

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuns	
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efh064t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTE	ER 5-8:	NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER
bit 4	UBWP4:	Upper Boot Alias Page 4 Write-protect bit ⁽¹⁾
		protection for physical address 0x01FC30000 through 0x1FC33FFF enabled protection for physical address 0x01FC30000 through 0x1FC33FFF disabled
bit 3	UBWP3:	Upper Boot Alias Page 3 Write-protect bit ⁽¹⁾
	0 = Write	protection for physical address 0x01FC2C000 through 0x1FC2FFFF enabled protection for physical address 0x01FC2C000 through 0x1FC2FFFF disabled
bit 2	UBWP2:	Upper Boot Alias Page 2 Write-protect bit ⁽¹⁾
		protection for physical address 0x01FC28000 through 0x1FC2BFFF enabled protection for physical address 0x01FC28000 through 0x1FC2BFFF disabled
bit 1	UBWP1:	Upper Boot Alias Page 1 Write-protect bit ⁽¹⁾
	0 = Write	protection for physical address 0x01FC24000 through 0x1FC27FFF enabled protection for physical address 0x01FC24000 through 0x1FC27FFF disabled
bit 0	UBWP0:	Upper Boot Alias Page 0 Write-protect bit ⁽¹⁾
		protection for physical address 0x01FC20000 through 0x1FC23FFF enabled protection for physical address 0x01FC20000 through 0x1FC23FFF disabled

Note 1: These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24	_	—	_	_	—	—	—	_						
22.16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16	—	—	_	—		SYSDIV<3:0> ⁽¹⁾								
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0						
15:8	—	—	_	_	—	:	SLWDIV<2:0>	•						
7.0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R-0, HS, HC						
7:0		_			_	UPEN	DNEN	BUSY						

REGISTER 8-7: SLEWCON: OSCILLATOR SLEW CONTROL REGISTER

Legend:	HC = Hardware Cleared	HS = Hardware Set				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-20 Unimplemented: Read as '0'

```
bit 19-16 SYSDIV<3:0>: System Clock Divide Control bits<sup>(1)</sup>
```

- bit 15-11 Unimplemented: Read as '0'
- bit 10-8 **SLWDIV<2:0>:** Slew Divisor Steps Control bits

These bits control the maximum division steps used when slewing during a frequency change.

- 111 = Steps are divide by 128, 64, 32, 16, 8, 4, 2, and then no divisor
- 110 = Steps are divide by 64, 32, 16, 8, 4, 2, and then no divisor
- 101 = Steps are divide by 32, 16, 8, 4, 2, and then no divisor
- 100 = Steps are divide by 16, 8, 4, 2, and then no divisor
- 011 = Steps are divide by 8, 4, 2, and then no divisor
- 010 = Steps are divide by 4, 2, and then no divisor
- 001 = Steps are divide by 2, and then no divisor
- 000 = No divisor is used during slewing

Note: The steps apply in reverse order (i.e., 2, 4, 8, etc.) during a downward frequency change.

- bit 7-3 **Unimplemented:** Read as '0'
- bit 2 UPEN: Upward Slew Enable bit
 - 1 = Slewing enabled for switching to a higher frequency
 - 0 = Slewing disabled for switching to a higher frequency
- bit 1 **DNEN:** Downward Slew Enable bit
 - 1 = Slewing enabled for switching to a lower frequency
 - 0 = Slewing disabled for switching to a lower frequency
- bit 0 BUSY: Clock Switching Slewing Active Status bit
 - 1 = Clock frequency is being actively slewed to the new frequency
 - 0 = Clock switch has reached its final value

Note 1: The SYSDIV<3:0> bit settings are ignored if both UPEN and DNEN = 0, and SYSCLK will be divided by 1.

