	_	—	_	_	_	—	VOEE -15:1>	_	_	_	_	_	—	VUFF<	17.10>	0000
		31.16			_										_		VOFE	17:16>	0000
068C	OFF083 ⁽²⁾	15.0								VOFE<15:1>							VOITS	_	0000
	(2)	31:16	_	_			_	_	_	_	_		_	_	_	_	VOFF<	17:16>	0000
0690	OFF084 ⁽²⁾	15:0								VOFF<15:1>							-	_	0000
		31:16	_	_	_	_	_	_	_	_	_		_	_	_	_	VOFF<	17:16>	0000
0694	OFF085(2)	15:0								VOFF<15:1>								—	0000
0000		31:16	_	—	—	—	_	—	—	_	—	—	—	—	—	—	VOFF<	17:16>	0000
0698	OFF086	15:0	VOFF<15:1>											0000					
0690		31:16	—	_	_	—	—	—	—	—	-	—	_	—	—	-	VOFF<	17:16>	0000
0000	011007**	15:0								VOFF<15:1>								_	0000
06A0	OFF088(2)	31:16	_	—	—	—	_	—	—	_	—	—	—	—		—	VOFF<	17:16>	0000
00/10	011000	15:0								VOFF<15:1>							1	—	0000
06A4	OFF089 ⁽²⁾	31:16	—	—	—	—		—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>								_	0000
06A8	OFF090 ⁽²⁾	31:16	_	_	—	_		_	_	_	_	_	_	_	-	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>							1/055	—	0000
06AC	OFF091 ⁽²⁾	31:16	—	—	—	—	—	—	—		—	—	—	—		—	VOFF<	17:16>	0000
		15:0 Inknow		Posot:	aimplomente	d road ac 'o	' Report volue	s are shown i	n hovadocima	VUFF<15:1>								_	0000

DS60001320D-page 136

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

The timer source for each Output Compare module depends on the setting of the OCACLK bit in the CFG-CON register. The available configurations are shown in Table 18-1.

TABLE 18-1:	TIMER SOURCE
	CONFIGURATIONS

Output Compare Module	Timerx	Timery						
OCACLK (CFGC	ON<16>) = 0							
OC1	Timer2	Timer3						
•	•	•						
•	•	•						
•	•	•						
OC9	Timer2	Timer3						
OCACLK (CFGCON<16>) = 1								
OC1	Timer4	Timer5						
OC2	Timer4	Timer5						
OC3	Timer4	Timer5						
OC4	Timer2	Timer3						
OC5	Timer2	Timer3						
OC6	Timer2	Timer3						
OC7	Timer6	Timer7						
OC8	Timer6	Timer7						
OC9	Timer6	Timer7						

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	r-0	R/W-0			
	—	—	—	—	—	—	—	SCHECK			
00.40	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	—	DASSERT	DEVSE	L<1:0>	LANEMO	DDE<1:0>	CMDINIT<1:0>				
45.0	R/W-0 R/W-0										
15:8	TXRXCOUNT<15:8>										
7:0	R/W-0 R/W-0										
				TXRXCOU	INT<7:0>						

REGISTER 20-4: SQI1CON: SQI CONTROL REGISTER

Legend:	r = Reserved		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

- bit 25 Reserved: Must be programmed as '0'
- bit 24 SCHECK: Flash Status Check bit
 - 1 = Check the status of the Flash
 - 0 = Do not check the status of the Flash

bit 23 Unimplemented: Read as '0'

- bit 22 DASSERT: Chip Select Assert bit
 - 1 = Chip Select is deasserted after transmission or reception of the specified number of bytes
 0 = Chip Select is not deasserted after transmission or reception of the specified number of bytes

bit 21-20 DEVSEL<1:0>: SQI Device Select bits

- 11 = Reserved
- 10 = Reserved
- 01 = Select Device 1
- 00 = Select Device 0

bit 19-18 LANEMODE<1:0>: SQI Lane Mode Select bits

- 11 = Reserved
- 10 = Quad Lane mode
- 01 = Dual Lane mode
- 00 = Single Lane mode

bit 17-16 CMDINIT<1:0>: Command Initiation Mode Select bits

If it is Transmit, commands are initiated based on a write to the transmit register or the contents of TX FIFO. If CMDINIT is Receive, commands are initiated based on reads to the read register or RX FIFO availability.