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

ss											Bits								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3248	USB	31:16								DMA	ADDR<31:16	>							0000
3248	DMA5A	15:0								DM	ADDR<15:0	•							0000
324C	USB	31:16								DMA	COUNT<31:10	i>							0000
0240	DMA5N	15:0				-	•			DMA	COUNT<15:0	>							0000
3254	USB	31:16	_	_	—	—		_	—	-	_	—	—	-	-	-	_	-	0000
	DMA6C	15:0	—	—	—		-	DMABR	STM<1:0>	DMAERR			EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	
3258	USB DMA6A	31:16									ADDR<31:16								0000
		15:0									ADDR<15:0								0000
325C	USB DMA6N	31:16		DMACOUNT<31:16> 0000 DMACOUNT<15:0> 0000															
\vdash		15:0					r												
3264	USB DMA7C	31:16 15:0	_																
		31:16	_	DMABRSTM<1:0> DMAER DMAEP<3:0> DMAIE DMAMODE DMADIR DMAEN 0000															
3268	USB DMA7A	15:0		DMAADDR<31:16> 0000 DMAADDR<15:0> 0000															
	USB	31:16		DMAADDK<5.0> 0000 DMACOUNT<31:16> 0000															
326C	DMA7N	15:0	DMACOUNT<15:0> 0000																
	USB	31:16	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	0000
3274	DMA8C	15:0	_	_	_	_	_	DMABR	STM<1:0>	DMAERR		DMA	EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
0070	USB	31:16						1		DMA	ADDR<31:16	>			1		1	J	0000
3278	DMA8A	15:0								DM	ADDR<15:0	•							0000
327C	USB	31:16								DMA	COUNT<31:10	i>							0000
3270	DMA8N	15:0								DMA	COUNT<15:0	>							0000
3304	USB	31:16	—		—	_	—	_	—	—	_	—	_	-	—	_	_	—	0000
5504	E1RPC	15:0				-		-		RQP	KTCNT<15:0	>		-					0000
3308	USB	31:16	—	—	—	—	-	—	—	—	—	—	-	-	—	-	—	—	0000
	E2RPC	15:0								RQP	KTCNT<15:0	>	1						0000
330C	USB	31:16	_	_	—		_		—	—			_	_	_	_	_	—	0000
	E3RPC	15:0					1				KTCNT<15:0								0000
3310	USB E4RPC	31:16	_	_	—		-	—	—	—	—	_	_	-	_	_	_		0000
\vdash		15:0									KTCNT<15:0								0000
3314	USB E5RPC	31:16 15:0	—	_	—	_	—	_	—			_	—	—	_	—	—	—	0000
\vdash											KTCNT<15:0								0000
3318	USB E6RPC	31:16 15:0																	
\vdash		31:16	_	_	_			_				<u> </u>		_	_	_		_	0000
331C	USB E7RPC	15:0	_	_			_			ROP			_	_		_			
1		10.0		RQPKTCNT<15:0> 0000															

Legend: Note x = unknownDevice mode.

Host mode.

1: 2: 3: 4: Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).

REGISTER 11-1: USBCSR0: USB CONTROL STATUS REGISTER 0 (CONTINUED)

- bit 10 **RESUME:** Resume from Suspend control bit
 - 1 = Generate Resume signaling when the device is in Suspend mode
 - 0 = Stop Resume signaling

In *Device mode*, the software should clear this bit after 10 ms (a maximum of 15 ms) to end Resume signaling. In *Host mode*, the software should clear this bit after 20 ms.

- bit 9 **SUSPMODE:** Suspend Mode status bit 1 = The USB module is in Suspend mode
 - 0 = The USB module is in Normal operations

This bit is read-only in Device mode. In Host mode, it can be set by software, and is cleared by hardware.

- bit 8 SUSPEN: Suspend Mode Enable bit
 - 1 = Suspend mode is enabled
 - 0 = Suspend mode is not enabled
- bit 7 Unimplemented: Read as '0'
- bit 6-0 **FUNC<6:0>:** Device Function Address bits

These bits are only available in *Device mode*. This field is written with the address received through a SET_ADDRESS command, which will then be used for decoding the function address in subsequent token packets.

REGISTER 11-9:	USBIENCSR1: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 1
	(ENDPOINT 1-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R-0	R/W-0			
31:24	AUTOCLR	ISO	DMAREQEN	DISNYET	DMAREQMD	_	—	INCOMPRX			
	AUTOCLK	AUTORQ	DIMAREQEN	PIDERR	DIMAREQIVID	DATATWEN	DATATGGL				
	R/W-0, HC	R/W-0, HS	R/W-0	R/W-0, HC	R-0, HS	R/W-0, HS	R-0, HS, HC	R/W-0, HS			
23:16	CLRDT	SENTSTALL	SENDSTALL	FLUSH	DATAERR	OVERRUN	FIFOFULL	RXPKTRDY			
	GLRDT	RXSTALL	REQPKT	FLUSH	DERRNAKT	ERROR	FIFOFULL	KAFKIKUT			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.6			MULT<4:0>			R	XMAXP<10:8	< <u><</u>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0	RXMAXP<7:0>										

Legend:	HC = Hardware Cleared	HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 AUTOCLR: RXPKTRDY Automatic Clear Control bit

- 1 = RXPKTRDY will be automatically cleared when a packet of RXMAXP bytes has been unloaded from the RX FIFO. When packets of less than the maximum packet size are unloaded, RXPKTRDY will have to be cleared manually. When using a DMA to unload the RX FIFO, data is read from the RX FIFO in 4-byte chunks regardless of the RXMAXP.
- 0 = No automatic clearing of RXPKTRDY

This bit should not be set for high-bandwidth Isochronous endpoints.

- bit 30 ISO: Isochronous Endpoint Control bit (Device mode)
 - 1 = Enable the RX endpoint for Isochronous transfers
 - 0 = Enable the RX endpoint for Bulk/Interrupt transfers

AUTORQ: Automatic Packet Request Control bit (*Host mode*)

- 1 = REQPKT will be automatically set when RXPKTRDY bit is cleared.
- 0 = No automatic packet request

This bit is automatically cleared when a short packet is received.

- bit 29 DMAREQEN: DMA Request Enable Control bit
 - 1 = Enable DMA requests for the RX endpoint.
 - 0 = Disable DMA requests for the RX endpoint.
- bit 28 **DISNYET:** Disable NYET Handshakes Control/PID Error Status bit (*Device mode*)
 - 1 = In Bulk/Interrupt transactions, disables the sending of NYET handshakes. All successfully received RX packets are ACKed including at the point at which the FIFO becomes full.
 - 0 = Normal operation.

In Bulk/Interrupt transactions, this bit only has any effect in Hi-Speed mode, in which mode it should be set for all Interrupt endpoints.

PIDERR: PID Error Status bit (Host mode)

1 = In ISO transactions, this indicates a PID error in the received packet.

0 = No error

- bit 27 DMAREQMD: DMA Request Mode Selection bit
 - 1 = DMA Request Mode 1
 - 0 = DMA Request Mode 0

I/O Ports Control Registers 12.5

TABLE 12-4:	PORTA	REGISTI
IADLL 12-4.		