- 11 = Reserved
- 10 = Receive
- 01 = Transmit
- 00 = Idle

bit 15-0 TXRXCOUNT<15:0>: Transmit/Receive Count bits

These bits specify the total number of bytes to transmit or receive (based on CMDINIT).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0 U-0									
		—	—		_		_	_		
00.40	R-0 R-0									
23.10	TXFIFOFREE<7:0>									
15.0	U-0 U-0									
15.0		—	—		_		_	_		
7.0	R-0 R-0									
7:0	RXFIFOCNT<7:0>									

REGISTER 20-12: SQI1STAT1: SQI STATUS REGISTER 1

Legend:

0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-24 Unimplemented: Read as '0'

bit 23-16 TXFIFOFREE<7:0>: Transmit FIFO Available Word Space bits

bit 15-8 Unimplemented: Read as '0'

bit 7-0 RXFIFOCNT<7:0>: Number of words of read data in the FIFO

REGIST	ER 21-1: I2CxCON: I ² C CONTROL REGISTER (CONTINUED)
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C slave)
	1 = Release SCLx clock
) 	0 = Hold SCLx clock low (clock stretch)
	<u>If STREN = 1:</u>
	Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.
	If STREN = 0:
	Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission
bit 11	STRICT: Strict I ² C Reconved Address Rule Enable bit
	1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate
	addresses in reserved address space.
	0 = Strict I ² C Reserved Address Rule is not enabled
bit 10	A10M: 10-bit Slave Address bit
	1 = I2CxADD is a 10-bit slave address
	0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Disable Slew Rate Control bit
	1 = Slew rate control is disabled
hit 8	SMEN: SMBus Input Levels bit
DILO	1 – Enable I/O nin thresholds compliant with SMBus specification
	0 = Disable SMBus input thresholds
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave)
	1 = Enable interrupt when a general call address is received in the I2CxRSR
	(module is enabled for reception)
	0 = General call address is disabled
bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave)
	Used in conjunction with SCLREL bit.
	0 = Disable software or receive clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence.
	1 = Send NACK during Acknowledge
	0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit
	(when operating as I C master, applicable during master receive)
	Hardware clear at end of master Acknowledge sequence.
	0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	1 = Enables Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte.
	0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of
	master Repeated Start sequence.
hit 0	$v = repeated Statt Condition Fnable bit (when operating as l^2C master)$
	1 = Initiate Start condition on SDAx and SCI x pins. Hardware clear at end of master Start sequence
	0 = Start condition not in progress

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31.24	—	—	—	-	—		—	—
	U-0 U-0							
23:16	—	—	—	_	_	_	—	—
45.0	R-0, HS, HC	R-0, HS, HC	R/C-0, HS, HC	U-0	U-0	R/C-0, HS	R-0, HS, HC	R-0, HS, HC
15:8	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10
7.0	R/C-0, HS, SC	R/C-0, HS, SC	R-0, HS, HC	R/C-0, HS, HC	R/C-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

REGISTER 21-2: I2CxSTAT: I²C STATUS REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared	SC = Software Cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit		

bit 31-16 Unimplemented: Read as '0'

bit 31-16	Unimplemented: Read as 10
bit 15	ACKSTAT: Acknowledge Status bit (when operating as I ² C master, applicable to master transmit operation)
	1 = NACK received from slave
	0 = ACK received from slave
	Hardware set or clear at end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I^2C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK)
	 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
bit 13	ACKTIM: Acknowledge Time Status bit (Valid in I ² C Slave mode only)
	$1 = I^2C$ bus is in an Acknowledge sequence, set on the eight falling edge of SCL clock 0 = Not an Acknowledge sequence, cleared on 9th rising edge of SCL clock
bit 12-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation0 = No collision
	Hardware set at detection of bus collision.
bit 9	GCSTAT: General Call Status bit
	1 = General call address was received
	0 = General call address was not received
	Hardware set when address matches general call address. Hardware clear at Stop detection.
bit 8	ADD10: 10-bit Address Status bit
	1 = 10-bit address was matched
	0 = 10-bit address was not matched
	Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
bit 7	IWCOL: Write Collision Detect bit
	1 = An attempt to write the I2CxTRN register failed because the I ² C module is busy 0 = No collision
	Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: Receive Overflow Flag bit
	 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow
	Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	R/W-0, HC	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
23:16	RDSTART	—	—	—	—	—	DUALBUF	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON	—	SIDL	ADRML	ADRMUX<1:0>		PTWREN	PTRDEN
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7:0	CSF<	1:0> ⁽¹⁾	ALP ⁽¹⁾	CS2P ⁽¹⁾	CS1P ⁽¹⁾	_	WRSP	RDSP