FER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess)		۵								Bits	;								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	ANSELA	31:16	—	—	_	_		-	—		—	_	—	—	—		—	—	0000
0000	ANGLLA	15:0	—	—	_	_	_	ANSA10	ANSA9	_	—	—	ANSA5	—	—	_	ANSA1	ANSA0	0623
0010	TRISA	31:16	—	—	—	_		_	—	_	_	_	_	—	—	_	_	_	0000
0010	11(10/1	15:0	TRISA15	TRISA14	—	—	—	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
0020	PORTA	31:16	—	—	—	_		_	—	_	_	_	_	—	—	_	_	_	0000
0020	1 OKIA	15:0	RA15	RA14	—	—	—	RA10	RA9	—	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
0030	LATA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	2,000	15:0	LATA15	LATA14	—	—	_	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
0040	ODCA	31:16	—	—	_	_	—	_	—	_	—	—	—	—	—	—	—	—	0000
0010	020/1	15:0	ODCA15	ODCA14	_	_	_	ODCA10	ODCA9	_	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
0050	CNPUA	31:16	—	—	_	_	—	_	—	_	—	—	—	—	—	—	—	—	0000
	0.1. 0.1.	15:0	CNPUA15	CNPUA14	_	_	—	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
0060	CNPDA	31:16	—	—	—	_	—	_	—	_	—	—	—	—	—	—	—	—	0000
	0		CNPDA15	CNPDA14	—	_	—	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
0070	CNCONA	31:16	—	—	—	_	-	_	—	_	—		—	—	—		—	—	0000
		15:0	ON	—	—	_	EDGEDETECT	_	—	_	—		—	—	—		—	—	0000
0080	CNENA	31:16	—	—				—	—		—	—	—	—	—	—	—	—	0000
		15:0	CNENA15	CNENA14	—	_	_	CNENA10	CNENA9		CNENA7	CNENA6	CNENA5	CNENA4	CNENA3	CNENA2	CNENA1	CNENA0	0000
		31:16	—	—	—	_	_	—	—	_	—	—	—	—	—	—	—	—	0000
0090	CNSTATA	15:0	CN STATA15	CN STATA14	_	_	—	CN STATA10	CN STATA9	—	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	0000
00A0	CNNEA	31:16	—	—	_	-	_	_	—	_	—	_	—	_	_	_	—	—	0000
UUAU	CINILA	15:0	CNNEA15	CNNEA14	_	-	_	CNNEA10	CNNEA9	_	CNNEA7	CNNEA6	CNNEA5	CNNEA4	CNNEA3	CNNEA2	CNNEA1	CNNEA0	0000
00B0	CNFA	31:16	—	—	_	-	_	_	—	_	_	_	_	_	_	_	—	—	0000
0000	CINIA	15:0	CNFA15	CNFA14	_	-	_	CNFA10	CNFA9	_	CNFA7	CNFA76	CNFA5	CNFA4	CNFA3	CNFA2	CNFA71	CNFA0	0000
0000	SRCON0A	31:16	—	—	_	_	-	_	—	_	—	_	—	_	—		—	—	0000
0000	SICONUA	15:0	—	—	_	_	-	_	—	_	SR0A7	SR0A6	—	_	—		—	—	0000
0000	SRCON1A	31:16	—	—	_		-	_	—	_	—		—	—	—		—	—	0000
0000	SICONTA	15:0	—	_	_	—		_	—	_	SR1A7	SR0A6	_	_	_		_	_	0000

x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Legend:

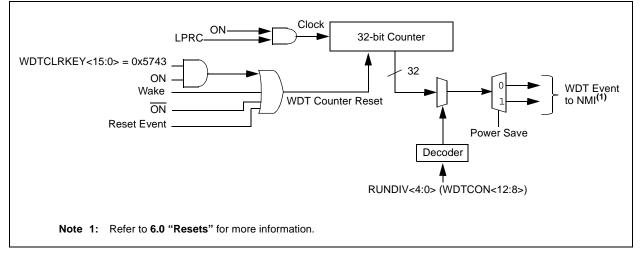
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 12-13: PORTF REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess										Bit	ts								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0500	ANSELF	31:16	—		—	—	—				_	_	—	_	_		—	_	0000
	_	15:0	—	—	ANSF13	ANSF12	—	—	—	—	—	—	_	—	—	—	—	_	3000
0510	TRISF	31:16	_	_	_		_	_	_		_	_	_			_		_	0000
		15:0	_	_	TRISF13	TRISF12	_	_	—	TRISF8	_	—	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
0520	PORTF	31:16	_	_	_	_	_	_	—	_	_	—	_		_	_	_	_	0000
		15:0	_	_	RF13	RF12	_	_	_	RF8	_	_	RF5	RF4	RF3	RF2	RF1	RF0	XXXX
0530	LATF	31:16	-	_		—	_	_	_		_	_					—		0000
		15:0	_	_	LATF13	LATF12	_	_	_	LATF8	_	_	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	XXXX
0540	ODCF	31:16	_		-	-	_			-			-	-	-	-	-	-	0000
		15:0	_		ODCF13	ODCF12	_			ODCF8			ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
0550	CNPUF	31:16	_	_			_	_	_		_								0000
		15:0		_	CNPUF13	CNPUF12	_		_	CNPUF8			CNPUF5	CNPUF4	CNPUF3	CNPUF2	CNPUF1	CNPUF0	0000
0560	CNPDF	31:16 15:0	_	_	— CNPDF13	— CNPDF12	_		_	CNPDF8			CNPDF5	— CNPDF4	— CNPDF3	— CNPDF2	— CNPDF1		0000
		31:16	_			CNPDF12	_			CNPDF8			CNPDF5		CNPDF3		CNPDF1		0000
0570		15:0	ON	_		_	EDGE DETECT	_	_	_		_	_				_		0000
		31:16	_	_	_	_	_	_	_	_		_	_	_	_	_		_	0000
0580	CNENF	15:0	_	_	CNENF13	CNENF12	_	_	_	CNENF8		_	CNENF5	CNENF4	CNENF3	CNENF2	CNENF1	CNENF0	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0590	CNSTATF	15:0	_	_	CN STATF13	CN STATF12	_	_	_	CN STATF8	_	_	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	0000
		31:16	_	_			_	_	_		_	_	_	_	_	_		_	0000
05A0	CNNEF	15:0	_	_	CNNEF13	CNNEF12	_	_	_	CNNEF8	_	_	CNNEF5	CNNEF4	CNNEF3	CNNEF2	CNNEF1	CNNEF0	0000
	0.1.55	31:16	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	0000
05B0	CNFF	15:0	_	_	CNFF13	CNFF12				CNFF8			CNFF5	CNFF4	CNFF3	CNFF2	CNFF1	CNFF0	0000
05.00	SRCON0F	31:16	—	—	—	—	_	—	—	—	—	_	—			—	—		0000
0500	SKUUNUF	15:0	—		_	_	_		_		_		_			_	SR0F1	SR0F0	0000
05 D0	SRCON1F	31:16	—		—	—	—		—		_		—			—	_		0000
0500	SRUUNTF	15:0	—		_	—	—		—		_		—			_	SR1F1	SR1F0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.


16.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). When enabled, the Watchdog Timer (WDT) operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

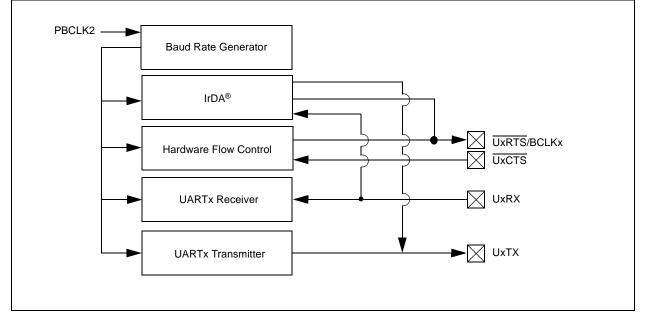
The following are key features of the WDT module:

- Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 16-1: WATCHDOG TIMER BLOCK DIAGRAM

22.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The UART module is one of the serial I/O modules available in the PIC32MZ EF family of devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN, and IrDA[®]. The module also supports the hardware flow control option, with UXCTS and UXRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- One or two Stop bits
- Hardware auto-baud feature
- Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 25 Mbps at 100 MHz (PBCLK2)
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- LIN Protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 22-1 illustrates a simplified block diagram of the UART module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0	U-0 U-0		U-0	U-0	U-0	U-0	R/W-0				
31:24	—	—	_	_	—	_	—	ADM_EN				
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	ADDR<7:0>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1				
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT				
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0				
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA				

REGISTER 22-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled

bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

- bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits
 - 11 = Reserved, do not use
 - 10 = Interrupt is generated and asserted while the transmit buffer is empty
 - 01 = Interrupt is generated and asserted when all characters have been transmitted
 - 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space
- bit 13 UTXINV: Transmit Polarity Inversion bit
 - If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):
 - 1 = UxTX Idle state is '0'
 - 0 = UxTX Idle state is '1'

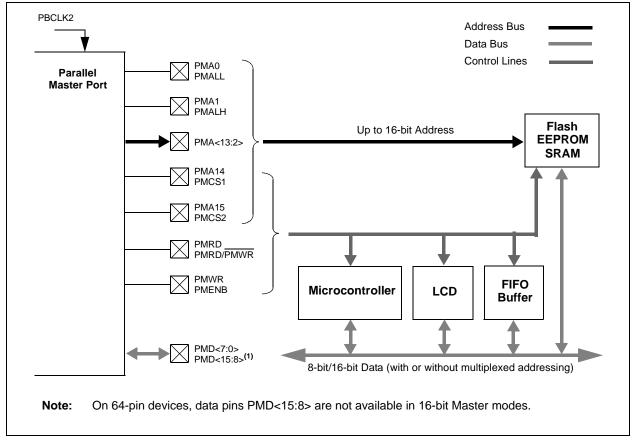
If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'
- bit 12 URXEN: Receiver Enable bit
 - 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset
- bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register is Empty bit (read-only)
 - 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer

23.0 PARALLEL MASTER PORT (PMP)


Note:	This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive refer- ence source. To complement the informa- tion in this data sheet, refer to Section 13 .
	"Parallel Master Port (PMP)"
	(DS60001128) in the "PIC32 Family Ref-
	erence Manual", which is available from
	the Microchip web site (www.micro- chip.com/PIC32).

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. The following are key features of the PMP module:

- 8-bit,16-bit interface
- Up to 16 programmable address lines
- Up to two Chip Select lines
- Programmable strobe options:
 - Individual read and write strobes, or
 - Read/write strobe with enable strobe
- Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- Parallel Slave Port support:
 - Legacy addressable
 - Address support
 - 4-byte deep auto-incrementing buffer
- Programmable Wait states
- Operate during Sleep and Idle modes
- Separate configurable read/write registers or dual buffers for Master mode
- Fast bit manipulation using CLR, SET, and INV registers

Note: On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes.

REGISTER	28-2: ADCCON2: ADC CONTROL REGISTER 2 (CONTINUED)
bit 14	REFFLTIEN: Band Gap/VREF Voltage Fault Interrupt Enable bit
	1 = Interrupt will be generated when the REFFLT bit is set
	0 = No interrupt is generated when the REFFLT bit is set
bit 13	EOSIEN: End of Scan Interrupt Enable bit
	 1 = Interrupt will be generated when EOSRDY bit is set 0 = No interrupt is generated when the EOSRDY bit is set
bit 12	ADCEIOVR: Early Interrupt Request Override bit
	1 = Early interrupt generation is not overridden and interrupt generation is controlled by the ADCEIEN1 and ADCEIEN2 registers
	 Early interrupt generation is overridden and interrupt generation is controlled by the ADCGIRQEN1 and ADCGIRQEN2 registers
bit 11	Unimplemented: Read as '0'
bit 10-8	ADCEIS<2:0>: Shared ADC (ADC7) Early Interrupt Select bits
	These bits select the number of clocks (TAD7) prior to the arrival of valid data that the associated interrupt is generated.
	111 = The data ready interrupt is generated 8 ADC clocks prior to end of conversion
	110 = The data ready interrupt is generated 7 ADC clocks prior to end of conversion
	•
	• 001 = The data ready interrupt is generated 2 ADC module clocks prior to end of conversion
	000 = The data ready interrupt is generated 1 ADC module clock prior to end of conversion
	Note: All options are available when the selected resolution, set by the SELRES<1:0> bits (ADCCON1<22:21>), is 12-bit or 10-bit. For a selected resolution of 8-bit, options from '000' to '101' are valid. For a selected resolution of 6-bit, options from '000' to '011' are valid.
bit 7	Unimplemented: Read as '0'
bit 6-0	ADCDIV<6:0>: Shared ADC (ADC7) Clock Divider bits
	1111111 = 254 * TQ = TAD7
	•
	•
	0000011 = 6 * TQ = TAD7
	0000010 = 4 * TQ = TAD7 0000001 = 2 * TQ = TAD7
	0000000 = Reserved

The ADCDIV<6:0> bits divide the ADC control clock (TQ) to generate the clock for the Shared ADC, ADC7 (TAD7).

REGISTER 28-15: ADCCMPx: ADC DIGITAL COMPARATOR 'x' LIMIT VALUE REGISTER ('x' = 1 THROUGH 6)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				DCMPHI<	15:8> ^(1,2,3)			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	DCMPHI<7:0> ^(1,2,3)							
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	DCMPLO<15:8> ^(1,2,3)							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	DCMPLO<7:0> ^(1,2,3)							

Legend:

Legena:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 **DCMPHI<15:0>:** Digital Comparator 'x' High Limit Value bits^(1,2,3) These bits store the high limit value, which is used by digital comparator for comparisons with ADC converted data.