REGISTER 23-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23 RDSTART: Start Read on PMP Bus bit This bit is cleared by hardware at the end of the read cycle. 1 = Start a read cycle on the PMP bus 0 = No effect
bit 22-18 Unimplemented: Read as '0'
bit 17 DUALBUF: Dual Read/Write Buffers enable bit

This bit is valid in Master mode only.

1 = PMP uses separate registers for reads and writes (PMRADDR, PMDATAIN, PMWADDR, PMDATAOUT)

0 = PMP uses legacy registers (PMADDR, PMDATA)

- bit 16 Unimplemented: Read as '0'
- bit 15 **ON:** Parallel Master Port Enable bit

1 = PMP is enabled

- 0 = PMP is disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode

bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits

- 11 = Lower 8 bits of address are multiplexed on PMD<15:0> pins; upper 8 bits are not used
- 10 = All 16 bits of address are multiplexed on PMD<15:0> pins
- 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8>
- 00 = Address and data appear on separate pins
- bit 10 PMPTTL: PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port is enabled
 - 0 = PMWR/PMENB port is disabled
- bit 8 **PTRDEN:** Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port is enabled
 - 0 = PMRD/PMWR port is disabled

Note 1: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	—	—	—	—	—	—	—	—
00.40	U-0 U-0							
23.10	—	—	—	—	—	—	—	—
45.0	U-0 U-0							
15:8	—	—	—	—	—	—	—	—
7.0	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	SWAPOEN	SWRST	SWAPEN	—	—	BDPCHST	BDPPLEN	DMAEN

REGISTER 26-2: CECON: CRYPTO ENGINE CONTROL REGISTER

Legend:		HC = Hardware Cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7 SWAPOEN: Swap Output Data Enable bit
 - 1 = Output data is byte swapped when written by dedicated DMA
 - 0 = Output data is not byte swapped when written by dedicated DMA
- bit 6 SWRST: Software Reset bit
 - 1 = Initiate a software reset of the Crypto Engine
 - 0 = Normal operation
- bit 5 **SWAPEN:** Input Data Swap Enable bit
 - 1 = Input data is byte swapped when read by dedicated DMA
 - 0 = Input data is not byte swapped when read by dedicated DMA
- bit 4-3 Unimplemented: Read as '0'

bit 2 BDPCHST: Buffer Descriptor Processor (BDP) Fetch Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

- 1 = BDP descriptor fetch is enabled
- 0 = BDP descriptor fetch is disabled

bit 1 **BDPPLEN:** Buffer Descriptor Processor Poll Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

- 1 = Poll for descriptor until valid bit is set
- 0 = Do not poll

bit 0 DMAEN: DMA Enable bit

- 1 = Crypto Engine DMA is enabled
- 0 = Crypto Engine DMA is disabled

REGISTE	:R 30-31: EM/	-31: EMAC1MCFG: ETHERNET CONTROLLER MAC MII MANAGEMENT										
CONFIGURATION REGISTER												
Di+	D''		D ''	D.1	D.1	i.	D''					

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	_	—	—	—	_
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—		—	—	—	-
15.9	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	RESETMGMT	_	—		—	—	—	-
7:0	U-0	U-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		_		CLKSEI	_<3:0> ⁽¹⁾		NOPRE	SCANINC

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 **RESETMGMT:** Test Reset MII Management bit 1 = Reset the MII Management module 0 = Normal Operation
- bit 14-6 Unimplemented: Read as '0'

bit 1 NOPRE: Suppress Preamble bit

- 1 = The MII Management will perform read/write cycles without the 32-bit preamble field. Some PHYs support suppressed preamble
- 0 = Normal read/write cycles are performed

bit 0 SCANINC: Scan Increment bit

- 1 = The MII Management module will perform read cycles across a range of PHYs. The read cycles will start from address 1 through the value set in EMAC1MADR<PHYADDR>
- 0 = Continuous reads of the same PHY
- **Note 1:** Table 30-7 provides a description of the clock divider encoding.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

TABLE 30-7: MIIM CLOCK SELECTION

MIIM Clock Select	EMAC1MCFG<5:2>
TPBCLK5 divided by 4	000x
TPBCLK5 divided by 6	0010
TPBCLK5 divided by 8	0011
TPBCLK5 divided by 10	0100
TPBCLK5 divided by 14	0101
TPBCLK5 divided by 20	0110
TPBCLK5 divided by 28	0111
TPBCLK5 divided by 40	1000
TPBCLK5 divided by 48	1001
TPBCLK5 divided by 50	1010
Undefined	Any other combination

bit 5-2 **CLKSEL<3:0>:** MII Management Clock Select 1 bits⁽¹⁾ These bits are used by the clock divide logic in creating the MII Management Clock (MDC), which the IEEE 802.3 Specification defines to be no faster than 2.5 MHz. Some PHYs support clock rates up to 12.5 MHz.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31:24	—	—	—	—	—	—	DMAPRI ⁽¹⁾	CPUPRI ⁽¹⁾
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16	—	—	—	—	—	—	ICACLK ⁽¹⁾	OCACLK ⁽¹⁾
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
15:8	—	—	IOLOCK ⁽¹⁾	PMDLOCK ⁽¹⁾	PGLOCK ⁽¹⁾	—	—	USBSSEN ⁽¹⁾
7.0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	U-0	R/W-1
7:0	IOANCPEN		ECCC	ECCCON<1:0>		TROEN		TDOEN

REGISTER 34-7: CFGCON: CONFIGURATION CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25	DMAPRI: DMA Read and DMA Write Arbitration Priority to SRAM bit ⁽¹⁾
	1 = DMA gets High Priority access to SRAM
	0 = DMA uses Least Recently Serviced Arbitration (same as other initiators)
bit 24	CPUPRI: CPU Arbitration Priority to SRAM When Servicing an Interrupt bit ⁽¹⁾
	1 = CPU gets High Priority access to SRAM
	0 = CPU uses Least Recently Serviced Arbitration (same as other initiators)
bit 23-18	Unimplemented: Read as '0'
bit 17	ICACLK: Input Capture Alternate Clock Selection bit ⁽¹⁾
	 1 = Input Capture modules use an alternative Timer pair as their timebase clock 0 = All Input Capture modules use Timer2/3 as their timebase clock
bit 16	OCACLK: Output Compare Alternate Clock Selection bit ⁽¹⁾
	 1 = Output Compare modules use an alternative Timer pair as their timebase clock 0 = All Output Compare modules use Timer2/3 as their timebase clock
bit 15-14	Unimplemented: Read as '0'
bit 13	IOLOCK: Peripheral Pin Select Lock bit ⁽¹⁾
	 1 = Peripheral Pin Select is locked. Writes to PPS registers are not allowed 0 = Peripheral Pin Select is not locked. Writes to PPS registers are allowed
bit 12	PMDLOCK: Peripheral Module Disable bit ⁽¹⁾
	 1 = Peripheral module is locked. Writes to PMD registers are not allowed 0 = Peripheral module is not locked. Writes to PMD registers are allowed
bit 11	PGLOCK: Permission Group Lock bit ⁽¹⁾
	 1 = Permission Group registers are locked. Writes to PG registers are not allowed 0 = Permission Group registers are not locked. Writes to PG registers are allowed
bit 10-9	Unimplemented: Read as '0'
bit 8	USBSSEN: USB Suspend Sleep Enable bit ⁽¹⁾
	Enables features for USB PHY clock shutdown in Sleep mode.
	1 = USB PHY clock is shut down when Sleep mode is active
	0 = USB PHY clock continues to run when Sleep is active
Note 1:	To change this bit, the unlock sequence must be performed. Refer to Section 42. "C

^{1:} To change this bit, the unlock sequence must be performed. Refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

37.1 DC Characteristics

TABLE 37-1: OPERATING MIPS VS. VOLTAGE

	VDD Range	Temp. Range	Max. Frequency	0
Characteristic	(in voits) (Note 1)	(in °C)	PIC32MZ EF Devices	Comment
DC5	2.1V-3.6V	-40°C to +85°C	200 MHz	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

TABLE 37-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD - S IOH)	PD		PINT + PI/C)	w
I/O Pin Power Dissipation: PI/O = S (({VDD - VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 37-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θJA	28	—	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θJA	49		°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θJA	43		°C/W	1
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θJA	40	—	°C/W	1
Package Thermal Resistance, 124-pin VTLA (9x9x0.9 mm)	θJA	30	—	°C/W	1
Package Thermal Resistance, 144-pin TQFP (16x16x1 mm)	θJA	42		°C/W	1
Package Thermal Resistance, 144-pin LQFP (20x20x1.4 mm)	θJA	39	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			Stand (unles Opera	ard Operating s otherwise st ting temperatur	Conditions: 2.1V to 3.6V tated) re $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended	
Param. No.	Typical ⁽²⁾	Maximum ⁽⁵⁾	Units	s Conditions		
Power-Down Current (IPD) (Note 1)						
EDC40m	20	46	mA	+125⁰C	Base Power-Down Current	
Module Dif	ferential Curre	ent				
EDC41e	15	50	μA	3.6V	Watchdog Timer Current: ΔIWDT (Note 3)	
EDC42e	25	50	μΑ	3.6V	RTCC + Timer1 w/32 kHz Crystal: △IRTCC (Note 3)	
EDC43d	3	3.8	mA	3.6V	ADC: ΔΙΑDC (Notes 3, 4)	
EDC44	15	50	μA	3.6V	Deadman Timer Current: AIDMT (Note 3)	

TABLE 38-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
- CPU is in Sleep mode
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- Voltage regulator is in Stand-by mode (VREGS = 0)
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- **4:** Voltage regulator is operational (VREGS = 1).
- 5: Data in the "Maximum" column is at 3.3V, +125°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

40.0 AC AND DC CHARACTERISTICS GRAPHS

Note: The graphs provided are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MZ Embedded

Connectivity with Floating Point Unit (EF) Family

A.9 Other Peripherals and Features

Most of the remaining peripherals on PIC32MZ EF devices act identical to their counterparts on PIC32MX-5XX/6XX/7XX devices. The main differences have to do with handling the increased peripheral bus clock speed and additional clock sources. Table A-10 lists the differences (indicated by **Bold** type) that will affect software and hardware migration.

TABLE A-10: PERIPHERAL DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature
ľ	² C
On PIC32MX devices, all pins are 5V-tolerant.	On PIC32MZ EF devices, the I2C4 port uses non-5V tolerant pins, and will have different VOL/VOH specifications.
	The Baud Rate Generator register has been expanded from 12 bits to 16 bits.
I2CxBRG<11:0>	I2CxBRG< 15 :0>
Watchd	og Timer
Clearing the Watchdog Timer on PIC32MX5XX/6XX/7XX devices required writing a '1' to the WDTCLR bit.	On PIC32MZ EF devices, the WDTCLR bit has been replaced with the 16-bit WDTCLRKEY, which must be written with a spe- cific value (0x5743) to clear the Watchdog Timer. In addition, the WDTSPGM (DEVCFG1<21>) bit is used to control operation of the Watchdog Timer during Flash programming.
WDTCLR (WDTCON<0>)	WDTCLRKEY<15:0> (WDTCON<31:16>)
RI	CC
On PIC32MX devices, the output of the RTCC pin was selected between the Seconds Clock or the Alarm Pulse.	On PIC32MZ EF devices, the RTCC Clock is added as an option. RTCSECSEL has been renamed RTCOUTSEL and expanded to two bits.
RTCSECSEL (RTCCON<7>) 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin	RTCOUTSEL<1:0> (RTCCON<8:7>) 11 = Reserved 10 = RTCC Clock is presented on the RTCC pin 01 = Seconds Clock is presented on the RTCC pin 00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered
On PIC32MX devices, the Secondary Oscillator (Sosc) serves as the input clock for the RTCC module.	On PIC32MZ EF devices, an additional clock source, LPRC, is available as a choice for the input clock.
	RTCCLKSEL<1:0> (RTCCON<10:9>) 11 = Reserved 10 = Reserved 01 = RTCC uses the external 32.768 kHz Sosc 00 = RTCC uses the internal 32 kHz oscillator (LPRC)