- bit 15-0 **DCMPLO<15:0>:** Digital Comparator 'x' Low Limit Value bits^(1,2,3) These bits store the low limit value, which is used by digital comparator for comparisons with ADC converted data.
- **Note 1:** Changing theses bits while the Digital Comparator is enabled (ENDCMP = 1) can result in unpredictable behavior.
 - **2:** The format of the limit values should match the format of the ADC converted value in terms of sign and fractional settings.
 - **3:** For Digital Comparator 0 used in CVD mode, the DCMPHI<15:0> and DCMPLO<15:0> bits must always be specified in signed format, as the CVD output data is differential and is always signed.

REGISTER 29-1: CICON: CAN MODULE CONTROL REGISTER (CONTINUED)

- bit 13 SIDLE: CAN Stop in Idle bit 1 = CAN Stops operation when system enters Idle mode 0 = CAN continues operation when system enters Idle mode bit 12 Unimplemented: Read as '0' bit 11 CANBUSY: CAN Module is Busy bit 1 = The CAN module is active
 - 0 = The CAN module is completely disabled
- bit 10-5 Unimplemented: Read as '0'

bit 4-0 **DNCNT<4:0>:** Device Net Filter Bit Number bits

10011-11111 = Invalid Selection (compare up to 18-bits of data with EID)

- 10010 = Compare up to data byte 2 bit 6 with EID17 (CiRXFn<17>)
- •
- •
- •

00001 = Compare up to data byte 0 bit 7 with EID0 (CiRXFn<0>) 00000 = Do not compare data bytes

Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

REGISTER 30-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1 (CONTINUED)

- bit 7 **AUTOFC:** Automatic Flow Control bit
 - 1 = Automatic Flow Control enabled
 - 0 = Automatic Flow Control disabled

Setting this bit will enable automatic Flow Control. If set, the full and empty watermarks are used to automatically enable and disable the Flow Control, respectively. When the number of received buffers BUFCNT (ETHSTAT<16:23>) rises to the full watermark, Flow Control is automatically enabled. When the BUFCNT falls to the empty watermark, Flow Control is automatically disabled.

This bit is only used for Flow Control operations and affects both TX and RX operations.

bit 6-5 Unimplemented: Read as '0'

bit 4 MANFC: Manual Flow Control bit

- 1 = Manual Flow Control is enabled
- 0 = Manual Flow Control is disabled

Setting this bit will enable manual Flow Control. If set, the Flow Control logic will send a PAUSE frame using the PAUSE timer value in the PTV register. It will then resend a PAUSE frame every 128 * PTV<15:0>/2 TX clock cycles until the bit is cleared.

Note: For 10 Mbps operation, TX clock runs at 2.5 MHz. For 100 Mbps operation, TX clock runs at 25 MHz.

When this bit is cleared, the Flow Control logic will automatically send a PAUSE frame with a 0x0000 PAUSE timer value to disable Flow Control.

This bit is only used for Flow Control operations and affects both TX and RX operations.

bit 3-1 Unimplemented: Read as '0'

bit 0 BUFCDEC: Descriptor Buffer Count Decrement bit

The BUFCDEC bit is a write-1 bit that reads as '0'. When written with a '1', the Descriptor Buffer Counter, BUFCNT, will decrement by one. If BUFCNT is incremented by the RX logic at the same time that this bit is written, the BUFCNT value will remain unchanged. Writing a '0' will have no effect.

This bit is only used for RX operations.

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

REGISTI	ER 34-9: CFGEBIC: EXTERNAL BUS INTERFACE CONTROL PIN CONFIGURATION REGISTER (CONTINUED)	
bit 12	EBIOEEN: EBIOE Pin Enable bit	
	$1 = \overline{\text{EBIOE}}$ pin is enabled for use by the EBI module	
	0 = EBIOE pin is available for general use	
bit 11-10	Unimplemented: Read as '0'	
bit 9	EBIBSEN1: EBIBS1 Pin Enable bit	
	1 = EBIBS1 pin is enabled for use by the EBI module 0 = EBIBS1 pin is available for general use	
bit 8	EBIBSEN1: EBIBSO Pin Enable bit	
bit 0	$1 = \overline{\text{EBIBS0}}$ pin is enabled for use by the EBI module	
	0 = EBIBS0 pin is available for general use	
bit 7	EBICSEN3: EBICS3 Pin Enable bit	
	$1 = \overline{EBICS3}$ pin is enabled for use by the EBI module	
	0 = EBICS3 pin is available for general use	
bit 6	EBICSEN2: EBICS2 Pin Enable bit	
	$1 = \overline{\text{EBICS2}}$ pin is enabled for use by the EBI module	
	0 = EBICS2 pin is available for general use	
bit 5	EBICSEN1: EBICS1 Pin Enable bit	
	1 = EBICS1 pin is enabled for use by the EBI module	
	0 = EBICS1 pin is available for general use	
bit 4	EBICSEN0: EBICS0 Pin Enable bit	
	$1 = \overline{\text{EBICS0}}$ pin is enabled for use by the EBI module	
1	0 = EBICS0 pin is available for general use	
bit 3-2	Unimplemented: Read as '0'	
bit 1	EBIDEN1: EBI Data Upper Byte Pin Enable bit	
	 1 = EBID<15:8> pins are enabled for use by the EBI module 0 = EBID<15:8> pins have reverted to general use 	
bit 0	EBIDEN0: EBI Data Lower Byte Pin Enable bit	
DIL U	1 = EBID<7:0> pins are enabled for use by the EBI module	
	0 = EBID < 7:0> pins have reverted to general use	
	-	
Note:	When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.	

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Min. Typical ⁽¹⁾ Max. Units Conditions			Conditions
DI60a	licl	Input Low Injection Current	0	_	₋₅ (2,5)	mA	This parameter applies to all pins, with the exception of RB10. Maximum IICH current for this exception is 0 mA.
DI60b	lich	Input High Injection Current	0	_	+5 ^(3,4,5)	mA	This parameter applies to all pins, with the exception of all 5V toler- ant pins, OSCI, OSCO, SOSCI, SOSCO, D+, D- and RB10. Maximum IICH current for these exceptions is 0 mA.
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁶⁾	—	+20(6)	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 37-10: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: VIL source < (Vss - 0.3). Characterized but not tested.

3: VIH source > (VDD + 0.3) for non-5V tolerant pins only.

4: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 2, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 3, IICH = ((IICH source - (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss - 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

38.0 EXTENDED TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MZ EF electrical characteristics for devices running up to 125°C. Additional information will be provided in future revisions of this document as it becomes available.

The specifications for Extended Temperature are identical to those shown in **37.0** "Electrical Characteristics", with the exception of the parameters listed in this chapter.

Parameters in this chapter begin with the letter "E", which denotes Extended Temperature operation. For example, parameter DC28 in **37.0** "Electrical Characteristics", is the Extended Temperature operation equivalent for EDC28.

Absolute maximum ratings for the PIC32MZ EF devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias.....-40°C to +125°C

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARAC	C CHARACTERISTICS			Operating Conditions: 2.1V to 3.6V herwise stated) temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Parameter No.	Typical ⁽²⁾	Maximum ⁽⁴⁾	Units Conditions			
Idle Current	Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)					
EDC30a	7	52	mA	4 MHz (Note 3)		
EDC31a	8	56	mA	10 MHz		
EDC32a	13	66	mA	60 MHz (Note 3)		
EDC33a	21	86	mA	130 MHz (Note 3)		
EDC34	26	96	mA	180 MHz (Note 3)		

TABLE 38-3: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE current measurements are as follows:

• Oscillator mode is EC+PLL with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBPMD = 1), VUSB3V3 is connected to VSS, PBCLKx divisor = 1:128 ('x' ≠ 7)
- CPU is in Idle mode (CPU core Halted)
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared (except USBPMD)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: Data in the "Maximum" column is at 3.3V, +125°C at specified operating frequency. Parameters are for design guidance only and are not tested.

NOTES: